
Computing Manipulations of Ranking Systems

Ethan Gertler Erika Mackin Malik Magdon-Ismail Lirong Xia Yuan Yi
{gertle,mackie2,yiy2}@rpi.edu, {magdon,xial}@cs.rpi.edu

Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY, USA

ABSTRACT

Ranking systems are widely used by agencies to rank agents, for

example U.S. News & World Report ranks colleges. Such rank-

ings are prone to manipulation by the agency (e.g. USNews) for

publicity, and also by the agents (e.g. colleges) to get a better

rank. We analyze the algorithmic aspects of manipulation in linear

ranking systems of m agents using n features. Computing optimal

manipulation for the ranking agency is NP-hard: we give a mixed

integer linear program solution, and also an efficient linear pro-

gramming heuristic that formulates the problem as a classification

task. Computing optimal manipulations for ranked agents subject

to a budget constraint is a minimax problem in a continuous space:

we give a general O((m+ k)n
2−nmn−1 logm) algorithm, where

k is the number of linear constraints on the weight vector and an

O(m(logm)2) algorithm for n = 2. We also present a large class

of heuristic algorithms with approximation ratio n.

We tested our algorithms on USNews data from the 2015 college

rankings. Our algorithms compute agency and agent manipulation

strategies in seconds. We present several interesting experiments on

the ranking range of the top-100 colleges, including optimal spend-

ing plans for these colleges.

Categories and Subject Descriptors

J.4 [Computer Applications]: Social and Behavioral Sciences–

Economics; I.2.11 [ Distributed Artificial Intelligence]: Multia-

gent Systems

General Terms

Algorithms, Economics, Theory

Keywords

ranking systems; manipulation; USNews

1. INTRODUCTION
A ranking agency ranks each of m agents based on the values of

their n features. A popular approach is the linear ranking system,

which uses a weighted sum of the features, ~w · ~c =
∑n

i=1 wici
to rank (~w is a vector of ranking weights and ~c is a vector of fea-

tures). An example of a linear ranking system is the U.S. News
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& World Report (USNews for short) college ranking, which uses

a weighted sum of subjective features (such as reputation and high

school counselar rating) and objective features (such as retention

rate, tuition, and number of classes with no more than 20 students).1

It is well-known that a good college ranking is “very important”

and “very profitable” for a school [21], a phenomenon that has

attracted much public attention recently due to Northeastern Uni-

versity’s fast rise in the rankings. Ranking systems are everywhere.

For example, web search engines rank websites based on features;

meta-search engines use search engine results as the features to

fine-tune the ranking [14]; linear systems are used to rank appli-

cants for awards, e.g. the Future Fellows Awards [2]; recommender

systems rank items based on their features [18]; information re-

trieval systems rank query results based on relevancy features [22].

Ranking systems provide actionable information, and hence are

prone to manipulation by both the ranking agency and the ranked

agents. For example, USNews may vary the weights from year to

year, for example, in the 2013 rankings (announced in 2012), Har-

vard dropped from tied-1st to the 2nd place. This has drawn crit-

icism, for it is hard to believe that “anything changed at Harvard

for that to have happened" [27]. Is USNews being honest or just

manipulating the weights to increase its publicity? Similarly, there

is evidence that colleges are manipulating their features to improve

their USNews ranking, by strategically enlarging the application

pool and reducing the size of classes [21], or even falsely report-

ing their features [24]. Similarly, websites have been manipulating

their Google search rank (known as “Google Bombs” [1, 4]), and

Baidu, a popular Chinese web search engine, has been accused of

manipulating ranks in favor of websites who paid them [10]. There

is clear motivation to manipulate, but how can one optimally do it?

There is little work on the following question:

“How much can the agency or agent manipulate the rankings?”

If a ranking agency has significant ability to manipulate rankings,

then the published rankings start to lose credibility. Given the rank-

ing methodology, ranked agents would like to know how they may

best increase their ranking by improving their features. Our contri-

butions are to answer the following questions.

Q1 (agency’s basic manipulation): If the agency does not make

any commitments on the ranking weights, how diverse can

agents’ ranks be?

Q2 (agency’s manipulation under constraints): What if the

agency commits to (for example) bounds on the weights, or

the relative importance of the features?

Q3 (agents’ manipulation): What is the optimal spending plan

for an agent to improve its features to guarantee a good rank

with or without knowing how the ranker will select weights?

1USNews applied rounding to the weighted sum, which can be seen
as noise and is not studied in this paper.
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1.1 Our contributions
We take an algorithmic approach towards understanding the ex-

tent to which linear ranking systems can be manipulated. We show

that manipulation by ranking agency is NP-hard to compute, and

we provide mixed integer linear programs to compute the high-

est and lowest rank under various constraints, including (1) Top-

k constraints, which requires that a given set of agents must be

ranked within top k. (2) Weight-order constraints, which impose

an order over the sizes of the weights based on the relative impor-

tance of the features. (3) Weight-range constraints, which requires

that the weights must be in given ranges. We also give an effi-

cient linear programming heuristic by formulating the problem as

a classification task. For manipulation by ranked agents, we pro-

vide an O((m + k)n
2−nmn−1 logm) algorithm, where k is the

number of linear constraints on the weight vector, to compute the

minimax-optimal spending plan for a budget constrained agent, and

improve this to O(m(logm)2) when n = 2. We also provide an

efficient heuristic algorithm which computes a spending plan which

is at most an n-factor from optimal. Our experiments show that the

heuristic is close to optimal in practice.

We tested our algorithms on USNews data for their 2015 college

rankings. Our algorithms can compute the agency’s manipulation

and minimax strategies using n = 2 features in minutes. We show

that in these cases our heuristic algorithms achieve competitive ac-

curacy and are much more efficient. More importantly, the heuris-

tic algorithms for computing minimax strategies can find spending

plans when there are n = 15 features (as in the USNews data)

within a few hours.

We give experimental results to answer Q1–Q3 for a variety of

colleges. For Q1, we show that the range of most agents’ ranks can

be very diverse. For Q2, if USNews can promise that the weights

do not deviate too much or even that the ordering over the weights

does not change, then the range is much smaller and manipulation

by the agency is less of a concern. For Q3, we give (near) optimal

spending plans for a variety of colleges including WUSTL, RPI,

and U. New Hampshire (which span a wide range in the top 100

colleges). Our results show that manipulation of rankings for prob-

lems on the scale of the USNews data is easily within the reach of

current computation capability.

1.2 Related Work and Discussion
The computational complexity of manipulation, bribery, and con-

trol in voting has been studied for some time (see for example [7, 8,

17, 16]). Our setting and integer linear problems for basic manip-

ulation problem (Q1) is closely related to the work by Baumeister

et al. [9], where they investigated complexity of and algorithms for

computing whether some candidate can win (the possible winner

problem) and whether some candidate always wins (the necessary

winner problem) when the chair can control the weights of the vot-

ers for various voting rules that are different from the linear system

studied in this paper. There are three significant differences be-

tween our work and the previous research.

1. Traditional work in voter manipulation considers each voter as

an ordering over candidates and the voting rule outputs a winner

based on the voter orderings. A voter manipulates his ordering

of the candidates to obtain a more desirable winner. We focus on

ranking systems, where the inputs are feature vectors (c.f. range

voting) and the output is the ordering over agents. An agent’s

manipulation goal is to obtain as high a rank as possible.

2. In the traditional setting, one tries to prove that manipulation is

hard under various voting rules because this is a desired prop-

erty. Our focus is the extent of manipulation and the design

of fast algorithms to compute manipulation strategies. We de-

fine agent manipulation in terms of minimax strategies which

are notoriously hard to compute, and for which we give efficient

algorithms and heuristics.

3. Most previous research on manipulation in voting systems is

theoretical (see for example [29, 26, 23, 28] for some recent ex-

perimental approaches). We tested our algorithms on real US-

News college ranking data.

Mathemetically speaking, the agency’s basic manipulation prob-

lem (Q1) is an instance of maximum feasible subsystems of linear

inequalities (MFS), also known as the halfspace depth, location

depth, and Tukey depth problems [20]. There are heuristic and ran-

domized algorithms for MFS [6, 11, 12, 25, 5]. In MFS, the task

is to find a maximum feasible subsystem of a system of linear in-

equalities. However, we don’t see a way to convert the agency’s re-

stricted manipulation problem (Q2) to MFS, so we propose a MIP

formulation and, for certain restrictions, an efficient LP-heuristic.

The agents’ manipulation problem (Q3) is a minimax problem with

little relationship to MFS.

Previous work on computing optimal decisions in games focused

on mixed strategies for a finite minimax problem [13]. Our prob-

lem of computing the minimax spending plan (Q3) is significantly

different, because we want to compute a pure strategy (a spending

plan), where the utility function of the agents (their ranks) can-

not be explicitly represented. Our O((m + k)n
2−nmn−1 logm)

algorithm leverages a computational geometry algorithm that com-

putes arrangements in a Euclidean space [15] (the partition of a

hyperplane into lower-dimensional pieces created by a system of

other hyperplanes). When n = 2, we improve our algorithm using

a novel binary search method with O(m(logm)2) run time. We

also develop heuristics for the general case that provide an O(n)-
approximation to the optimal spending plan, making O(n) calls to

our solution of Q2.

There has been intense research on analyzing USNews methods

to predict rankings (see the work by Gnolek et al. [19] and reference

therein). Our results complement these studies. We are the first to

quantitatively study the manipulation capabilities of USNews (Q1

and Q2) and our results on agent manipulation and optimal spend-

ing plans (Q3) introduce novel quantitative tools for computing op-

timal robust strategies w.r.t. USNews’ ability to change the weights.

A different approach to predicting rank change using regression is

given in [19], where it is assumed that the weights are unchanged

and are known; this is a different problem.

We provide a bridge between the high-stakes manipulation of

ranking systems, especially the college rankings, and the multi-

agent computational social choice community. Even though our

application is college ranking, our methods can be applied to any

linear ranking system, and they are efficient.

2. PRELIMINARIES
There are m ranked agents {1, . . . ,m}. Each agent i is charac-

terized by a n-dimensional feature vector ~ci ∈ [−0.5, 0.5]n (fea-

tures are bounded between 0 and 1, which is without loss of gener-

ality because the ranking is obtained by comparing a weighted sum

of the features). Let P = (~c1, . . . ,~cn) denote a profile of all fea-

ture vectors. A ranking agency applies a ranking system that maps

each profile to a full ranking with ties over the agents.

We only consider the linear ranking system which is character-

ized by a weight vector ~w = (w1, . . . , wn) that satisfies wj ≥ 0
and

∑n

i=1 wi = 1 (the non-negative constraint is because we as-

sume every feature is positively correlated with rank). For profile

P , the agents are ranked using their scores ~w · ~c =
∑n

j=1 wjcj
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(higher score is better). More precisely, agent i is ranked above

agent i′ if and only if ~w · ~ci > ~w · ~ci′ . The best rank is 1 and the

worst is m; agents with the same score get the same rank:

Rank(i) = 1 + |{i′ : ~w · ~ci′ > ~w · ~ci}|.

Example 1 In the USNews 2015 best college ranking, colleges have

17 features, divided into the following seven categories [3]. (Note

that the 2015 and 2012 rankings use different weights.)

• Undergraduate academic reputation (22.5%): “Peer assess-

ment score” (15%) and “High school counselor score” (7.5%).

• Retention (22.5%): “6-year graduation rate” (18%) and “Av-

erage freshman retention rate” (4.5%).

• Faculty resources (20%): “Classes with < 20 students” (6%),

“Classes with≥ 50 students” (2%), “Faculty salary” (7%), “Pro-

portion of professors with the highest degree in field” (3%), “Student-

faculty ratio (1%)” and “Percent of full-time faculty” (1%).

• Student selectivity (12.5%): “Fall 2013 acceptance rate” (1.25%),

“SAT/ACT 25th-75th percentile” (8.125%), “Freshmen in top 10

percent of high school class” (1.5625%), “Freshmen in top 25 per-

cent of high school class” (1.5625%).

• Average spending per student (10%).

• Graduation rate (7.5%), the over/under-performance predicted

by USNews compared to actual graduation rate.

• Alumni giving rate (5%).

The scores (weighted sum of features) are normalized as a per-

centage of the highest score, and then rounded to the nearest inte-

ger. The final ranking is determined by the rounded percentages.

3. MANIPULATION BY THE AGENCY
In the agency’s basic manipulation problem, we assume that the

ranking agency knows the features of the agents (so the profile P
is fixed) and wants to find a weight vector ~w to improve the rank

of a distinguished agent as much as possible (constructive manip-

ulation, corresponding to lowering the rank) or worsen the rank as

much as possible (destructive manipulation, corresponding to in-

creasing the rank).

Definition 1 (Agency manipulation) In the basic constructive (resp.

destructive) manipulation problem, the agency computes a valid set

of weights ~w so that a distinguished agent i∗ has minimum (resp.

maximum) rank.

Recall that valid weights are non-negative and sum to 1. These con-

straints on ~w are mild: the weights summing to 1 is vacuous since

all we care about is the ranking; and, the non-negative constraint

simply means the features must positively correlate to ranking. In

real life applications, especially in college ranking systems, there

are considerably more restrictions on the weights. We consider

three common types of additional constraints.

The first requires that a given set of agents is ranked within the

top-k for some given k. For example, to make the college ranking

appear credible, Harvard, Yale, and Princeton are ranked within the

top-10. The second requires that the relative importance of the fea-

tures to be fixed. For example, in the 2015 best college ranking, the

weight of 6-year graduation rate (18%) is the highest, which means

that USNews deem it most important in their ranking. Meanwhile,

the weights of High school counselor score and Graduation rate

performance are the same. Therefore, it is reasonable to require

that for the manipulated weight vector, the weight of 6-year gradu-

ation rate is still the highest, and the weights of High school coun-

selor score and Graduation rate performance remain equal. The

third requires that the weight vector is in some bounded range. For

example, one expects that USNews would not change any weight

by more than (say) 10% for next year’s ranking.

Definition 2 (Top-k constraint on ~w) Given a subset of agentsA
and k ≤ m, every agent in a subset A should have rank at most k.

Definition 3 (Weight-order constraint on ~w) Given a partial or-

dering ☎ over {1, . . . , n}, wj ≥ wj′ if and only if j ☎ j′.

Definition 4 (Weight-range constraint on ~w) We are given upper

and lower bounds (Wj ,Wj) and Wj ≤ wj ≤Wj for j = 1, . . . , n.

Any of these additional constraints could be added into the ba-

sic manipulation problem. Indeed, our formulation can handle any

integer-linear constraints, but the ones above are the ones we fo-

cus on. The basic manipulation problem without any constraints

on ~w asks to compute ~w so that ~w · (~ci − ~ci′) ≥ 0 for as many

i′ as possible. This is exactly the maximum feasible subsystem

problem (MFS), which is NP-hard. After adding the non-negativity

constraint, the problem remains NP-hard, which we can prove by

reduction from the NP-hard problem CLOSED HEMISPHERE [20].

We state this fact, but defer the proof to a full version.

Theorem 1 Computing the maximum constructive or destructive

basic manipulation weights is NP-hard.

We present an efficient mixed integer linear program (MILP)

in Figure 1 for the agency’s manipulation problem that can ac-

comodate any of the weight constraints we have discussed above.

The profile P is fixed and for a distinguished agent i∗, the agency

wants to compute weights ~w to minimize Rank(i∗) or maximize

Rank(i∗). In the MILP in Figure 1, the variables are the weights wj

and the binary variables xi1,i2 for some pairs of agents i1, i2 ≤ m.

The binary variable xi1,i2 is 0 if and only if ~w · (~ci1 − ~ci2) ≥ 0
(for weights ~w, i2 is not ranked ahead of i1, i.e. Rank(i1) ≤
Rank(i2)), and xi1,i2 = 1 otherwise. The total number of agents

that are ranked strictly ahead of our distinguished agent i∗ is there-

fore
∑

i6=i∗ xi∗,i, which becomes the objective of the MILP. Mini-

mizing this objective corresponds to the constructive manipulation

problem, and maximizing this objective corresponds to the destruc-

tive manipulation. For the Top-k constraint, we require that for

each agent i′ in A, no more than k − 1 agents are ranked strictly

ahead of it, which is guaranteed by the constraint
∑

i6=i′ xi′,i < k.

The weight-order constraints and weight-range constraints are stan-

dard linear inequality constraints.

4. MANIPULATION BY THE AGENTS
Suppose a distinguished agent has a budget B to improve her

features for the next ranking. Let ~c denote the agent’s initial fea-

ture vector. We focus on linear budget constraints. That is, there

exists a cost vector ~C = (C1, . . . , Cn), where Ci > 0. An agent

can update its features to ~c + ~∆ for any ~∆ ≥ 0 that satisfies the

linear budget constraint ~C · ~∆ ≤ B. Any ~∆ satisfying the bud-

get constraint is a valid spending plan, and we collect the set of

feature vectors ~c+ ~∆ that are reachable for the agent into the feasi-

ble set FeasibleB(~c) (this set depends on ~C, but for simplicity, we

suppress that dependence).

We further assume that the distinguished agent knows the other

agents’ features, denoted by P−, via direct observation or estima-

tion. If the agent also knows the weights ~w that the ranking agency

will use, then computing the optimal feasible spending plan is easy

and reduces to putting all your money into the feature with biggest

payoff per unit of cost.

Theorem 2 Given the feature vector ~c of a distinguished agent, a

budget B, a cost vector ~C, other agents’ feature vectors P−, and

the weight vector ~w, let j∗ = argmaxj wj/Cj . Then the optimal

spending plan is ~∆∗ where ~∆∗
j∗ = B/Cj∗ and ~∆∗

j = 0 for j 6= j∗.
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min (max for destructive manipulation)
∑

i6=i∗

xi∗,i

s.t.
∀i 6= i∗, xi∗,i − 1 < ~w · (~ci − ~ci∗ ) ≤ xi∗,i

∀i 6= i∗, xi∗,i is binary
∑

j≤n wj = 1







Basic manipulation

∀i′ ∈ A, ∀i 6= i′, xi′,i − 1 < ~w · (~ci − ~ci′) ≤ xi′,i

∀i′ ∈ A,
∑

i6=i′ xi′,i < k
∀i 6= i′, xi′,i is binary







Top-k constraints

∀j1 ☎ j2, wj1 ≥ wj2 =⇒ Weight-order constraints

∀j ≤ n,Wj ≤ wj ≤Wj =⇒ Weight-range constraints

Figure 1: MILP for agency’s manipulation problem w.r.t. the three types of constraints.

Proof: Since ~w is fixed, the scores of other agents are fixed. To

minimize Rank(~c + ~∆) we maximize the score ~w · (~c+ ~∆). That

is we maximize ~w · ~∆ subject to ~C · ~∆ ≤ B. The maximum

is achieved by a ∆ that is positive in only one component, and a

quick calculation shows that the component to choose is the one

that maximizes wj/Cj . ✷

When ~w is not known, the optimality of a spending plan needs to

be defined. We adopt the celebrated minimax principle from deci-

sion theory. LetW be the set of all possible weight vectors that the

agency can choose from. A feasible spending plan is minimax opti-

mal if it offers the best guarantee on the rank against an adversarial

ranking agency who can choose any weight vector fromW .

Definition 5 (Minimax spending plan) GivenW , the feature vec-

tor ~c of the distinguished agent i∗, and the profile P− for other

agents, the minimax spending plan ~∆∗ is the feasible spending plan

that minimizes the worst possible rank overW:

~∆∗ = arg min
feasible ~∆

max
~w∈W

Rank(~c+ ~∆; ~w),

where Rank(~c+ ~∆; ~w) is the rank of ~c+ ~∆ for the weights ~w given

the profile P− for other agents. max~w∈W Rank(~c + ~∆∗; ~w) is

called the minimax value.

We note that max~w∈W Rank(~c + ~∆; ~w) is exactly the outcome

of optimal destructive manipulation by the agency (Definition 1).

When B = 0, FeasibleB(~c) = {~c}. Therefore, we immediately

have the following theorem about the complexity of checking the

minimax value.

Theorem 3 Given W , P−, FeasibleB(~c), and T ≥ 0, checking

whether the minimax value is smaller than T is coNP-complete.

The main theoretical contribution of this section is an O((m +

k)n
2−nmn) algorithm for computing the minimax value and the

corresponding minimax plan, whenW can be represented by k lin-

ear constraints on ~w. More precisely, for any K ⊆ {R}n, we let

WK = {~w : ∀~a ∈ K,~a · ~w ≥ 0}.
We first present an O(m3 logm) algorithm for n = 2 andW =

R
2
≥0 to illustrate the idea, then we improve the theorem in two or-

thogonal directions: first, we propose a novel binary search method

to improve the algorithm for n = 2 to O(m2 logm); second, we

extend the algorithm to arbitrary n andWK for arbitrary K.

Our algorithms work as follows. We will prove that the set of all

feasible spending plans FeasibleB(~c) can be partitioned into finite

open sets, within each of which the plans have the same max value.

Therefore, to compute the minimax value we only need to compute

the max value for one point in each of these open sets.

More precisely, for n = 2 and W = R
2
≥0, FeasibleB(~c) is

a line segment. Let P− denote the feature vectors of the other

m − 1 agents. We first compute the intersections of FeasibleB(~c)
and (1) line segments [~ci,~ci′ ] between all pairs of points in P−

and (2) all horizontal and vertical rays towards the positive direc-

tions in both axes starting from any point in P−, which can be

seen as the line segment connecting any point in P− and one of

{(0,+∞), (+∞, 0)}. These intersections partition FeasibleB(~c)
into O(m2) open intervals and O(m2) points. Then, for each point

and an arbitrary point (which we choose to be the midpoint) in each

interval, we use the O(mn−1 logm) enumeration algorithm in [20]

to compute the max value. Finally, the algorithm outputs the point

with the minimum max value among these intersections and mid-

points. The algorithm is illustrated in Algorithm 1.

Algorithm 1: Minimax plan for n = 2.

Input: FeasibleB(~c) (which is a line segment) and P−.

1 for Each pair ~ci,~ci′ ∈ P− do
2 If both ~ci and ~ci′ are on FeasibleB(~c) then

I~ci,~ci′ = {~ci,~ci′}. Otherwise let I~ci,~ci′ be the intersection

of the line segment [~ci,~ci′ ] and FeasibleB(~c).
3 end

4 for Each ~ci ∈ P− do
5 Compute the set of intersections I~ai

of FeasibleB(~c) and

rays [~ai, (+∞, 0)) and [~ai, (0,+∞)) respectively.
6 end
7 Let I denote all intersections and the two endpoint of

FeasibleB(~c).
8 Order I from left to right as (~p0, p2 . . . , ~p2t) and let

{~p1, ~p3, . . . , ~p2t−1} denote the midpoints of
(~p0, ~p2), . . . , (~p2t−2, ~p2t) respectively.

9 Compute the max value of ~ps for all 0 ≤ s ≤ 2t by the
algorithm in [20].

10 return the point with the minimum max value.

Example 2 Suppose there are 4 agents whose feature vectors are

{~c,~c1,~c2,~c3} respectively as in Figure 2, where~c is the feature vec-

tor of the distinguished agent. Suppose FeasibleB(~c) is the line seg-

ment [~p0, ~p10]. Algorithm 1 first computes intersections of all line

segments connecting points in P− = {~c1,~c2,~c3}, and {~p2, ~p6} are

the intersections. Then Algorithm 1 computes the intersections of

FeasibleB(~c) and the rays starting at each ~ci that goes to positive

infinity along the two axes, and {~p4, ~p8} are the intersections. The

algorithm computes the max values of {~p0, ~p2, . . . , ~p10}, and the

midpoints of {[~p0, ~p2], . . . , [~p8, ~p10]}, denoted by ~p1, ~p3, . . . , ~p9
respectively (not shown in the figure). Finally, the algorithm out-

puts the point with the minimum max value.
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Figure 2: Illustration of Algorithm 1 (n = 2).

Theorem 4 Algorithm 1 computes the minimax plan w.r.t. W =
R

2
≥2 in O(m3 logm) time.

Proof sketch: To prove the correctness of Algorithm 1, it suffices

to prove that all points on the same open line segment (~ps, ~ps+1)
in FeasibleB(~c) have the same max value. For any ~p ∈ (~ps, ~ps+1),
let ~w denote the weight vector that achieves the max value for ~p, let

H denote the hyperplane that contains ~p and is perpendicular to ~w,

and let S ⊆ P− denote the set of points on the positive side of H .

LetH denote the convex hull of S∪{(0,+∞), (∞, 0)}. It follows

that all points inH are on the positive side of H , which means that

~p is not contained inH.

For any ~q ∈ (~ps, ~ps+1), we first show that ~q is not in H either.

Suppose on the contrary that ~q ∈ H, then the line segment [~p, ~q]
must intersect a face of H. This contradicts the assumption that ~p
and ~q belong to the same line segment on FeasibleB(~c) computed

in Step 8 in Algorithm 1. Therefore, ~q 6∈ H. We note that H is a

closed convex set. Applying the separating hyperplane separation

theorem, there exists a hyperplane H ′ passing ~q such that all points

in H are in one open side of H ′. Let ~w′ denote the vector that is

perpendicular to H ′ pointing to H. It follows that for all ~q1 ∈ H
we have ~w′ · (~q1 − ~q) > 0. In particular, the inequality holds for

~q1 = [0,+∞) and ~q1 = (+∞, 0], which means that w′
1 > 0 and

w′
2 > 0. Therefore, ~w′ ∈ WK≥0

. This means that the max value

of ~q is at least the max value of ~p. Since this holds for any choice

of ~p and ~q in (~ps, ~ps+1), the max value for all points in (~ps, ~ps+1)
must be the same.

This proves the correctness of Algorithm 1. Clearly the running

time is O(m3 logm). ✷

We can improve step 8 of Algorithm 1 using binary search, where

we do not need to compute the max values of all points in {~p0, . . . ~p2t}.
Instead, in each iteration we compute the max value for the point

~ps in the middle of the list, and use the adversarial weight vector ~w
to eliminate half of the points based on the following observation:

for any vector ~p with ~w · (~p− ~ps) <= 0, the max value of ~p is

at least the max value of ~ps (by using the same ~w). Formally, the

algorithm is presented as Algorithm 2.

Theorem 5 Algorithm 1 with step 9 replaced by Algorithm 2 com-

putes the minimax plan w.r.t.W = R
2
≥2 in O(m(logm)2) time.

The extension of Algorithm 1 to general n andWK follows the

same idea and is illustrated in Algorithm 3. We first compute the

partition of FeasibleB(~c) by hyperplanes formed by n−1 points in

P− and k points representing the constraints in K that are infinitely

far away. Such a partition is called an arrangement, and we can use

the algorithm proposed in [15] to compute a compact representation

of these sets in O((m + k)n
2−n) time. Then, for each set in the

Algorithm 2: Binary search for n = 2.

Let tmin = 0 and tmax = 2t.
while tmin ≤ tmax − 2 do

Let t∗ = ⌊(tmin + tmax)/2⌋.
Compute the max value of ~pt∗ by the algorithm in [20] and
let ~w denote the weight vector that gives the max value.

If ~ptmax − ~pt∗ · ~w ≥ 0, then let tmin = t∗; otherwise let
tmax = t∗.

end

return the point in {tmin, tmax} with the minimum max
value.

partition we compute the max value for an arbitrary point in it by

the O(mn−1 logm) algorithm [20], and finally choose the point

with the minimum max value.

Algorithm 3: Minimax plan for general n.

Input: FeasibleB(~c), P−, and the constraints K.
1 for Each combination of n− 1 points in

P− ∪ {~a×∞ : ~a ∈ K} do
2 Form a hyperplane and compute the arrangement of

FeasibleB(~c) by the algorithm proposed in [15].
3 end
4 for Each set in the arrangement do
5 Choose any point in it and compute its max value by the

algorithm in [20].
6 end
7 return the point with the minimum max value.

Theorem 6 If no n features in P− are on the same hyperplane,

then Algorithm 3 computes the minimax plan w.r.t.WK in O((m+

k)n
2−nmn−1 logm) time (k is the number of constraints in K).

5. APPROXIMATION ALGORITHMS
We give approximation heuristics for manipulation. We give an

LP-heuristic for computing best and worst ranks, which we obtain

by formulating a classification problem; and, we give a greedy

heuristic for computing a spending plan with an approximation

guarantee. Let ~c be the current feature vector of the school whose

rank we are manipulating (either by choosing weights ~w or a spend-

ing plan ~∆ to update the features), and let ~ci be the features of the

other schools, which are fixed. We will loosely use ~c and ~ci to refer

both to the school and its features.

5.1 Computing Manipulation by Agency
Let ~xi = ~c − ~ci be the feature differences, and define yi = +1

if we wish ~c to be ranked above ~ci and −1 otherwise. So we want

~w · ~xi > 0 if yi = +1 and ~w · ~xi < 0 if yi = −1. That is, after

rescaling ~w, we can require that

yi(~w · ~xi) > 1.

We have here a classification problem where we would like to clas-

sify the data (~xi, yi) correctly. If the classifications yi are not all

realizable, we would like to realize as many as possible. By choos-

ing all yi = +1, we have the optimal constructive manipulation

problem. By choosing all the yi = −1, we have the optimal de-

structive manipulation problem.

The plain vanilla classification problem above is the MFS prob-

lem. However, we cannot apply standard MFS heuristics when

there are additional constraints on ~w, so we proceed to describe
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a standard heuristic for the classification problem that can eas-

ily accomodate additional linear inequality constraints on ~w. A

common Linear Programming (LP)-heuristic for the classification

problem is to introduce slack variables ξi ≥ 0 and only require

yi(~w · ~xi) > 1− ξi while at the same time minimizing the sum of

the slacks
∑

i ξi. This is now a linear program,

min
~w,~ξ

~1 · ~ξ s.t.
yi(~w · ~xi) > 1− ξi

ξi ≥ 0
(m− 1 constraints).

5.2 Approximating Optimal Spending Plans
We first give a simple approximation heuristic for computing an

optimal spending plan and show that it achieves an n-factor ap-

proximation guarantee on the budget. We then extend this basic

heuristic to a class of iterative ones that have at least the same ap-

proximation guarantee but a better performance in practice.

To define the simple heuristic, letW be the set of allowed rank-

ing weights, and partitionW into n disjoint sets,W =W1∪W2∪
· · ·∪Wn. The setWj contains the weights ~w whose jth component

wj is maximum (ties can be broken arbitrarily), so ~w ∈ Wj =⇒
wj ≥ wk, for k = 1, . . . , n. Let r∗ be the target rank we are

trying to achieve, and B∗ the minimum budget required to achieve

guaranteed rank r∗ using optimal spending plan ~∆∗.

Fix j ∈ {1, . . . , n}. For any set of weights ~w ∈ Wj , some

school ~c∗ (which depends on ~w) achieves rank r∗ with score ~w ·~c∗.

Our target school has score ~w · ~c. We define the deficiency of our

school with respect to the weights ~w ∈ Wj , denoted ∆(~w), to be

the minimum budget our school needs to expend to raise its rank to

r∗ with respect to just this one ~w. A short calculation verifies that

∆(~w) = max

(

0,
~w · (~c∗ − ~c)

wj

)

,

because the best way to improve the score of~cw.r.t. ~w is to improve

the jth feature (since wj is maximum) using the update cj ← cj +
∆(~w), in which case the score of ~c rises to that of ~c∗ (with respect

to ~w). Define the deficiency w.r.t. the set Wj , denoted ∆j , to

be the maximum deficiency with respect to any weight in Wj , so

∆j = max~w∈Wj
∆(~w). If you add the budget ∆j to component

j of ~c (that is cj ← cj + ∆j ), then every weight vector inWj is

‘satisfied’ in the sense that the rank of ~c will become at least r∗

with respect to every ~w ∈ Wj . The next two lemmas are offered

without proof. The proofs are immediate from the definition of ∆j

and the fact that for all weights inWj , the maximum component is

the jth component.

Lemma 1 Increasing cj by ∆j is the minimum budget required to

satisfy all the weights inWj .

Lemma 2 Construct the spending plan ~∆ = [∆1,∆2, . . . ,∆n]

using a budget B = ~1 · ~∆ =
∑n

j=1 ∆j . Then the updated features

~c← ~c+ ~∆ guarantees a rank of r∗ or better.

We now relate the spending plan ~∆ = [∆1,∆2, . . . ,∆n] with bud-

get B =
∑n

j=1 ∆j to the optimal spending plan ~∆∗ with budget

B∗.

Theorem 7 The budget B ≤ nB∗.

So B guarantees a rank of at least r∗ and is not more than an n-

factor away from the optimal budget that does so. It is possible

to show that this approximation bound for the spending plan ~∆ is

tight in that there are examples for which B = Ω(n)B∗.

Proof: Since B∗ guarantees rank r∗, B∗ ≥ ∆j because ∆j is the

minimum budget needed to achieve rank r∗ among all the weights

inWj . Thus, B∗ ≥ maxj ∆j . The theorem follows from:

B =
n
∑

j=1

∆j ≤ nmax
j

∆j ≤ nB∗.

✷

We can offer an immediate improvement on this algorithm. Com-

pute ∆1,∆2, . . . ,∆n sequentially: first compute ∆1 and update

the first component of ~c by adding ∆1; now compute ∆2 with the

updated ~c, and so on. Since ∆j is monotonically decreasing in

every component of ~c, the sequential algorithm can only lower the

budget B. The ∆j are not trivial to compute. Further, making these

big steps may be far from the best we can do in practice. So we of-

fer several extensions of this basic heuristic that are of an iterative

flavor. Assume that ~c cannot guarantee a rank r∗. This means that

there are some weights ~w in one of theWj for which ~w ·~c∗ > ~w ·~c.

We call these weights a witness to the fact that ~c cannot guarantee

rank r∗. All of these iterative heuristics are of the same flavor.

1: If ~c does not guarantee rank r∗, pick any witness ~w ∈ Wj .

2: Update: cj ← cj + δj for any δj ≤ ~w · (~c∗ − ~c)/wj .

The key property of the algorithm above is that it only updates the

jth component of ~c if the witness is inWj . Modulo this restriction,

the algorithm has flexibility to pick any witness and also the size of

the update. The next theorem justifies all such heuristics.

Theorem 8 Any iterative algorithm of the form above uses a bud-

get of at most B =
∑n

j=1 ∆j to guarantee rank r∗.
Proof: The proof of this theorem is immediate from the observa-

tion that once a budget of ∆j has been spent on updating the jth

component of ~c, there will no longer be any witnesses inWj . ✷

The theorem allows us to freely explore such heuristics to obtain

good experimental performance, all the while enjoying the n-factor

approximation guarantee.

Heuristic 1. Pick the witness ~w that maximizes the rank of ~c and

update by a small increment δ.

Heuristic 2. Let ~w(j) be the witness from Wj (if it exists) that

maximizes the rank of ~c. Let w
(j)
k be the kth component of ~w(j).

If you use witness ~w(j), and update cj ← cj + δ, then the sum of

the deficiencies will drop by δ
∑

k w
(k)
j /w

(k)
k (the sum is over k

for which witnesses exist). Pick the witness for which this drop is

largest and update by a small increment δ.

Heuristic 3. Let ~w(j) maximize the rank of ~c inWj . Select those

~w(j) which give the worst rank and use Heuristic 2 to pick one, and

update by a small increment δ.

Heuristics 1 & 3 do not explicitly pay attention to the target rank

r∗. They can be applied iteratively and will improve the rank as

long as the target rank is better than the current worst rank. So,

the following interesting theorem holds, which allows one to com-

pute spending plans with all target ranks efficiently and enjoy the

approximation guarantee for every spending plan.

Theorem 9 Heuristics 1 & 3 incrementally update ~c by a sequence

of spending plans ~∆1, ~∆2, . . . achieving rank guarantees r1, r2, . . ..
For every r that is greater than the starting rank guarantee, let
~∆ir be the spending plan when rank r is first reached. Then,
~1 · ~∆ir ≤ nB∗

r . That is, the budget spent in getting rank guar-

antee r is an n-approximation to the minimum budget needed.

Heuristic 1 only solves one maximum-rank problem, whereas Heuris-

tic 3 solves up to n (one for each Wj ). So, Heuristic 1 is O(n)-
times more efficient but we expect Heuristic 3 to use less budget in
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(a)Top-3 stays in top-3. (b) Fixed weight ordering.

Figure 3: Agency’s manipulation potential. (a) Top-3 remains in the Top-3 weight constraint. (b) Relative importance of the weights is fixed by the

current USNews weights. We show the agency manipulation power for destructive manipulation. The shading illustrates the difference between the

exact ILP and the LP-heuristic. The dotted black line shows the maximum possible manipulation.

practice. One can also run Heuristic 2 with target rank 1. In prac-

tice, this should work well, but the approximation guarantee does

not hold. This is because the budgets achieving intermediate ranks

are not necessarily made with respect to witnesses for that rank.

6. EXPERIMENTS
Setup. We purchased access to college features on USNews web-

site for their 2015 Best College Ranking. USNews used 17 fea-

tures. However, USNews was ambiguous about how they normal-

ized scores in some features and deliberately hid the data for “fac-

ulty salary” (7%) and “proportion of professors with the highest de-

gree in their fields” (3%), which count for 10% of the total weight.

Therefore, in all our experiments we use 15 features whose data

are available. For each feature of each college, we first calculate its

Z-score, which is the deviation from the mean of values of the same

feature for all colleges divided by the standard deviation. This is the

normalization method used by USNews in their 2011 Best College

Ranking [19], but we do not see it mentioned in their 2015 rank-

ing methodology [3]. We then further normalize all feature values

to fall into [−0.5, 0.5] , which is without loss of generality and is

necessary for our MIP (Figure 3). Using the weights provided by

USNews and the data described above, we can reconstruct 96% of

strict pairwise comparisons in USNews ranking.

Most of the tested algorithms are implemented in Python 2.7.8

and the linear programming solver is GLPK 4.35 via PuLP inter-

face. The heuristic algorithms in Section 5.1 are implemented and

tested in Matlab 2014b. All experiments are tested on a computer

with 4 AMD Opteron(TM) Processor 6276 chips that work at 2300

MHz and 504 GB of RAM running CentOS 6.5.

Manipulation by the Ranking Agency. To answer Q1 and Q2

proposed in the Introduction, we run the MIP in Figure 3 on US-

News data for the following four natural types of constraints:

1. PosWeight: nonnegative weights (enforced in all experiments).

2. HYP Top-10: Harvard, Yale, Princeton must rank in the top-10.

3. Weight-order: The relative sizes of weights matches USNews.

4. Weight-range: weights cannot differ from the original USNews

weights by more than 10%, and no single weight exceeds 20%.

We tested our MIP for the top 102 colleges, see Tables 1 and 2

for top 10) and 40th–47th statistics. The bottleneck for our MIP is

CPU, not memory (see Table 3 for average running time statistics).

There are a number of interesting findings. The PosWeight con-

straint alone results in a large rank-range, for example the worst

PosWeights HYP in Top-10 Weight-order Weight-range

3.16 sec 265.66 sec 1.30 sec 2.03 sec

Table 3: The average running time of the MIP for 102 colleges.

case rank for Yale is 68, and UCSB has a rank range [1, 102]. This

is because some feature vectors are not positively correlated with

USNews ranking, especially “Graduate rate Performance Predic-

tion”. With the constraint that Harvard, Yale, Princeton must be

ranked in top 10, the ranges are still quite large. However, such

results are still sometimes very informative. For example, we can

say “there is no way RPI can be ranked within top 20 if all features

stay the same”, and “as long as Harvard, Yale, Princeton are ranked

within top-10, UIUC cannot get in top 15 if all features stay the

same”. Similar observations hold for the Weight-range constraints.

The most interesting observation is that for the Weight-order con-

straints, the ranges are more or less consistent with USNews rank-

ing. This suggest that as long as we use weights whose order is

the same as that of USNews, we are not too far away from USNews

ranking, despite the fact that weights themselves are different.

LP-Classification Heuristic for the Agency. We compare the LP-

heuristic with the exact ILP for computing the manipulation power.

The results are shown in Figure 3 for destructive manipulation (the

results for constructive manipulation are similar).

From the figure, we see that the size of the shaded region is quite

narrow. This indicates only small differences on average between

the LP-heuristic and the exact ILP. Comparing Figure 3(a) with (b)

we see that the types of weights that USNews would commit to

makes a big difference in its manipulation power. Committing to

the relative importance of features, but not the exact weights of

each feature results in significantly less manipulation ability than a

constraint of the form “the top-3 schools will remain in the top-10”.

If USNews commits to an ordering for the importance of the fea-

tures and uses transparent meaningful features then the concern

over agency manipulation can be significantly mitigated.

Manipulation by the Ranked Agents. We develop a 2 dimen-

sional dataset from the 15 dimensional USNews by aggregating

the weights into a subjective feature (Peer assessment score (15%),

High school counselor score (7.5%), and over/under-performance

(7.5%)) and an objective feature, which is the weighted average of

the other features w.r.t. their USNews weights. These two features

are an intuitive separation of the 15 features, and we can use our
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Princeton Harvard Yale Columbia Stanford U. Chicago MIT Duke U. Penn Caltech

USNews 1 2 3 4 4 4 7 8 8 10

PosWeight [1, 46] [1, 45] [1, 68] [1, 45] [1, 51] [1, 65] [1, 82] [1, 65] [3, 83] [1, 79]

HYP Top-10 [1, 10] [1, 10] [1, 10] [1, 26] [1, 33] [1, 49] [1, 69] [1, 49] [3, 51] [1, 73]

Weight-order [1, 4] [1, 4] [1, 3] [3, 8] [3, 6] [3, 16] [5, 14] [8, 14] [6, 13] [5, 16]

Weight-range [1, 11] [1, 10] [1, 15] [1, 14] [1, 11] [1, 44] [1, 46] [1, 37] [3, 39] [1, 52]

Table 1: Constructive (the lower bounds) and destructive (the upper bounds) manipulation for top-10 colleges in USNews 2015 ranking.

Lehigh UCSB Boston U. NorthEastern RPI UCIrvine UIUC UWMadison

USNews 40 40 42 42 42 42 42 47

PosWeight [22, 99] [1, 86] [26, 94] [2, 82] [21, 97] [1, 102] [1, 101] [21, 99]

HYP Top-10 [23, 99] [1, 86] [27, 91] [2, 81] [23, 97] [5, 101] [19, 101] [22, 99]

Weight-order [36, 60] [35, 53] [37, 51] [32, 62] [36, 50] [35, 59] [36, 61] [30, 58]

Weight-range [28, 87] [12, 73] [30, 82] [19, 72] [26, 86] [18, 96] [18, 90] [26, 88]

Table 2: Constructive (the lower bounds) and destructive (the upper bounds) manipulation for 40th-47th colleges in USNews 2015 ranking.

efficient algorithm to compute the minimax spending plan, so we

can test our proposed heuristic algorithms.

Results for Heuristics 1 & 2 and Algorithm 1 on the 2D dataset

are in Figure 4, for three colleges that are ranked at 14th, 44th, and

102nd by USNews with alphabetical tie-breaking. The x-axis is the

target rank and the y-axis is the minimum total budget to guarantee

that rank for the unit cost function for both features. For example,

for college 14 to guarantee the first place, it needs at least 0.3 total

improvement in both features. Both heuristic algorithms and Algo-

rithm 1 run in seconds for each college. Surprisingly, the optimal

budgets computed by both heuristic algorithms are very close to the

optimal solution despite the guaranteed 2-approximation ratio. We

Figure 4: Heuristics 1 & 3 and optimal for 2D data.

have also tested Heuristics 1 & 3 on the 15 dimensional USNews

dataset under the same Weight-range constraint in our previous ex-

periments, for which the exact algorithm (Algorithm 3) is imprac-

tical due to high complexity. The results are in Figure 5. Surpris-

ingly, we observe that the outcomes of the two heuristic algorithms

are very close. We conjecture that they are also very close to the op-

timal solution as for n = 2, despite the guaranteed approximation

ratio of 15. The running time of the two heuristic algorithms for

colleges ranked at {4, 14, 24, ..., 94, 101} are shown in Figure 6.

We note that Heuristic 1 is much more computationally efficient

than Heuristic 3. Due to their close performance in Figure 5, we

believe that Heuristic 1 is a good algorithm in practice.

7. FUTURE WORK
There are many interesting open questions for future research.

Can we improve the worst-case O(n) guarantee for some of the

proposed heuristic algorithms? How to efficiently compute a spend-

ing plan when the budget constraint is not linear? Can we effi-

ciently compute a spending plan for other notions of optimality,

Figure 5: Heuristics 1 & 3 for 15D USNews data.

Figure 6: Running time of Heuristics & 3 for 15D USNews data.

e.g. the minimax regret? How should we model multiple colleges

strategically improving their features as a game and what are the

equilibria of such games? What if there are multiple ranking agen-

cies? Experimentally we plan to apply our methodologies to other

ranking systems including Shanghai ranking, QS ranking, etc.
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