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ABSTRACT
Voting among different agents is a powerful tool in problem solv-
ing, and it has been widely applied to improve the performance
in finding the correct answer to complex problems. We present a
novel benefit of voting, that has not been observed before: we can
use the voting patterns to assess the performance of a team and pre-
dict their final outcome. This prediction can be executed at any mo-
ment during problem-solving and it is completely domain indepen-
dent. We present a theoretical explanation of why our prediction
method works. Further, contrary to what would be expected based
on a simpler explanation using classical voting models, we argue
that we can make accurate predictions irrespective of the strength
(i.e., performance) of the teams, and that in fact, the prediction can
work better for diverse teams composed of different agents than
uniform teams made of copies of the best agent. We perform ex-
periments in the Computer Go domain, where we obtain a high
accuracy in predicting the final outcome of the games. We analyze
the prediction accuracy for three different teams with different lev-
els of diversity and strength, and we show that the prediction works
significantly better for a diverse team. Since our approach is do-
main independent, it can be easily applied to a variety of domains.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems

General Terms
Algorithms, Experimentation, Theory

Keywords
Teamwork; Collective intelligence; Distributed problem solving;
Social choice theory; Single and multiagent learning

1. INTRODUCTION
It is well known that aggregating the opinions of different agents

can lead to a great performance when solving complex problems.
For example, voting has been extensively used to improve the per-
formance in machine learning [33], crowdsourcing [28, 1], and
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even board games [30, 32]. Besides, it is an aggregation technique
that does not depend on any domain, being very suited for wide
applicability. However, a team of voting agents will not always be
successful in problem-solving. It is fundamental, therefore, to be
able to quickly assess the performance of teams, so that a system
operator can take actions to recover the situation in time.

Current works in the multi-agent system literature focus on iden-
tifying faulty or erroneous behavior [22, 25, 38, 5], or verifying
correctness of systems [8]. Such approaches are able to identify
if a system is not correct, but provide no help if a correct system
of agents is failing to solve a complex problem. Other works fo-
cus on team analysis. Raines et al. (2000) [34] present a method
to automatically analyze the performance of a team. The method,
however, only works offline and needs domain knowledge. Other
methods for team analysis are heavily tailored for robot-soccer [35]
and focus on identifying opponent tactics [31].

In fact, many works in robotics propose monitoring a team by
detecting differences in the internal state of the agents (or disagree-
ments), mostly caused by malfunction of the sensors/actuators [21,
20, 18, 19]. In a system of voting agents, however, disagreements
are inherent in the coordination process and do not necessarily
mean that an erroneous situation has occurred due to such malfunc-
tion. Meanwhile, the works in social choice are mostly focused on
studying the guarantees of finding the optimal choice given a noise
model for the agents and a voting rule [6, 26, 7], but provide no
help in assessing the performance of a team of voting agents.

In this paper, we show a novel method to predict the final perfor-
mance (success or failure) of a team of voting agents, without using
any domain knowledge. Hence, our method can be easily applied in
a great variety of scenarios. Moreover, our approach can be quickly
applied online at any step of the problem-solving process, allowing
a system operator to identify when the team is failing. This can be
fundamental in many applications. For example, consider a com-
plex problem being solved in a cluster of computers. It is undesir-
able to allocate more resources than necessary, but if we notice that
a team is failing in problem solving, we can increase the allocation
of resources. Or consider a team playing together a game against an
opponent (such as board games, or poker). Different teams might
play better against different opponents. Hence, if we notice that a
team is having issues, we could dynamically change it. Under time
constraints, however, such prediction must be done quickly.

Our approach is based on a prediction model derived from a
graphical representation of the problem-solving process, where the
final outcome is modeled as a random variable that is influenced by
the subsets of agents that agreed together over the actions taken at
each step towards solving the problem. Hence, our representation
depends uniquely on the coordination method, and has no depen-
dency on the domain. We explain theoretically why we can make
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accurate predictions, and we also show the conditions under which
we can use a reduced (and scalable) representation. Moreover, our
theoretical development allows us to expect situations that would
not be foreseen by a simple application of classical voting theories.
For example, our model indicates that the accuracy can be better
for diverse teams composed of different agents than for uniform
teams, and that we can make equally accurate predictions for teams
that have significant differences in playing strength (which is later
confirmed in our experiments).

We present experimental results in the Computer Go domain,
where we predict the performance of three different teams of voting
agents: a diverse, a uniform, and an intermediate team (with respect
to diversity). We show that we can predict win/loss of Go games
with around 73% accuracy for the diverse and intermediate team,
and 64% for the uniform team. We also study the predictions at
every turn of the games, and compare with an analysis performed
by using an in-depth search. We show that our method agrees with
the analysis, from around the middle of the games, more than 60%
of the time for all teams, but is significantly faster.

2. RELATED WORK
Recently, researchers in artificial intelligence have been show-

ing a great interest for developing and testing general methodolo-
gies that can handle a great variety of problems [24, 15, 13]; cul-
minating with the recent development of the arcade learning en-
vironment, where researchers explore the applicability of machine
learning techniques for a range of different games [4]. In particular,
voting is a technique that can be applied in many different domains,
such as: crowdsourcing [28, 1], board games [29, 30, 32], machine
learning [33], forecasting systems [16], etc.

Voting is extensively studied in social choice. Normally, it is
presented under two different perspectives: as a way to aggregate
different opinions, or as a way to discover an optimal choice [26,
7]. In this work we present a novel perspective. We show that we
can use the voting patterns as a way to assess the performance of a
team. Such a “side-effect” of voting has not been observed before,
and was never explored in social choice theory and/or applications.

Concerning team assessment, the traditional methods rely heav-
ily on tailoring for specific domains. Raines et al. (2000) [34]
present a method to build automated assistants for post-hoc, of-
fline team analysis; but domain knowledge is necessary for such
assistants. Other methods for team analysis are heavily tailored for
robot-soccer, such as Ramos and Ayanegui (2008) [35], that present
a method to identify the tactical formation of soccer teams (number
of defenders, midfielders, and forwards). Mirchevska et al. (2014)
[31] present a domain independent approach, but they are still fo-
cused on identifying opponent tactics, not in assessing the current
performance of a team.

In the multi-agent systems community, we can see many recent
works that study how to identify agents that present faulty behavior
[22, 25, 38]. Other works focus on verifying correct agent im-
plementation [8] or monitoring the violation of norms in an agent
system [5]. Some works go beyond the agent-level and verify if the
system as a whole conforms to a certain specification [23], or verify
properties of an agent system [14]. However, a team can still have a
poor performance and fail in solving a problem, even when the in-
dividual agents are correctly implemented, no agent presents faulty
behavior, and the system as a whole conforms to all specifications.

Sometimes even correct agents might fail to solve a task, espe-
cially embodied agents (robots) that could suffer sensing or actuat-
ing problems. Kaminka and Tambe (1998) [21] present a method
to detect clear failures in an agent team by social comparison (i.e.,
each agent compares its state with its peers). Such an approach is

fundamentally different than this work, as we are detecting a ten-
dency towards failure for a team of voting agents (caused, for ex-
ample, by simple lack of ability, or processing power, to solve the
problem), not a clearly problematic situation that could be caused
by imprecision/failure of the sensors or actuators of an agent/robot.
Later, Kaminka (2006) [20], and Kalech and Kaminka (2007, 2011)
[18, 19] study the detection of failures by identifying disagreement
among the agents. In our case, however, disagreements are inherent
in the voting process. They are easy to detect but they do not nec-
essarily mean that a team is immediately failing, or that an agent
presents faulty behavior/perception of the current state.

This work is also related to multi-agent learning [40], but nor-
mally multi-agent learning methods are focused on learning how
agents should perform, not on team assessment. An interesting ap-
proach has recently been presented in Torrey and Taylor (2013)
[39], where they have studied how to teach an agent to behave in
a way that will make it achieve a high utility. Besides teaching
agents, it should also be possible to teach agent teams. During the
process of teaching, it is fundamental to identify when the system
is leading towards failure. Hence, our approach could be integrated
within a team teaching framework.

Finally, it has recently been shown that diverse teams of voting
agents are able to outperform uniform teams composed of copies
of the best agent [29, 30, 17]. Here we present an extra benefit of
having diverse teams: we show that we can make better predictions
of the final performance for diverse teams than for uniform teams.

3. PREDICTION METHOD
We start by presenting our prediction method, and in Section 4

we will explain why the method works.
We consider scenarios where agents vote at every step (i.e., world

state) of a complex problem, in order to take common decisions at
every step towards problem-solving. Formally, let T be a set of
agents ti, A be a set of actions aj and S be a set of world states
sk. The agents must vote for an action at each world state, and
the team takes the action decided by the plurality voting rule, that
picks the action that received the highest number of votes (we as-
sume ties are broken randomly). The team obtains a final reward
r upon completing all world states. In this paper, we assume two
possible final rewards: “success” (1) or “failure” (0).

We define the prediction problem as follows: without using any
knowledge of the domain, identify the final reward that will be re-
ceived by a team. This prediction must be executable at any world
state, allowing a system operator to take remedy procedures in time.

We now explain our algorithm. The main idea is to learn a pre-
diction function, given the frequencies of agreements of all possible
agent subsets over the chosen actions. Let P(T) = {T1,T2, . . .}
be the power set of the set of agents, ai be the action chosen in
world state sj and Hj ⊆ T be the subset of agents that agreed on
ai in that world state.

Consider the feature vector ~x = (x1, x2, . . .) computed at world
state sj , where each dimension (feature) has a one-to-one mapping
with P(T). We define xi as the proportion of times that the chosen
action was agreed upon by the subset of agents Ti. That is,

xi =

|Sj|∑
k=1

I(Hk = Ti)

|Sj|

where I is the indicator function and Sj ⊆ S is the set of world
states from s1 to the current world state sj .

Hence, given a set X̃ such that for each feature vector ~xt ∈ X̃

we have the associated reward rt, we can estimate a function, f̂ ,
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Agent 1 Agent 2 Agent 3
Iteration 1 a1 a1 a2
Iteration 2 a2 a2 a1
Iteration 3 a1 a2 a2

Table 1: A simple example of voting profiles after three iterations
of problem-solving.

that returns an estimated reward between 0 and 1 given an input
~x. We classify estimated rewards above 0.5 as “success”, and be-
low 0.5 as “failure”. In order to learn the classification model, the
features are computed at the final world state.

We use classification by logistic regression, which models f̂ as

f̂(~x) =
1

1 + e−(α+~βT ~x)
,

where α and ~β are parameters that will be learned given X̃ and
the associated rewards. While training, we eliminate two of the
features. The feature corresponding to the subset ∅ is dropped be-
cause an action is chosen only if at least one of the agents voted for
it. Also, since the rest of the features sum up to 1, and are hence
linearly dependent, we also drop the feature corresponding to all
agents agreeing on the chosen action.

We also study a variant of this prediction method, where we use
only information about the number of agents that agreed upon the
chosen action, but not which agents exactly were involved in the
agreement. For that variant, we consider a reduced feature vector
~y = (y1, y2, . . .), where we define yi to be the proportion of times
that the chosen action was agreed upon by any subset of i agents:

yi =

|Sj|∑
k=1

I(|Hk| = i)

|Sj|
,

where I is the indicator function and Sj ⊆ S is the set of world
states from s1 to the current world state sj . We compare the two
approaches in Section 5.

3.1 Example of Features
We give a simple example of our proposed feature vectors. Con-

sider a team of three agents: t1, t2, t3. Let’s assume two possible
actions: a1, a2. Consider that, in three iterations of the problem
solving, the voting profiles were as shown in Table 1, where we
show which action each agent voted for at each iteration. Based on
plurality voting rule, the action chosen for the respective iterations
would be a1, a2, and a2.

We can see an example of how the full feature vector will be
defined at each iteration in Table 2, where each column represents
a possible subset of the set of agents, and we mark the frequency
that each subset agreed on the chosen action.

In Table 3, we show an example of the reduced feature vector,
where the column headings define the number of agents involved
in an agreement over the chosen action. Note that the reduced rep-
resentation is much more compact, but we have no way to represent
the change in which specific agents were involved in the agreement,
from iteration 2 to iteration 3.

4. THEORY
We consider here the view of social choice as a way to estimate

a “truth”, or the correct action to perform in a given world state.
Hence, we can model each agent as a pdf: that is, given the correct
outcome, each agent will have a certain probability of voting for the
best action, and a certain probability of voting for some incorrect

{t1} {t2} {t3} {t1, t2} {t1, t3} {t2, t3}
Iteration 1 0 0 0 1 0 0
Iteration 2 0 0 0 1 0 0
Iteration 3 0 0 0 2/3 0 1/3

Table 2: Example of the full feature vector after three iterations of
problem solving.

1 2
Iteration 1 0 1
Iteration 2 0 1
Iteration 3 0 1

Table 3: Example of the reduced feature vector after three iterations
of problem solving.

action. These pdfs are not necessarily the same across different
world states [29]. Hence, given the voting profile in a certain world
state, there will be a probability p of picking the correct choice (by
the plurality voting rule).

We will start by showing some examples and observations, based
on classical voting theories, to give an intuitive idea of why we can
use the voting patterns to predict success or failure of a team of
voting agents. However, these are not enough for a deeper under-
standing of the prediction methodology, and fail to explain some of
the results in Section 5. Hence, we will later present our main the-
oretical model, that provides a better understanding of our results.

4.1 Classical Voting Model
We start with a simple example to show that we can use the out-

come of plurality voting to predict success. Consider a scenario
with two agents and two possible actions, a correct and an incorrect
one. We assume, for this example, that agents have a probability of
0.6 of voting for the correct action and 0.4 of making a mistake.

If both agents vote for the same action, they are either both cor-
rect or both wrong. Hence, the probability of the team being correct
is given by 0.62/(0.62 + 0.42) = 0.69. Therefore, if the agents
agree, the team is more likely correct than wrong. If they vote for
different actions, however, one will be correct and the other one
wrong. Given that profile, and assuming that we break ties ran-
domly, the team will have a 0.5 probability of being correct. Hence,
the team has a higher probability of taking a correct choice when
the agents agree than when they disagree (0.69 > 0.5). Therefore,
if across multiple iterations these agents agree often, the team has
a higher probability of being correct across these iterations, and we
can predict that the team is going to be successful. If they disagree
often, then the probability of being correct across the iterations is
lower, and we can predict that the team will not be successful.

More generally, we can consider all cases where plurality is the
optimal voting rule. In social choice, optimal voting rules are often
studied as maximum likelihood estimators (MLE) of the correct
choice [7]. That is, given a voting profile and a noise model (the
probability of voting for each action, given the correct outcome) of
each agent, we can estimate the likelihood of each action being the
best. Plurality is going to be optimal if it corresponds to always
picking the action that has the maximum likelihood, according to
the noise model of the agents.

In the following observation, we show that if plurality is the opti-
mal voting rule (MLE), we can use the amount of agreement among
the agents to predict success.

OBSERVATION 1. The probability that a team is correct increases
with the number of agreeing agents m in a voting profile.
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PROOF. Let a∗ be the best action (whose identity we do not
know). Let v1, v2, . . . vn be the votes of n agents. Let w be the
action chosen by the highest number of agents. We want to know
the probability of a∗ = w:

P (a∗ = w|v1, v2 . . . vn) ∝ P (v1, v2 . . . vn|a∗ = w)P (a∗ = w)

For any noise model where plurality is MLE, we have that
P (v1, v2 . . . vn|a∗ = w) is proportional to the number of agentsm
that voted for a∗. Therefore, we have that P (a∗ = w|v1, v2 . . . vn)
is also proportional to m.

Hence, given two voting profiles V1,V2, with mV1 > mV2 , we
have thatPV1(a∗ = w|v1, v2 . . . vn) > PV2(a∗ = w|v1, v2 . . . vn).
Therefore, the team is more likely correct in profiles where a higher
number of agents agree.

Hence, if across multiple voting iterations, a higher number of
agents agree often, we can predict that the team is going to be suc-
cessful. If they disagree a lot, we can expect that they are wrong
in most of the voting iterations, and we can predict that the team is
going to fail.

In the next observation we show that we can increase the predic-
tion accuracy by knowing not only how many agents agreed, but
also which specific agents were involved in the agreement. Basi-
cally, we show that the probability of a team being correct depends
on the agents involved in the agreement. Therefore, if we know
that the best agents are involved in an agreement, we can be more
certain of a team’s success.

OBSERVATION 2. Given two profiles V1,V2 with the same num-
ber of agreeing agents m, the probability that a team is correct is
not necessarily equal for the two profiles.

PROOF. We can easily show by example. Consider a problem
with two actions. Consider a team of three agents, where t1 and t2
have a probability of 0.8 of being correct, while t3 has a probability
of 0.6 of being correct. We should always pick the action chosen by
the majority of the agents, as the probability of picking the correct
action is the highest for all agents [26]. Hence, plurality is MLE.

However, when only t1 and t2 agree, the probability that the
team is correct is given by: 0.82×0.4/(0.82×0.4+0.22×0.6) =
0.91. When only t2 and t3 agree, the probability that the team is
correct is given by: 0.8 × 0.6 × 0.2/(0.8 × 0.6 × 0.2 + 0.2 ×
0.4 × 0.8) = 0.59. Hence, the probability that the team is correct
is higher when t1 and t2 agree than when t2 and t3 agree.

However, based on the classical voting models, one would ex-
pect that given two different teams, the predictions would be more
accurate for the one that has greater performance (i.e., likelihood
of being correct), as we formalize in the following observation. We
will use the term strength to refer to a team’s performance.

OBSERVATION 3. Under the classical voting models, given two
different teams, one can expect to make better predictions for the
strongest one.

PROOF. Under the classical voting models, assuming the agents
have a noise model such that plurality is a MLE, we have that the
best team will have a greater probability of being correct given a
voting profile where m agents agree than a worse team with the
same amount of m agreeing agents.

Hence, the probability of the best team being correct will be
closer to 1 in comparison with the probability of the worse team
being correct. The closer the probability of success is to 1, the
easier it is to make predictions. Consider a Bernoulli trial with
probability of success p ≈ 1. In the learning phase, we will see

W

H1

H2

H3H4

...

HS

Figure 1: Graphical model of the problem solving process across a
series of voting iterations.

many successes accordingly. In the testing phase, we will predict
the majority of the two for every trial, and we will go wrong only
with probability |1− p| ≈ 0.

Of course, we could also have an extremely weak team, that is
wrong most of the time. For such team, it would also be easy to
predict that the probability of success is close to 0. Notice, how-
ever, that we are assuming here the classical voting models, where
plurality is a MLE. In such models, the agents must play “reason-
ably well”: classically they are assumed to have either a probability
of being correct greater than 0.5 or the probability of voting for the
best action is the highest one in their pdf [26]. Otherwise, plurality
is not going to be a MLE.

Consider, however, that the strongest team is composed of copies
of the best agent (which would often be the case, under the classi-
cal assumptions). We actually have that, in fact, such agents will
not necessarily have noise models (pdfs) where the best action has
the highest probability in all world states. In some world states, a
suboptimal action could have the highest probability, making the
agents agree on the same mistakes [29, 17]. Therefore, when plu-
rality is not actually a MLE in all world states, we have that Ob-
servation 1 will not hold in the world states where this happens.
Hence, we will predict that the team made a correct choice, when
actually the team was wrong, causing problems in our accuracy.
We give more details in the next section.

4.2 Main Theoretical Model
We now present our main theory, that holds irrespective of plu-

rality being a MLE or not. Again, we consider agents voting across
multiple world states. We assume that all iterations equally influ-
ence the final outcome, and that they are all independent.

Let the final reward of the team be defined by a random variable
W , and let the number of world states be S. We model the problem
solving process by the graphical model in Figure 1, where Hj is the
instance of a random variable that represents the subset of agents
that agreed on the chosen action at world state sj .

For any subset H, let P (H) be the probability that the chosen
action was correct given the subset of agreeing agents. If the correct
action is a∗, P (H) is equivalent to:

P (∀t ∈ H, t chooses a∗, ∀t /∈ H, t chooses a 6= a∗)

P (∃a′ ∀t ∈ H, t chooses a′, ∀t /∈ H, t chooses a 6= a′)

Note that P (H) depends on both the team and the world state.
However, we marginalize the probabilities to produce a value that
is an average over all world states. We consider that, for a team to
be successful, there exists a unique δ such that:

{
S∏
j=1

P (Hj)

}1/S

> δ (1)
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We use the exponent 1/S in order to maintain a uniform scale
across all problems. Each problem might have a different number
of world states; and for one with many world states, it is likely that
the incurred product of probabilities is sufficiently low to fail the
above test, independent of the actual subsets of agents that agreed
upon the chosen actions. However, the final reward is not depen-
dent on the number of world states.

We can show, then, that we can use a linear classification model
(such as logistic regression) that is equivalent to Equation 1, to pre-
dict the final reward of a team.

THEOREM 1. Given the model in Equation 1, the final outcome
of a team can be predicted by a linear model (like the one described
in Section 3).

PROOF. Getting the log in both sides of Equation 1, we have:

S∑
j=1

1

S
log(P (Hj)) > log(δ)

The sum over the steps (world states) of the problem-solving
process can be transformed to a sum over all possible subset of
agents that can be encountered, P:∑

H∈P

nH

S
log(P (H)) > log(δ),

where nH is the number of times the subset of agreeing agents
H was encountered during problem solving. Hence, nH

S
is the

frequency of seeing the subset H, which we will denote by fH.
Recall that T is the set of all agents. Hence, fT (which is the

frequency of all agents agreeing on the same action), is equal to
1 −

∑
H∈P\{T} fH. Also, note that n∅ = 0, since at least one

agent must pick the chosen action. The above equation can, hence,
be rewritten as:

log(P (T)) +
∑

H∈P\T

fH log

(
P (H)

P (T)

)
> log(δ)

Hence, our final model will be:

∑
H∈P\T

log

(
P (H)

P (T)

)
fH > log

(
δ

P (T)

)
(2)

Note that log( δ
P (T)

) and the “coefficients” log(P (H)
P (T)

) are all
constants with respect to a given team, as we have discussed earlier.
Considering the set of all fH (for each possible subset of agreeing
agents H) to be the characteristic features of a single problem, the
coefficients can now be learned from training data that contains
many problems represented using these features. Further, the out-
come of a team can be estimated through a linear model.

The number of constants is exponential, however, as the size of
the team grows. Therefore, in the following corollary, we show
that (under some conditions) we can approximate well the predic-
tion with a reduced feature vector that grows linearly. In order to
differentiate different possible subsets, we will denote by Hi a cer-
tain subset∈ P , and by |Hi| the size of that subset (i.e., the number
of agents that agree on the chosen action).

COROLLARY 1. IfP (Hi) ≈ P (Hj) ∀Hi,Hj such that |Hi| =
|Hj |, we can approximate the prediction with a reduced feature
vector, that grows linearly with the number of agents. Further-
more, in a uniform team the reduced representation is equal to the
full representation.

PROOF. By the assumption of the corollary, there is a PH′n ,
defined as PH′n ≈ P (Hj), ∀Hj such that |Hj | = n. Let fn =∑
fHj , over all |Hj | = n. Also, let N′ be the set of all integers

0 < x < N , where N is the number of agents. We thus have that:

∑
H∈P\T

fH log

(
P (H)

P (T)

)
≈
∑
x∈N′

fx log

(
PH′n

P (T)

)
(3)

As PH′n depends only on the number of agents, we have that
such representation grows linearly with the size of the team.

Moreover, note that for a team made of copies of the same agent,
we have that PH′n = P (Hj), ∀Hj such that |Hj | = n. Hence,
the left hand side of Equation 3 is going to be equal to the right
hand side.

Also, notice that our model does not need any assumptions about
plurality being a MLE. In fact, there are no assumptions about the
voting rule at all. Hence, Observations 1, 2 and 3 do not apply, and
we can still make accurate predictions irrespective of the perfor-
mance of a team.

We can also note that the accuracy of the predictions is not going
to be the same across different teams. Given two teams where plu-
rality is the optimal voting rule in general (i.e., P (Hi) > P (Hj),
∀Hi,Hj where |Hi| > |Hj |): one uniform, made of copies of the
best agent, and a diverse, made of different agents, we have that
we can actually make better predictions for diverse than uniform,
irrespective of the actual playing performance of these two teams.

COROLLARY 2. Given a diverse and a uniform team, the accu-
racy of the prediction for the diverse team can be higher, even if the
diverse team has a lower probability of victory.

Proof Sketch. Note that the learned constants ĉH ≈ log(P (H)
P (T)

)

represent the marginal probabilities across all world states. How-
ever, Marcolino et al. (2013) [29] and Jiang et al. (2014) [17] show
that the agent with the highest marginal probability of voting for
the correct choice will not necessarily have the highest probability
of being correct at all world states.

Hence, let Bad be the set of world states where the best agent
does not have the highest probability of voting for the correct ac-
tion in its pdf. In such world states, the agents tend to agree over
the incorrect action that has the highest probability. This follows
from modeling the voting of all agents as a multinomial distribu-
tion. Hence, the expected number of agents that vote for an action
aj , in a team with n agents, is given by: E[|H|] = n×pj , where pj
is the probability of the agent voting for action aj . Therefore, the
action with the highest probability will tend to receive the highest
number of votes.

However, in our prediction model, the estimation that the team
is correct will get higher as more agents agree together upon the
final choice. Hence, we will tend to make wrong predictions for
the world states in the set Bad, and our accuracy will be lower as
|Bad| gets higher.

Since a diverse team is composed of agents with different pdfs, it
is less likely that in a given world state they will all have the highest
probability in the same incorrect action [29, 17]. Hence, it is less
likely that the situation described above happens, and we can have
better predictions for a diverse team. �

Although we only give here a proof sketch, in the next section we
experimentally show a statistically significant higher accuracy for
the predictions for a diverse team than for a uniform team, even
though they have similar strength (i.e., performance in terms of
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Figure 2: Winning rates of the three different teams used in our
experiments.

winning rates). We are able to achieve a better prediction for di-
verse teams both in the end of the problem-solving process and
also while doing online predictions at any world state.

5. RESULTS
We test our prediction method in the Computer Go domain. We

use four different Go software: Fuego 1.1 [9], GnuGo 3.8 [10],
Pachi 9.01 [3], MoGo 4 [12], and two (weaker) variants of Fuego
(Fuego∆ and FuegoΘ), in a total of six different, publicly avail-
able, agents. Fuego is considered the strongest agent among all of
them. The description of Fuego∆ and FuegoΘ is available in [30].

We study three different teams: Diverse, composed of one copy
of each agent; Uniform, composed of six copies of the original
Fuego (initialized with different random seeds); Intermediate, com-
posed of six random parametrized versions of Fuego (from [17]).
As shown in [29, 30], Fuego is the strongest agent among them. In
all teams, the agents vote together, playing as white, in a series of
9x9 Go games against the original Fuego playing as black.

In order to evaluate our predictions, we use a dataset of 691
games for each team. For all results, we used 5-fold cross val-
idation (each fold had approximately the same class ratio as the
original distribution). In all graphs, the error bars show the 95%
confidence interval.

First, we show the winning rates of the teams in Figure 2. The
difference between uniform and diverse is not statistically signifi-
cant (p = 0.1492), and both teams are clearly significantly better
than intermediate (p < 6.3× 10−14).

We will now evaluate our prediction results according to five
different metrics: Accuracy, Failure Precision, Success Precision,
Failure Recall, Success Recall. Accuracy is defined as the sum of
the true positives and true negatives, divided by the total number of
tests (i.e., true positives, true negatives, false positives, false nega-
tives). Hence, it gives an overall view of the quality of the classifi-
cation. Precision gives the percentage of data points classified with
a certain label (“success” or “failure”) that are correctly labeled.
Recall denotes the percentage of data points that truly pertain to a
certain label, that are correctly classified.

We start by studying, in Figure 3, the quality of our prediction in
the end of the games (i.e., after the last move). As we can see, we
could make high-quality predictions for all teams. This is expected
according to our Theorem 1, where we show that a linear classifier
is able to predict well the performance of a team of voting agents.

For diverse and intermediate, we have around 73% accuracy,
while for uniform, 64%. This difference is statistically significant,
with p ≈ 0.003467. In fact, the prediction in diverse is better than
in uniform for all metrics: concerning failure precision, success
precision and failure recall, the difference is statistically significant,
with p ≈ 0.002361, 3.821×10−6 and 3.821×10−6, respectively.
Note that this is expected, according to our Corollary 2.
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Figure 3: Performance when predicting in the end of games, using
the full feature vector.

It is also interesting to note that although intermediate is signif-
icantly weaker than uniform, we could achieve a higher accuracy
for intermediate (with p ≈ 0.00379). Hence, it is not the case that
we can make better predictions for stronger teams (as it would be
expected if we simply consider the classical voting models, such as
in Observations 1, 2, and 3, instead of our main model).

The prediction accuracy for diverse and intermediate teams is
actually very similar. However, by analyzing the other metrics, we
can notice that the prediction for “failure” is better for intermediate,
while the one for “success” is better for diverse.

As we could see, with absolutely no data about which specific ac-
tions were made and which specific world states were encountered,
we are able to predict the outcome of the games with high accuracy
for all the three teams, with better results for diverse than uniform,
even though these two teams have similar winning rates. Therefore,
as we argue in our Theorem 1, only the frequencies of agreement
among different subsets of agents is enough to have high-quality
predictions over the final performance of teams.

Of course, a prediction made at the end of the problem solving
process (in this case, a game) is not really useful anymore. Our real
objective is to get high-quality predictions online, at any stage of
the games. Therefore, to evaluate that, we also ran our classifier at
every turn of the games.

In order to verify the online predictions, we used the evaluation
of the original Fuego, but we give it a time limit 50× longer. Since
this version is approximating a perfect evaluation of a board con-
figuration, we will refer to it as “Perfect”. We, then, use Perfect’s
evaluation of a given board state to estimate its probability of vic-
tory, allowing a comparison with our approach. Considering that an
evaluation above 0.5 is “success” and below is “failure”, we com-
pare our predictions with the ones given by Perfect’s evaluation, at
each turn of the games.

We use this method because the likelihood of victory changes
dynamically during a game. That is, a team could be in a win-
ning position at a certain stage, after making several good moves,
but suddenly change to a losing position after committing a mis-
take. Similarly, a team could be in a losing position after several
good moves from the opponent, but suddenly change to a win-
ning position after the opponent makes a mistake. Therefore, sim-
ply comparing with the final outcome of the game would not be a
good evaluation. However, in the appendix (available at http://
teamcore.usc.edu/people/sorianom/a15-ap.pdf),
we also show how the evaluation would be comparing with the final
outcome of the game, for the interested reader — and we note here
that our online accuracy is still high in such alternative.

Since the games have different lengths, we divide all games in
20 stages, and show the average evaluation of each stage, in order

700



5 10 15 20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Game Stage

A
c
c
u
ra
c
y

Uniform

Intermediate

Diverse

(a) Accuracy

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Game Stage

F
a

ilu
re

 P
re

c
is

io
n

●

●

● ●
●

●

●
●

● ● ● ●
●

●
●

●
●

● ●
●

● Uniform

Intermediate

Diverse

(b) Failure Precision

5 10 15 20

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Game Stage

S
u

c
c
e

s
s
 P

re
c
is

io
n

●

●

● ●

●

●

●
●

● ●
● ● ● ●

● ● ●

● ●
●

● Uniform

Intermediate

Diverse

(c) Success Precision

5 10 15 20

0.4

0.6

0.8

1.0

Game Stage

F
a

ilu
re

 R
e

c
a

ll

●

●
●

● ●

●
●

●

●

● ●

●
●

●

● ●
● ●

● ●

● Uniform

Intermediate

Diverse

(d) Failure Recall

5 10 15 20

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Game Stage

S
u

c
c
e

s
s
 R

e
c
a

ll

●

●

●
●

●

●

●
●

●
●

●
● ●

●
●

●
●

● ● ●

● Uniform

Intermediate

Diverse

(e) Success Recall

Figure 4: Performance metrics over all turns of 691 games, using
the full feature vector.

to be able to compare the evaluation across all games uniformly.
Therefore, a stage is defined as a small set of turns (on average,
2.43 ± 0.5 turns). Again, we used 5-fold cross validation, where
each fold had approximately the same class ratio as the original
distribution. We can see the result in Figure 4. We were able to
obtain a high-accuracy very quickly, already crossing the 0.5 line
in the 3rd stage. In fact, the accuracy is significantly higher than
the 0.5 mark (with p < 0.005 most of the time, and p < 0.015
always) for all teams from around the 5th stage.

From around the middle of the games (stage 10), the accuracy for
diverse and uniform already gets close to 60% (with intermediate
only close behind). Although we can see some small drops – that
could be explained by the sudden changes in the game –, overall
the accuracy increases with the game stage number, as expected.
Moreover, for most of the stages, the accuracy is higher for diverse
than for uniform. The prediction for diverse is significantly better
than for uniform (with p < 0.1) in 25% of the stages.

In order to show that we can also have high quality predictions
with a much more scalable representation, we also run experiments
using the reduced feature vector for all three teams. In Figure 5 we
can see the results when predicting in the end of the games with
the reduced feature vector. When comparing the results with the
full representation, we notice that the accuracy does not change
much for diverse and intermediate, and the difference is not sig-
nificant (p = 0.9929 and p = 0.8403, respectively). For uniform
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Figure 5: Performance when predicting in the end of games, using
the reduced feature vector.

we observe an improvement in the accuracy of 4%, but such im-
provement is also not statistically significant (p = 0.2867). Hence,
as expected from Corollary 1, the reduced representation approxi-
mates well the full one.

In Figure 6 we can see the prediction at each stage of the game,
again comparing with Perfect’s evaluation. As we can see, we can
also obtain a high accuracy quickly with the reduced feature vector,
reaching 60% again towards the middle of the games. This time,
there is less difference in the accuracy for the diverse and uniform
teams, but we can still show that the accuracy for diverse is signifi-
cantly better than for uniform (with p < 0.1) in 15% of the stages
(20% including a stage where p ≈ 0.1). Note that, again, the accu-
racy for the intermediate team is close to the one for uniform, even
though intermediate is a significantly weaker team.

As we can see, for all teams and both feature vectors, our pre-
dictions match Perfect’s evaluation roughly 60% of the time. How-
ever, our method is much faster, since it only requires one linear
calculation that takes a few microseconds, while Perfect’s evalua-
tion takes a few minutes. Therefore, we can easily use our method
online, and dynamically take measures to improve the problem
solving process when necessary. For the interested reader, we present
all learned functions of these experiments in the appendix.

6. DISCUSSION
We show, both theoretically and experimentally, that we can make

high-quality predictions about the performance of a team of voting
agents, using only information about the frequency of agreements
among them. We present two kinds of feature vectors, one that
includes information about which specific agents were involved
in an agreement and one that only uses information about how
many agents agreed. Although the number of features in the for-
mer increases exponentially with the number of agents, causing
scalability concerns, the latter representation scales much better, as
it increases linearly. Theoretically, the full feature vector should
have better results in general, but as we discuss in Corollary 1,
the reduced representation approximates well the full one under
some conditions. In particular, in our experiments both approaches
achieved a similar high accuracy. Hence, for large teams we can
safely use the reduced feature vector, avoiding scalability problems.

Moreover, in real applications we usually do not have extremely
large teams of voting agents. Unless we have an “idealized” diverse
team, the performance is expected to converge after a certain num-
ber of agents [17]. In Marcolino et al. (2013) [29] and Marcolino
et al. (2014) [30], significant improvements are already obtained
with only 6 agents, while Jiang et al. (2014) [17] show little im-
provement as teams grow larger than 15 agents. Therefore, even in
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Figure 6: Performance metrics over all turns of 691 games, using
the reduced feature vector.

cases where Corollary 1 does not apply, and the reduced vector is
not a good approximation, the scalability of the full feature vector
might not be a real concern.

Based on classical voting theory, and in our Observations 1, 2
and 3, we would expect the predictions to work better for the uni-
form team, if it is composed of copies of the best agent. How-
ever, we present a more general model in Theorem 1, that does
not really depend on plurality being a maximum likelihood estima-
tor (MLE). In fact, we show in our experiments that the prediction
works significantly better for the diverse team, and we explain this
phenomenon in Corollary 2. Moreover, the prediction for interme-
diate works as well as for the other teams, even though it is signif-
icantly weaker. We would not expect this result, based on classical
voting theory and Observations 1, 2 and 3. We can, however, ex-
pect such result based on our more general model in Theorem 1, as
we show that the prediction does not really depend at all on plural-
ity being a MLE. Hence, it can still work well in cases where the
team is weaker, and the MLE assumption does not hold well.

Although we showed a great performance in prediction, we did
not present in this paper what an operator should actually do as the
prediction of failure goes high. Possible remedy procedures (and
the relative qualities of each one of them) vary according to each
domain, but here we discuss some possible situations.

For example, consider a complex problem being solved in a clus-

ter of computers. We do not want to overly allocate resources, as
that would be a waste of computational power that could be al-
located to other tasks (or a waste of electrical energy, at the very
least). However, we could increase the allocation of resources for
solving the current problem when it becomes necessary, according
to our prediction.

While playing a game, it is well known that the best strategy
changes according to each specific opponent we are facing [11, 37,
27, 36, 2]. However, it is in general hard to know which player is
our current antagonist. Therefore, we could start playing the game
with the team that works the best against general opponents, and
dynamically change the team as our prediction of failure goes high,
trying to adapt to the current situation.

Moreover, it is known that the best voting rule depends on the
noise model of the agents [7]. However, in general, such model is
not known for existing agents [29]. Therefore, we could start by
playing a game with a very general rule, such as plurality voting,
and dynamically try different voting rules according to our current
prediction. Note that although Observations 1, 2 and 3 refer to
plurality voting, our general model presented in Theorem 1 does
not really depend on the voting rule.

7. CONCLUSION
Voting is a widely applied domain independent technique, that

has been used in a variety of domains, such as: machine learn-
ing, crowdsourcing, board games, forecasting systems, etc. In this
paper, we present a novel method to predict the performance of a
team of agents that vote together at every step of a complex prob-
lem. Our method does not use any domain knowledge and is based
only on the frequencies of agreement among the agents.

We explain theoretically why our prediction works. First, we
present an explanation based on classical voting theories, but such
explanation fails to fully explain our experimental results. Hence,
we also present a more general model, that is independent of the
voting rule, and also independent of any optimality assumptions
about the voting rule (i.e., the voting rule does not need to be a
maximum likelihood estimator across all world states). Such model
allows a deeper understanding of the prediction methodology, and
a more complete comprehension of our experimental results.

We perform experiments in the Computer Go domain with three
different teams, each having different levels of diversity and strength
(i.e., performance). We could achieve a high accuracy for all teams,
despite their differences. In particular, we show that, contrary to
what would be expected based on classical voting models, our pre-
diction is not better for stronger teams, and can actually work equally
well for a very weak team. Moreover, we showed that we could
achieve a higher accuracy for a diverse team than for a uniform
team. All that could be expected based in our more general model.

Finally, we showed that the prediction works online at each step
of the problem solving process, and matches often with an in-depth
analysis (that takes orders of magnitude longer time). Hence, a
system operator can use this to take remedy procedures if the team
is not performing well, or incorporated within an automatic pro-
cedure to dynamically change the team and/or the voting rule. We
discussed in detail how that could be executed in different domains.

Hence, this work is a significant step towards not only a deeper
understanding of voting systems, but also towards a greater applica-
bility of voting in a variety of domains, by combining the potential
of voting in finding correct answers with the ability to access the
performance of teams and the predictability of the final outcome.
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