
Adapting the Social Network to Affect Elections

Sigal Sina
Dept of Computer Science
Bar Ilan University, Israel
sinasi@macs.biu.ac.il

Noam Hazon
Dept of Computer Science

and Mathematics
Ariel University, Israel
noamh@ariel.ac.il

Avinatan Hassidim
Dept of Computer Science
Bar Ilan University, Israel

avinatanh@gmail.com

Sarit Kraus
Dept of Computer Science
Bar Ilan University, Israel

sarit@cs.biu.ac.il

ABSTRACT
We investigate the effect a social network could have on voting out-
comes. We consider a group of self-interested agents where each
agent has a strict preference order over a set of outcomes. Each
agent votes strategically, taking into consideration both her prefer-
ences, and her (limited) information about the preferences of other
voters. We assume that the information the agent has comes from
her friends in the social network and from a public opinion poll. If
agents were not strategic at all, the social network (and the poll)
would not matter, since they would just vote according to their pref-
erences. However, if the agents deviate and vote strategically the
network plays a great effect. To measure this effect, we focus on
iterative voting with Plurality voting rule. We show, both in theory
and in simulations, that for many networks, adding a linear number
of edges can make any outcome the winner. We view our results
as yet another indication to the effect that a central organizer, such
as a company who controls social media, could have on our lives -
by introducing us to certain people it can affect our information and
our decisions.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multi-agent Systems

Keywords
Social Choice; Iterative Voting; Social Networks

1. INTRODUCTION
Voting systems have been used by people for centuries as tools

for group decision-making in settings as diverse as politics [17]
and entertainment [6]. More recently, computers have used voting
and rank aggregation methods for applied tasks such as aggregating
search results from the web [4]. In both cases, it is common that
voters will exchange opinions before they take the decision on how
they should vote. It is thus natural to model voting as a dynamic it-
erative process, where voters discuss and share information among
themselves possibly over the course of several rounds, rather than
as a one-shot game.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

In recent years, social networks have surged in popularity. So-
cial networks enable people to share information easily and interact
with each other. It is thus crucial to understand the effect social
networks could have on voting outcomes. Another very important
source of information is public polls. Polls are very common in po-
litical environments, as they provide a representative sample of the
electorate and can thus cause some voters to change their vote.

As an example, consider the first state in the nominations race
for the Democratic (Republican) party. In this setting, there are sev-
eral contenders, and a population of voters (members of the party)
who need to choose their candidates. Before election day, there are
usually polls, but voters also talk among themselves or via social
networks, to know the status. Finally, if a voter thinks that two
candidates have a high chance of winning, she may vote for one
of them and not for her true favorite candidate (indeed we witness
candidates leaving the race at some point). Note that the population
of voters is much larger than the size of the poll.

In this paper we study the effect a social network could have on
voting outcomes, and whether a central organizer can utilize this
effect to its advantage. To do this, we consider a simple model, in
which there are n voters who wish to choose one of m candidates,
using the Plurality rule. Each voter has her own preferences, and
the voters are connected in a social network. In addition, there is
a poll, which is public information. We use the model of iterative
voting, which proceeds by rounds. At the beginning of every round,
each voter learns what her neighbors planned to vote in the previous
round. Then she either keeps her previous planned vote, or changes
it. A voter changes her vote, only if she believes that she can affect
the election outcomes, after taking into account both the votes of
her friends and the poll. At some later point in time, a ballot is cast,
and the winner is decided. Note that the network structure has no
effect on the preference of the voters, who are self-interested.

To understand the power of the social network, we show that un-
der very general conditions, small changes in the network, can lead
to dramatic changes in the identity of the winner. To do this, we
show a polynomial time algorithm which takes a candidate ω and
makes it the winner, by only adding a linear number of edges. Our
algorithm only requires that:
• The fraction of the population who do not consider ω to be

the last on their preference list is greater than 1/m.
• Each candidate has a minimal number of voters who support

it, where this number is independent of the size of the net-
work.

Our algorithm still succeeds in making ω the winner even if the
poll is adversarial, i.e., it is constructed in such a way that makes it
harder for ω to become a winner. Moreover, the poll can be chosen

705

in an adversarial manner after the algorithm acts, and still ω would
win (we will then need an upper bound on the size of the poll and
a sub-linear number of voters that support every candidate). In ad-
dition, the algorithm does not know exactly when the ballot will be
cast. To do this, it succeeds in a harder task, of stabilizing the net-
work such that no voter would like to change her vote, given the
local information she has. Finally, the initial network is almost ad-
versarial. We only require that most nodes have a bounded degree,
and that for each candidate c, there is no single voter who is con-
nected to most of the supporters of c. In particular, if no voter is
connected to εn of the population, and every candidate has O(n)
supporters, the latter condition holds.

The consequence that even small changes in the network can lead
to dramatic changes in the election outcome leads to an inevitable
result. Using the proposed algorithm, a central election organizer
that has access to the preferences of all the voters can easily (in
polynomial time) adapt the network to its advantage. However, such
an organizer will still be restricted by the number of edges that it is
able to add to the social network. We thus present a greedy heuristic,
which is based on our algorithm, that aims at making a desirable
candidate ω the winner while minimizing the number of edges that
are added to the network, and the number of voters who are involved
in this adaption of the network. The obvious trade-off is that there is
no guarantee that the heuristic will find the desired way to adapt the
network in some instances, even if it is possible. However, using
extensive simulations on generated and real profiles and with real
networks, we found that our heuristic always succeeds in finding a
relatively small number of edges to add to the network that makes a
candidate ω the winner.

We would like to emphasize that in this paper we do not assume
that the voter is similar to her neighbors, or that her true opinion
is dependent on the opinions or actions of her neighbors. Indeed,
since the social network affects the votes by simply spreading infor-
mation, our results apply to any communication network that dissi-
pates information between agents. In particular, taking the “Voting
on a Meeting Time" example [5], in which agents use an iterative
voting procedure to agree on a meeting time, these results imply
that the communication network could have a profound effect on
the outcome.

2. RELATED WORK
We study elections under the framework of iterative voting that

has been the subject of numerous studies in recent years. Meir et
al. [15] studied iterative voting for the Plurality rule, and additional
rules were studied by Lev et al. [12]. Since they show that the itera-
tive version of many voting rules does not converge, the works of [9]
and [16] considered restrictions on the way the voters are allowed to
update their votes. Further work studies the strategies actually used
by people in an iterative voting process [20]. All of these works
assume that voters receive at least some information regarding the
true preferences and the votes of all the other voters in every round,
while we assume that the voters belong to a social network and are
able to see only the votes of their friends. A recent work [14] as-
sumed that voters receive even less than that. Namely, they only
have an estimated, uncertain view of the electorate. They thus pro-
posed a simple behavioral heuristic, which guarantees convergence
of the iterative process. A model of knowledge very similar to ours
was proposed by Chopra et al. [3] (but with directed graph). How-
ever, they neither define how the voters adapt their votes given their
knowledge, nor do they analyze any computational consideration.

There are several studies that analyze the influence of friends in
social networks in the framework of iterative voting. In the model
presented in [10] the voters are cooperative and try to maximize

the group’s overall benefits. In [8], [1] and in [13] the sincere pref-
erences of the voters are influenced by the votes of their friends,
i.e., it is possible that a voter will have such a utility function that
she will prefer to vote for her least preferred candidate, to comply
with the votes of her friends. Their motivation is that people care
about their "public image" as determined by their votes and the so-
cially accepted outcome (the chosen winner). In our work, voters
are self-interested, and they thus may change their voting strategy,
but not their own true preferences. Therefore, in our model a voter
will never vote for her least preferred candidate.

One consequence of our analysis is that a central election orga-
nizer that has access to the preferences of all the voters can easily
adapt the network to its advantage. The work of [21] proposed an
epistemic knowledge based framework for strategic voting, and dis-
cussed the modeling of a central authority that can try to change the
election outcome by revealing information. In a different domain,
the work of [19] considers the setting of a central organizer that can
add edges to a network in order to affect the outcome of a coali-
tional game. We note that even though it is commonly assumed
that an election manipulator has full information on the electorate
(see [23], [22] and [11] for example), this assumption is even more
reasonable in our setting, since current social networks try to learn
the preferences of their users. For example, Facebook succeeded in
adding new edges to the network with their friends suggestions that
are based on the users preferences [18, 2].

3. PRELIMINARIES AND DEFINITIONS
We have a set of candidates (also referred to as alternatives)

C={c1,. . . ,cm} of size m and a set of voters V ={v1,. . . ,vn} of
size n. Each voter v has a preference order (i.e., a ranking) over C,
which we denote �v . We state that voter v dislikes candidate c if v
ranks c last in �v . At an election, each voter submits a preference
order blv , which does not necessarily coincide with �v . We refer
to blv as the vote or ballot of voter v. The vector B=(bl1,. . . ,bln)
is called a preference profile. A voting rule F is a mapping from
the set of all preference profiles to the set of candidates. In this pa-
per, the voting rule F is taken to be the Plurality rule, where each
voter assigns a score of one to the candidate that is ranked first in
blv and a score of zero to all the other candidates. We will also as-
sert that voter v votes for candidate c if v ranks c first in blv . The
score of candidate c∈C under Plurality is denoted sctruth, and it is
simply the number of voters that vote for c. The winner of the elec-
tion is selected from the candidates with the highest score using a
tie-breaking rule. To simplify the analysis, we assume that the tie-
breaking rule is lexicographic, i.e., given a set of tied candidates, it
selects one that is maximal with respect to a fixed ordering.

We study elections under the framework of iterative voting, which
proceeds by rounds. As in regular elections, the voters express their
true preferences in the first round. In the next round all the voters are
allowed to change their votes (simultaneously) if they believe that
by doing so the result will change in their favor (we will formally
define it latter). The process repeats until it eventually reaches a
convergence state, i.e., a profile where no single voter believes that
she can get a better result by changing her vote, and then the ballot
is cast and a winner is announced. Unlike previous work, we do
not assume that the voters receive any global information from the
election organizer on the votes of the electorate. Instead, each voter
is acquainted with the votes of her friends and with the result of an
initial opinion poll.

Let G=(V,E) be an undirected graph (without self-loops) rep-
resenting the relations between voters. Each voter v∈V is familiar
with the voters in her neighborhood,Nv={u|(v, u)∈E}, and thus it
is assumed that v will know their votes at the end of each round of

706

the election process. Let ncv(r) be the number of neighbors of voter
v in G that vote for candidate c in round r. We denote the degree of
v in G, that is |Nv|, by dv . In our algorithm we will use a bound,
denoted by d, on the degree of the voters. We will thus say that v
is a bounded degree voter if dv≤d. Otherwise, v is an unbounded
degree voter.

In addition, there is a poll that is conducted before the elec-
tion starts. Let scpoll be the score candidate c receives in the poll,
let max∆ be the difference between the maximum and minimum
scores of the candidates in the poll, and let s=

∑
c∈C s

c
poll be the

size of the poll. We assume that after the first round of the elec-
tion all the voters are informed of the poll results, which together
with the votes of their friends composes the voters point of view on
the possible election outcome. We use scv(r) to denote the score of
candidate c according to voter v’s perspective in round r, which is
scv(r)=scpoll+n

c
v(r). Therefore, at each round, each voter v com-

putes its scv(r) for each candidate c and then the identity of the win-
ner, denoted by cwinv . If there is a candidate ω such that ω �v cwinv

and v is able to change her vote in any way such that ω will win in
the next round, then v will do so (if there is more than one such can-
didate then v will select the most preferred candidate). We state that
voter v supports candidate c from round r, if there is an index r>0,
such that for every round r′≥r, v votes for c. If a voter supports a
candidate from the first round, this voter is considered a supporter.

We allow our algorithm to make an acquaintance between any
two of the voters, which will create a new link between the two
voters in the social networks. However, the links are added only
once and before the election process starts. Since all the voters
are assumed to vote according to their true preferences in round
1, the added edges may affect the voters only from round 2 and
on. A pictorial representation of the iterative process and of when
information becomes available is depicted in Figure 1.

Observe preferences Observe preferences Observe poll Observe poll Introduce people Introduce people

Pre-election: Organizer

Round 1:

Truthful vote

Round 1:

Truthful vote
Observe poll Observe poll

Observe

neighbors

Observe

neighbors

Election: Voters

Round i (i>1):

Best response

Round i (i>1):

Best response
Convergence? Convergence?

Cast

ballot

Cast

ballot

No No

Yes (global)

Figure 1: The iterative process flow chart

Let G′=(V,E′) be the new social network after the addition of
the edges to G. To simplify notations, hereafter we use ncv(r) to
denote the number of neighbors of voter v in G′ (and not in G) that
vote for candidate c in round r, and ncv(0) denotes the number of
neighbors of voter v in G, which rank c first in their true preference
order. We are now ready to define our basic problem.

DEFINITION 1. In the INFLUENCE problem we are given a set C
of candidates, a set V of voters specified via their preferences, a
voting rule F , a social network G, poll results for each c∈C, and
one specific candidate ω. We are asked to find a set of edges that
will be added to G, such that ω will be the winner of the iterative
process.

We will also consider the case in which the poll is given to the voters
but not to the algorithm or central organizer, and we call this setting
an unknown poll.

4. KNOWN POLL
We start by establishing two lemmas, which serve as basic build-

ing blocks for our algorithm. In the first lemma we show how (and
when) it is possible to make a voter vote for a specific candidate.
The idea is quite intuitive: if we would like to cause a voter v to
vote for candidate ω and v dislikes candidate a, we can connect v

to many supporters of a and ω that will (falsely) make v believe that
a will win unless v will change her vote to ω.

LEMMA 1. Given a desired candidate ω and a voter v such that
v does not vote for ω in round 1, it is possible to influence v such
that v will support ω from round 2 if:

1. v dislikes a∈C, a6=ω.
2. For each candidate `∈{a, ω} there are at least k supporters

of `, k=2(max∆+dv+1).
PROOF. Let α be 0 if a�ω in the lexicographic tie-breaking

rule and 1 otherwise, and let δaω be the value of (sapoll+n
a
v(0)-

(sωpoll+n
ω
v (0))-α). If δaω>0, the organizer connects v to δaω sup-

porters of ω. Otherwise, the organizer connects v to |δaω| sup-
porters of a. In addition, the organizer connects v to max∆+dv+1
supporters of a and max∆+dv+ 1 supporters of ω. Thus, v’s per-
spective after round 1 is that a will win the election, if ω gets one
more vote it will win the election, and both a and ω have a score
that is greater than the score of any other candidate. Since ω�va,
v will vote for ω in round 2. In addition, even if all the voters from
Nv change their vote in the next rounds the scores of any candidate
c∈C\{a, ω} will not reach the scores of a or ω according to v′s
belief. Thus, v will not change her vote from round 2 and on. We
required that k=2(max∆+dv+1) to ensure that there are sufficient
supporters of a and ω.

We note that some of the edges that we would like to add to v may
already be in the original network G. Our construction still works,
and we only need to treat these edges as ones that belong to G′ and
update the ncv(0) values for the relevant candidates c∈C. This prin-
ciple is true for all our proofs, unless we explicitly state otherwise.

The next lemma claims that we can influence a voter to keep her
current vote, without adding too many edges. This will be useful
later, to ensure that a voter who has a very high degree in G, i.e.,
an unbounded degree voter, will not change her vote. The idea of
our proof is to ensure that the influenced voter will not see any tie
between any two candidates, in any round. However, this is not
trivial, since breaking a tie between two candidates in a given round
might create a new tie between two other candidates in a different
round.

LEMMA 2. Given a voter v, it is possible to influence v so that
v will be a supporter if:

1. For every u∈Nv , u changes her vote in at most R rounds.
2. For every u∈Nv , we are familiar with the votes of u until the

round where u starts to support a specific candidate.
3. For each candidate ` there are at least k supporters of `,
k=3(m-1)(R+1), that are not connected to v in G.

PROOF. We use Sc to denote a set of supporters of candidate
c. Now, consider Algorithm 1. The algorithm first computes the
difference in the scores of the first two candidates c1 and c2 (ac-
cording to v′s perspective), denoted by δ, in the first round and in
all the R rounds (Lines 5-9). If at least one of the δ’s is zero, one
or minus one (i.e., there is at least one round where a tie is possi-
ble), there is a need to shift all the δ’s by one and check again. This
shift corresponds to adding an edge between Sc2 and v that will
increase the score of c2 by one. This process repeats until the al-
gorithm finds a shift where there is no possibility for any tie (Lines
10-14). Since there are at most R + 1 different δ’s, according to
pigeonhole principle the algorithm is guaranteed to find such a shift
in at most 3(R+1) steps. The first iteration ends when the algorithm
adds the links from Sc2 and updates the scores accordingly (Lines
15-16). In the next iteration the algorithm computes the difference
in the scores of c1 and c3 and the difference in the scores of c2 and
c3. There are at most 2(R+1) such numbers, thus the algorithm is

707

guaranteed to find a suitable shift, adding at most 6(R+1) edges, to
increase the score of c3 so that there will not be any tie. The next
iteration handles the differences in the scores between the first three
candidates and the forth candidate, and so on. Overall, the maxi-
mum shift is 3(m-1)(R+1) and thus the algorithm needs at most
this number of supporters for each candidate.

Algorithm 1 Make-Supporter
Require: a specific voter, v ∈ V
1: for each ` ∈ C, S` ← a set of k supporters of ` that are not connected

to v
2: R← the indexes of the R rounds
3: insert 1 intoR
4: for i← 2 to m do
5: ∆← ∅
6: for j ← 1 to i− 1 do
7: for all r ∈ R do
8: δ ← s

ci
v (r)− scjv (r)

9: insert δ to ∆
10: sh← 0
11: while ∃δ ∈ ∆, |δ| < 2 do
12: sh← sh+ 1
13: for all δ ∈ ∆ do
14: δ ← δ + 1
15: connect sh voters from Sci to v
16: update sciv (r) for all r ∈ R

We are now ready to solve the Influence problem. Our algorithm
(Algorithm 2) handles several types of voters. The first set of vot-
ers includes those that we ensure will be supporters (by creating a
clique among them). We use the supporters to affect the rest of the
voters, whom we call affected voters. Let n′ be the number of af-
fected voters. We divide the affected voters into four groups. The
first group of voters consists of bounded degree voters who vote for
ω in the first round, and we call them type I voters. We simply con-
nect them to a sufficient number of supporters who make them keep
their votes. The second and third groups consist of bounded de-
gree voters whose most preferred candidate is not ω. In one group,
which we call type II voters, there are voters who do not dislike ω,
and we thus use Lemma 1 to make them support ω from round 2.
In the other group, which we call type III voters, there are voters
who dislike ω, and we thus use Lemma 1 to distribute their votes as
uniform as possible among the (m-1) candidates other than ω. In
the last group of voters, which we call type IV voters, there are un-
bounded degree voters. We use Lemma 2 to ensure that they will not
change their votes, and we will thus be able to reach a stable state.
Overall, our algorithm guarantees that the election will converge in
the third round, and the winner will be ω. That is:

THEOREM 3. Let d be a natural number, z=max(6(m-
1),2(max∆+d+1)), and n′=n-zm3. INFLUENCE can be solved in
polynomial time if:

1. There is at least a fraction p of affected voters with a degree
of at most d, where 1- 2max∆

n′ < p ≤ 1.
2. There is at least a fraction pω of affected voters with a degree

of at most d that do not dislike ω, where pω>max(1
m
, (1-p)).

3. For each candidate ` there are at least zm2 voters with a
degree of at most d, who vote for ` in the first round. In
addition, at least a fraction 1

m
of these voters do not have

any voter v in their neighborhood with dv>d.

PROOF. We use Algorithm 2, which guarantees that the election
converges in the third round, and the winner is ω. To prove correct-
ness we first need to show that no voter has an incentive to change
her vote after round 2. Assume that all the voters from S are sup-
porters. Then, for every voter v that is a type I voter, sωv (r)>scv(r)
for every candidate c∈C\{ω} and for every round r, since v is

connected to z/2 supporters of ω. That is, v believes that ω will
win the election no matter how the voters in her neighborhood shall
vote, and thus v will not have an incentive to change her vote. Ev-
ery voter v that is a type II or type III voter will change her vote in
round 2 to ω or a, respectively, according to Lemma 1, which we
can use since all the voters from S are supporters. Lemma 1 also
guarantees that v will not change her vote in the next rounds. In
addition, every voter v that is a type IV voter will be a supporter ac-
cording to Lemma 2, which we can use since if v votes for c, all the
voters from S`(c,c) for all `∈C are supporters that are not connected
to v, and any other voter in G will change her vote in at most one
round (i.e., type II or type III voters, in round 2). We now show that
all the voters from S are indeed supporters.

Note that each voter v∈Sω(ω,ω) is connected to at least z voters
who will vote for ω, and to at most d other voters. Therefore, v will
not have an incentive to change her vote. Each voter v∈S`(i,j), i 6=j,
is connected to at least z voters who will vote for ` and to possibly
many voters who will vote for i in round 1 and for j in round 2.
Since the sets S`(i,j) are pairwise disjoint, v is not connected to any
other voter except to at most d voters fromNv , which effectively do
not have any impact on v’s vote. Therefore, after round 1 there is no
candidate c∈C\{`, i} that will reach the score of ` or i according
to v’s belief. Even if v believes that there is a tie between ` and
i, v cannot affect the election outcome and thus v will not have an
incentive to change her vote after round 1. Using a similar argument
for round 2 and candidates ` and j we conclude that v will not
have an incentive to change her vote in any round. Finally, each
voter v∈S`(i,i) is connected to z voters that vote for ` and to at most
2max∆ type IV voters that do not change their votes. Therefore, v
will not have an incentive to change her vote. Thus every v∈S is a
supporter.

It remains to show that ω will win the election after round 2.
The set of supporters S gives the same number of points for each
candidate, and we thus need to consider only the set of affected vot-
ers. We required that there is at least a fraction pω of type I and
II voters, and Algorithm 2 ensures that they support ω from round
2. There is at most a fraction 1-p of type IV voters that are sup-
porters, and they may vote for candidates other than ω. In addition,
there is at most a fraction p-pω of type III voters, and Algorithm 2
distributes their votes as uniform as possible among the m-1 can-
didates other than ω, given the votes already casted by the type IV
voters. Clearly, each candidate c∈C \ {ω} will get at most a frac-
tion (p−pω)+(1−p)

m−1
of votes, if there are enough votes to distribute,

or (1-p) otherwise. Therefore, if pω> (p−pω)+(1−p)
m−1

and pω>(1-p),
that is pω>max(1

m
, (1 − p)) as we required, then ω will win the

election.

We now discuss some lower bounds for the effect of the network,
explaining why the conditions required by the algorithm are almost
tight. We required that at most 1/m of the voters dislike ω. Indeed,
since no voter can ever be made to vote for a candidate she dislikes
(no matter what her friends do), if the fraction of voters who do not
dislike ω is less than 1/m, then ω will never win. Now, consider
the case in which everybody’s first preference is a, and everyone’s
second preference is ω. No algorithm can convince any voter to vote
for ω, since starting from the first round, every voter would only see
other voters voting for a. Hence, we require that every candidate
has some supporters. In this work we assume that the number of
voters go to infinity, but that most nodes have a constant degree,
and that the number of candidates and size of the poll are constant.
Hence, we only tried to show that we need that each candidate has a
constant number of supporters, without actually trying to optimize
the constant. We leave this refinement for future work.

708

Algorithm 2 Influence (known poll)
1: for all `, i, j ∈ C do
2: S`

(i,j)
← a set of z voters who vote for ` in round 1, where ∀v ∈

S`
(i,j)

, dv ≤ d
3: create a clique between the voters in S`

(i,j)

4: ensure that the sets S`
(i,j)

are pairwise disjoint

5: define S = all the voters in the sets S`
(i,j)

6: for all c ∈ C, initialize sccurr ← sctruth
7: for all v ∈ V \ S, where dv ≤ d do
8: if v vote for ω in round 1 then
9: connect v to z/2 voters from Sω

(ω,ω)
{type I voters}

10: else
11: define c = the candidate that v votes for in round 1
12: sccurr ← sccurr − 1
13: if v does not dislike ω then
14: define a = the candidate that v dislikes
15: make v vote for ω in round 2, using Sω

(c,ω)
and Sa

(c,ω)
and the

construction of Lemma 1 {type II voters}
16: else
17: define a = argmin`∈C\{ω}(s

`
curr)

18: make v vote for a in round 2, using Sω
(c,a)

and Sa
(c,a)

and the
construction of Lemma 1 {type III voters}

19: sacurr ← sacurr + 1
20: for all v ∈ V , where dv > d do
21: define c = the candidate that v votes for in round 1
22: make v a supporter, using S`

(c,c)
for all ` ∈ C that are not connected

to v, and Lemma 2 {type IV voters}

How many edges should the algorithm add? If the difference
between the current winner a and ω is k, then clearly the algo-
rithm needs to convince at least k/2 voters to change their vote,
and hence it must add at least Ω(k) edges. We show that the algo-
rithm adds O(k) edges, where again the constant could depend on
degree bounds, on the number of alternatives and on the size of the
poll. Again we leave the problem of optimizing the exact number
of edges for future work.

5. UNKNOWN POLL
To us, the most surprising result is that the network effect is so

strong, that any candidate ω can be made to win regardless of the
results of the poll. Consider some voter v, whose most preferred
candidate is a, and whose least preferred candidate is b. Suppose
that b � ω by the tie-breaking rule. To make v vote for ω, one
could try to create a vicinity for v, in which ω and b are tied. In this
case, v would react to the environment, and vote for ω. However, if
in the poll ω has any advantage over b (or vice versa), then v would
not change her vote, and would continue to vote for a. Of course, if
the algorithm knew that ω would beat b by 5 votes, it could easily
add 5 more edges for b and create a tie. The problem is that to
change the vote of v, the algorithm has to know whether b or ω
will lead in the poll and by how much. This is impossible with an
unknown, let alone adversarial poll.

Suppose that the size of the poll is at most s. One can try to miti-
gate the adversarial poll by dividing all the voters who dislike b into
2s+1 disjoint sets. In set i, the algorithm would assume that the dif-
ference in the poll between ω and b is exactly i, and act accordingly.
This approach fails, since it only grants ω a fraction 1/(2s+1) of the
extra votes, which could be very little.

To mitigate the adversarial poll, we create 2s+1 small gadgets,
where in gadget i some voter v would change her mind if the dif-
ference in the poll between ω and b is exactly i. We then connect
these small gadgets together, to create a cascading effect, which
would make most voters vote for ω for any result of the poll. The

challenge here is that different voters dislike different candidates,
and we need to be concerned with the effects our cascade networks
have on each other and on the high degree vertices. The building
of theses gadgets is formally described in the proof of the following
lemma, which is the unknown poll version of Lemma 1.

LEMMA 4. Let d and t be natural numbers. Given a desired
candidate ω and a voter v such that v does not vote for ω in round
1, it is possible to influence v so that v will support ω from round r,
2s+t+2≥r≥t+2, even in the unknown poll setting, if:

1. v dislikes a∈C, a6=ω, and dv≤d.
2. Every u∈Nv does not change her vote at least until round

2s+t+2.
3. For each candidate `∈{a, ω} there are at least k supporters

of `, k=2(s+d+1)+(s+t).
4. There are at least k′ voters (other than v) with a degree of

at most d who do not vote for ω in round 1 and dislike a,
k′=2s+t, and their neighbors do not change their vote at
least until round 2s+t+2.

PROOF. Let Bā and Dā be two sets of voters with a degree of
at most d who do not vote for ω in round 1 and dislike a, where
Bā={bt+1, . . . , b2s+t} and Dā={d1, . . . , dt}. Let I={v}

⋃
Bā⋃

Dā. We call the voters from Bā balancers, since the organizer
uses them to cancel out the effect of the poll scores. We call the
voters from Dā delayers, since the organizer uses them to delay the
round where v changes her vote. The organizer creates a clique be-
tween all the voters from I, and connects them to s+t supporters
of a. Let δ=sapoll-s

ω
poll+s+t. According to the construction till now,

for each u∈I we can write that sau-sωu=δ+(nau-nωu) in every round.
Clearly, t≤δ≤2s+t, and the organizer can thus assign each possi-
ble value of δ (except for the value t) to a voter from Bā, and each
value from {1, . . . , t} to a voter from Dā. That is, using Lemma 1
the organizer connects each voter bi∈Bā to supporters of a and ω,
who will make bi vote for ω if δ=i. Similarly, the organizer con-
nects each voter di∈Dā to supporters of a and ω, who will make di
vote for ω if δ=i. Finally, the organizer connects v to supporters of
a and ω, who will make v vote for ω if δ=0.

Now, all the voters vote with their true preferences in round 1.
If t=0 and sapoll-s

ω
poll=-s then δ=0 and v will change her vote to

ω in round 2. If t>0 but still sapoll-s
ω
poll=-s then δ=t and dt will

change her vote in round 2. Since there is an edge between dt and
dt−1, dt−1 will change her vote to ω in round 3. Overall, all the
voters in Dā will change their votes to ω one after the other, which
will cause v to vote for ω in round t+2. If sapoll-s

ω
poll>-s then δ≥1

and there is exactly one voter, bδ+t, that will change her vote to ω
in round 2. This will cause all the voters from {bt+1, . . . , bδ+t}
and then the voters from Dā to change their vote to ω one after the
other, which will result in v changing her votes to ω in round δ+t+2.
Since the voters from I will change their votes in a row, we call this
construction a chain and we call the rounds in which they change
their vote the propagation of the chain. Note that we required that
every voter u′ that is a neighbor of a voter u∈I does not change her
vote until round 2s+t+2, since the organizer uses the construction
of Lemma 1 and its thus needs to know the exact values of nau and
nωu . Due to Lemma 1, all the voters from I will not be affected
by their neighbors in G, and all their new neighbors in G′ will only
increase the score of ω. Therefore, every such voter that will change
her vote to ω will not have an incentive to stop supporting ω.

We will also need to make a specific voter v a supporter, and we thus
need to adjust Lemma 2 for the unknown poll setting. The number
of supporters will now depend on the poll size:

COROLLARY 5. Lemma 2 holds for the unknown poll setting
with k=(2s+1)(m-1)(R+1).

709

PROOF. It is required that v not see any tie between any two can-
didates i and j, for each possible values of sipoll and sjpoll. Clearly,
we can use Algorithm 1 but replace any sciv (r) with nciv (r). In ad-
dition, we will need to change the condition in Line 11 to |δ|<s,
which will increase the maximum shift to (2s+1)(m-1)(R+1).

We are now ready to solve the Influence problem under the un-
known poll setting. We use Algorithm 3, which is a variation of
Algorithm 2 with the following changes. First, note that the algo-
rithm uses a bijection f , which takes three indexes of candidates as
arguments. Therefore, the algorithm refers to all the candidates by
their indexes and uses cω to denote the desired candidate. Now, in-
stead of using Lemma 2 for influencing type IV voters the algorithm
uses Corollary 5. Instead of using Lemma 1 for influencing type II
and type III voters the algorithm uses Lemma 4. However, the chain
in the proof of Lemma 4 is designed to affect a single voter. In or-
der to affect O(n) voters, the algorithm creates a set of

√
n chains,

denoted SOC, and connects at most
√
n type II or type III voters

to each chain in a SOC. Each chain uses its own sets of balancers
and delayers, but all the chains in a SOC use the same sets of sup-
porters and the same number of delayers, which is determined by
the bijection f . In addition, the algorithm connects each balancer
and delayer to 2

√
n supporters, to cancel any possible impact of the

type II or type III voters on the balancers and delayers. Overall, for
each c`, ci, cj∈C, the algorithm creates a SOC that is connected to
every type II or type III voter who dislikes c` and currently votes
for ci, in order to change her vote to cj . Finally, a new type of vot-
ers is defined, type V voters. A voter v is a type V voter if v is in
the neighborhood of a balancer or a delayer, v is a bounded degree
voter, and v is not already a supporter. Similarly to the type I voters,
the algorithm makes every type V voter a supporter by connecting
her to a sufficient number of supporters. Overall, we get the same
result as with the known poll setting, but with less voters who we
are able to affect and more edges that we need to add. Thus:

THEOREM 6. Let d be a natural number, zb=s+d+1, zB,D=
m3√n(2s+(m3-1)/2),R=m3+zB,D/

√
n, zub=max((2s+1)(m-

1)(R+1), s+d+1), f(`, i, j)=m2(`-1)+m(i-1)+j-1, and n′=n −
(zubm

2+(d+2)zB,D+2m3(d+1)). INFLUENCE with unknown poll
can be solved in polynomial time if:

1. For each c`, ci, cj∈C there are k voters with a degree of
at most d, who vote for c` in the first round, and k voters
with a degree of at most d, who vote for cj in the first round,
k=
√
n(2s+f(`, i, j)(s+1))+(d+1).

2. For each c`∈C there are zubm voters with a degree of at most
d, who vote for c` in the first round and do not have any voter
v in their neighborhood with dv > d.

3. For each c`, ci, cj∈C there are
√
n(2s+f(`, i, j)(s+1)) vot-

ers with a degree of at most d who dislike c`.
4. There are no overlaps between the conditions above, i.e., even

if a voter meets more than one of the conditions she will only
be included in one condition.

5. There is at least a fraction p of affected voters with a degree
of at most d, where 1- s

n′ < p ≤ 1.
6. There is at least a fraction pω of affected voters with a degree

of at most d who do not dislike ω, where

pω > max(
1+(dzB,D+2sm3√n)/n′

m
, (1-p)+ dzB,D+2sm3√n

n′).

PROOF. We use Algorithm 3. To prove correctness, suppose that
all the voters in S are supporters. Clearly, all the type I and type V
voters will be supporters. According to Corollary 5 all the type
IV voters will also be supporters. For using Lemma 4 we need
to ensure that the neighbors of the balancers and delayers and of
the type II or type III voters will not change their vote until the

propagation will end. Indeed, all the neighbors of the balancers and
delayers are either type IV voters, type V voters, or voters in S. In
addition, the assignment of delayers by f guarantees that all the type
II or type III voters from the same SOC will change their vote in the
same round, while all the type II or type III voters from different
SOCs will change their vote in different rounds. Therefore, all the
requirements of Lemma 4 are met and the type II and type III voters
will change their vote to cω and ca, respectively. Lemma 4 also
guarantees that the type II and type III voters, and all the balancers
and delayers, will not change their vote in any subsequent round.
We now show that all the voters from S are indeed supporters.

Given a SOC with the chains C ¯̀

(i,j)[sc], where h=f(`, i, j), each
voter v∈S`[h] is connected to at least

√
n(2s+h(s+1))+(d+1) vot-

ers who will vote for c`. Therefore, the d voters from Nv and the√
n(2s+h(s+1)) balancers and delayers of the chains will not have

any impact on v’s vote. v is also connected to the possibly many
affected voters of the chain, who will vote for ci over the course
of several rounds and then will switch to cj . Since v is not con-
nected to any other voter, v will not have an incentive to change her
vote in any round. Using similar argument we conclude that each
voter v∈Sj [h] will also not have an incentive to change her vote in
any round. Finally, each voter v∈S`(i,i) is connected to zub voters
who vote for c`, to possibly several type I or type V voter who also
vote for c`, and to at most s type IV voters that do not change their
votes. Therefore, v will not have an incentive to change her vote.
Thus every v∈S is a supporter.

It remains to show that cω will win the election. Clearly, the
same argument as in the proof of Theorem 3 can be used, while
subtracting the total number of balancers and type V voters from
the number of affected voters.

6. HEURISTIC AND EXPERIMENTAL
EVAL-UATION

In the previous section we provided an algorithm that guaran-
tees a solution will be found for the Influence problem, under some
conditions. Using the proposed algorithm, a central election orga-
nizer that has access to the preferences of all the voters can easily
(in polynomial time) adapt the network to its advantage. However,
such an organizer will still be restricted by the number of edges
that it is able to add to the social network. The organizer will also
want to avoid a situation in which the voters believe there is a “hos-
tile" intervention, and it will thus prefer to minimize the number of
voters who will be involved in the adaption of the network. Our
algorithm does not take these considerations into account. In this
section we present a greedy heuristic for the known poll setting,
which is based on our algorithm, that aims to make a desirable can-
didate ω the winner while minimizing the number of edges that are
added to the network, and the number of voters who are involved
in the adaption of the network. We use cwin to denote the candi-
date that wins in the first round of the election (when the voters vote
according to their true preferences).

6.1 The Heuristic
Similar to Algorithm 2, our heuristic uses some voters as support-

ers, and causes some of them to change their vote to ω. However,
the heuristic does not allocate in advance a full set of supporters
S`(i,j) for every `, i, j∈C, and it does not try to affect all of the other
voters. Instead, it allocates only the supporters that are needed, and
affects only the minimal number of voters that is required. Thus, the
heuristic will prefer to make a voter change her vote to ω if she is
voting for cwin, since it reduces the gap between the scores of cwin
and ω by two. It will also prefer to use the same set of supporters

710

Algorithm 3 Influence (unknown poll)
1: for all c`, ci, cj ∈ C do
2: h← f(`, i, j)
3: S`[h] ← a set of k voters with a degree of at most d, who vote for

c` in round 1
4: Sj [h] ← a set of k voters with a degree of at most d, who vote for

cj in round 1

5: create a clique between the voters in S`[h]
6: create a clique between the voters in Sj [h]
7: for sc← 1 to

√
n do

8: B
¯̀

(i,j)
[sc] ← a set of 2s voters with a degree of at most d, who

dislike c`
9: D

¯̀

(i,j)
[sc]← a set of h(s+ 1) voters with a degree of at most d,

who dislike c`
10: create a chain, C

¯̀

(i,j)
[sc], according to Lemma 4, using

B
¯̀

(i,j)
[sc], D ¯̀

(i,j)
[sc], S`[h] and Sj [h]

11: connect each voter from B
¯̀

(i,j)
[sc] or D ¯̀

(i,j)
[sc] to

√
n voters

from S`[h] and
√
n voters from Sj [h]

12: mark all the chains as “free”
13: for all c`, ci ∈ C do
14: S`

(i,i)
← a set of zub voters with a degree of at most d, who vote

for c` in round 1 and do not have any voter v in their neighborhood
with dv > d

15: create a clique between the voters in S`
(i,i)

16: ensure that the sets S`[h], Si[h], B ¯̀

(i,j)
[sc], D ¯̀

(i,j)
[sc], and S`

(i,i)
are

pairwise disjoint
17: define S = all the voters in the sets S`[h], Si[h] and S`

(i,i)

18: define B = all the voters in the sets B ¯̀

(i,j)
[sc]

19: define D = all the voters in the sets D ¯̀

(i,j)
[sc]

20: for all cc ∈ C, initialize scccurr ← scctruth
21: for all v ∈ V \ (S ∪B ∪D), where dv ≤ d do
22: define cc = the candidate that v votes for in round 1
23: if cc = cω then
24: connect v to zb voters from Sω

(ω,ω)
{type I voters}

25: else if v∈Nu, u ∈ B ∪D then
26: connect v to zb voters from Sc

(c,c)
{type V voters}

27: else
28: scccurr ← scccurr − 1
29: if v does not dislike cω then
30: define ca = the candidate that v dislikes
31: h← f(a, c, ω)
32: sc← an index of a “free” chain Cā

(c,ω)
[sc]

33: make v vote for cω , by connecting her to the chain Cā
(c,ω)

[sc]

and to supporters from Sa[h] and Sω [h], according to
Lemma 4 {type II voters}

34: if there are
√
n voters that are connected to Cā

(c,ω)
[sc] then

35: mark the chain Cā
(c,ω)

[sc] as “not-free”
36: else
37: define ca = argminc`∈C\{cω}(s

c`
curr)

38: h← f(ω, c, a)
39: sc← an index of a “free” chain Cω̄

(c,a)
[sc]

40: make v vote for ca, by connecting her to the chain Cω̄
(c,a)

[sc]

and to supporters from Sa[h] and Sω [h], according to
Lemma 4 {type III voters}

41: if there are
√
n voters that are connected to Cω̄

(c,a)
[sc] then

42: mark the chain Cω̄
(c,a)

[sc] as “not-free”
43: scacurr ← scacurr + 1
44: for all v ∈ V , where dv > d do
45: define cc = the candidate that v votes for in round 1
46: make v a supporter, using S`

(c,c)
for all ` ∈ C and Corollary 5 {type

IV voters}

to affect as many voters as possible. The heuristic is composed of
four steps:

1. Initial stabilization: The heuristic first checks whether the
iterative process converges to ω without adding edges at all
(we wait 10 rounds to decide). If so, we are done. Otherwise,
the heuristic connects each voter, who would like to change
her vote in round 2, to a supporter who makes the voter keep
her current vote.

2. Preparation of potential affected voters: Let Aī` be a bag
of bounded degree voters, such that v∈Aī` if v vote for ` in
the first round and ω �v i. Note that a voter can belong to
more than one bag. Now, the heuristic prefers to affect the
voters from the bags that can reduce the score of cwin, and
it also prefers to affect the voters from the bags that are as
large as possible. It thus sorts the bags accordingly and then
selects the bags, one after the other, till the number of voters
in the selected bags is greater than or equals the gap between
the scores of cwin and ω.

3. Selection of supporters and affected voters: Assume Aī` is
the first selected bag. The heuristic selects a voter v from the
bag and connects her to supporters of i and ω who will make
v believe that i will win unless v will change her vote to ω
(similar to Lemma 1). However, the heuristic connects v only
to the required number of supporters that is needed, which is
usually much lower than our upper bound of max∆+dv+1.
Then, the heuristic checks whether ω will win the election
in round 2 and we can proceed to the next step. If not, the
heuristic selects the next voter from the current bag, or if the
bag is empty from the next selected bag, and makes her vote
for ω, and so on. This step ends when ω wins the election in
round 2.

4. Stabilization: The heuristic uses Lemma 2 to ensure that all
the neighbors of each of the affected voters will not have an
incentive to change their vote in round 3.

6.2 Experimental Design
For the empirical evaluation of our heuristic, we used the pre-

viously developed social network dataset “Facebook MHRW" [7].
This dataset contains structural information sampled from Face-
book, including over 900,000 nodes and the links between them.
We sampled our networks using BFS on the dataset, starting from
10 different random nodes as the initial roots, to avoid randomiza-
tion errors and biases. We ran 100 iterations for each network con-
figuration, and thus every point in our graphs is the average of 1000
runs. We used the following parameters:
• Number of voters (n): we sampled networks of sizes n=25,000,

50,000, 75,000 and 100,000.
• Number of candidates (m): we used m = 3, . . . , 10.
• The desired candidate (ω): we set ω to be the candidate that

reached the 2nd, 3rd, 4th or 5th places according to the true
preferences of the voters.
• Preference distribution: we generated the preferences accord-

ing to 5 distributions that have been examined in the literature
[14], with focus on distributions that are claimed to resem-
ble preferences of human societies. Namely, the distributions
were a uniform distribution, a uniform single-peaked distri-
bution, and Polya-Eggenberger urn model (with 2-urns and
with 3-urns). We also used a dataset of real preference pro-
files that is available from PrefLib (http://preflib.org). The
dataset contains the results of a series of surveys conducted
by T.Kamishima asking 5000 individuals their preference about
various kinds of sushi.
• Poll size (s): we sampled 500 voters each run to generate the

711

scores in the poll, which provides a 95% confidence interval
for the real scores, given the size of the tested networks.
• Maximum degree (d): we used a fixed value of 10, which

ensured that less than 5% of the voters had a larger degree.

6.3 Experimental Results
In our first experiment we wanted to check the effect of the num-

ber of candidates and the size of the network on the number of
added edges. We chose the uniform distribution, which can be eas-
ily adapted to different values of m, and we fixed ω to be the can-
didate in the second place, since presumably the organizer would
not try to promote a very unpopular candidate (in the next set of
experiments we tested other values of ω). The results are depicted
in Figure 2a. As expected, the number of edges increases when we
increase the number of voters since the votes of more voters need to
change. In addition, when we increase the number of candidates the
number of added edges increases, since there are more occurrences
of unstable situations, that are solved by adding edges (in step 1
of the heuristic). Still, the number of added edges is not too large
compared to the network size. For example, with 5 candidates and a
network of 100,000 voters that consist of 366,938 edges we have to
add only 3912 edges, which is an increase of 1%. We then fixed the
number of candidates to 5, and compared between the uniform and
the real distributions. As Figure 2b shows, both distributions had a
similar pattern, where the real distribution resulted in adding more
edges, but still a reasonable amount: in the network of 100,000
nodes and 366,938 edges we have to add 10,973 edges, which is an
increase of 3%.

0

2,000

4,000

6,000

8,000

10,000

25,000 50,000 75,000 100,000

A
d

d
e

d
 E

d
ge

s

Number of voters

Added Edges for uniform & second place
m=3
m=4
m=5
m=6
m=7
m=8
m=9
m=10

(a) Uniform distribution

0

2,000

4,000

6,000

8,000

10,000

12,000

25,000 50,000 75,000 100,000

A
d

d
e

d
 E

d
ge

s

Number of voters

Added Edges for m=5 & second place

Uniform
Real

(b) Uniform and real distributions
Figure 2: The number of edges that are added

In the next experiment we wanted to compare the different distri-
butions, and test the behavior of the heuristic when we change ω to
be the candidate in the 2nd, 3rd, 4th or even 5th place, while fixing
the number of voters (to 50,000) and the number candidates (to 5).
The results are depicted in Figure 3a, on a logarithmic scale. As
expected, the number of added edges depends on the type of dis-
tribution, and when we try to make a a lower placed candidate the
winner more edges need to be added. We further explored the num-
ber of voters that are given new edges from the heuristic and their
types. We divided the affected voters into four types. A “tie" voter
is a voter that is connected to one supporter in order to stabilize the
network in step 1 of the heuristic. A “current winner" voter is a voter
that can reduce the score of cwin and is connected to supporters and
an “other candidates" voter is a voter that currently does not vote for
cwin, and is connected to supporters whenever it is needed (in step

3 of the heuristic). Finally, a “friends" voter is a voter that is stabi-
lized in step 4 of the heuristic, using Lemma 2. There are several
interesting phenomena that are apparent when comparing Figure 3a
and Figure 3b. A comparison of the second place setting in the uni-
form and real distributions, reveals that in the uniform distribution
the number of added edges is lower, while in the real distribution
the number of affected voters is higher. The reason for this phe-
nomenon is that the number of voters that need to be stabilized in
step 1 of the heuristic is obviously much higher with the uniform
distribution, but stabilizing them requires the addition of only one
edge. On the other hand, the number of edges that is needed for
Lemma 1 with the real distribution is much higher since the gap
between the first and second places is bigger. It is also noteworthy
that the heuristic surprisingly requires a larger number of affected
voters when ω is the second place candidate than when it is the third
place candidate, with the single-peaked distribution. This can be ex-
plained by observing the types of the voters. When ω is the second
place candidate there is an insufficient number of “current winner"
voters, and thus a larger number of “other candidates" voters are
needed to close the gap between the scores of cwin and ω.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

Uniform Real SinglePeaked Urn-2 Urn-3

A
d

d
e

d
 E

d
ge

s

Added Edges for n=50,000 & m=5
2nd place
3rd place
4th place
5th place

(a) Added edges

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

2
n

d

3
rd

4
th

5
th

2
n

d

3
rd

4
th

5
th

2
n

d

3
rd

4
th

5
th

2
n

d

3
rd

4
th

5
th

2
n

d

3
rd

4
th

5
th

A
ff

e
ct

e
d

 V
o

te
rs

Uniform Real SinglePeaked Urn-2 Urn-3

Affected Voters for n=50,000 & m=5
supporter

tie

current winner

other candidates

friends

(b) Added voters
Figure 3: Different distributions and ω’s

7. CONCLUSIONS AND FUTURE WORK
We investigated the extent to which social networks affect elec-

tion outcomes. We used the framework of iterative Plurality voting
with an initial poll, and showed that even a small change in the
network can lead to a dramatic change in the identity of the win-
ning candidate. We provided a polynomial time algorithm that is
able to find the set of edges to add to the network to make a de-
sirable candidate the winner, even if the opinion poll is adversarial
and not known in advance. This can be utilized by a central orga-
nizer, and we further provided a heuristic that affects the election by
adding a minimal number of edges. Using extensive simulations,
we demonstrated the effectiveness of the heuristic. In the future,
we would like to extend our analysis to other voting rules, and to
experimentally examine larger networks with more datasets of real
preferences. We would also like to investigate the setting of truth-
biased voters, which are voters that revert to their true preferences
if they cannot affect the election outcome. Though we have prelim-
inary results for the known poll setting, the unknown poll is much
more challenging.

Acknowledgments
This research was supported by the ISRAEL SCIENCE FOUNDA-
TION (grant No. 1488/14), and by ERC Grant #267523.

712

REFERENCES
[1] N. Alon, M. Babaioff, R. Karidi, R. Lavi, and

M. Tennenholtz. Sequential voting with externalities:
Herding in social networks. In Proceedings of the 13th ACM
Conference on Electronic Commerce (EC-2010), pages
36–36, 2012.

[2] L. Backstrom and J. Leskovec. Supervised random walks:
predicting and recommending links in social networks. In
Proceedings of the fourth ACM international conference on
Web search and data mining, pages 635–644, 2011.

[3] S. Chopra, E. Pacuit, and R. Parikh. Knowledge-theoretic
properties of strategic voting. In JELIA, 2004.

[4] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank
aggregation methods for the web. In Proceedings of the 10th
international conference on World Wide Web, 2001.

[5] E. Ephrati, G. Zlotkin, and J. S. Rosenschein. Meet your
destiny: A non-manipulable meeting scheduler. In
Proceedings of the 1994 ACM Conference on Computer
Supported Cooperative Work, pages 359–371, 1994.

[6] D. Gatherer. Comparison of eurovision song contest
simulation with actual results reveals shifting patterns of
collusive voting alliances. Journal of Artificial Societies and
Social Simulation, 9(2), 2006.

[7] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou.
Walking in Facebook: A Case Study of Unbiased Sampling
of OSNs. In Proceedings of IEEE INFOCOM ’10, San Diego,
CA, March 2010.

[8] M. Grabisch and A. Rusinowska. Iterating influence between
players in a social network. In Proceedings of the 16th
Coalition Theory Network Workshop, 2011.

[9] U. Grandi, A. Loreggia, F. Rossi, K. Venable, and T. Walsh.
Restricted manipulation in iterative voting: Condorcet
efficiency and borda score. In Algorithmic Decision Theory,
volume 8176 of Lecture Notes in Computer Science, pages
181–192. 2013.

[10] F. F. Hassanzadeh, E. Y. B. Touri, O. Milenkovic, and
J. Bruck. Building consensus via iterative voting. In IEEE
International Symposium on Information Theory Proceedings
(ISIT), pages 1082–1086, 2013.

[11] N. Hazon, R. Lin, and S. Kraus. How to change a group’s
collective decision? In Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI-2013),
pages 198–205, 2013.

[12] O. Lev and J. Rosenschein. Convergence of iterative voting.
In Proceedings of the Eleventh International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2012),
pages 611–618, 2012.

[13] A. Maran, N. Maudet, M. Pini, F. Rossi, and K. B. Venable.
A framework for aggregating influenced cp-nets and its
resistance to bribery. In Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence (AAAI-2013),
pages 668–674, 2013.

[14] R. Meir, O. Lev, and J. Rosenschein. A local-dominance
theory of voting equilibria. In Proceedings of the Fifteenth
ACM Conference on Economics and Computation
(EC-2014), pages 313–330, 2014.

[15] R. Meir, M. Polukarov, J. Rosenschein, and N. Jennings.
Convergence to equilibria in plurality voting. In Proceedings
of the Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-2010), pages 823–828, 2010.

[16] A. Reijngoud and U. Endriss. Voter response to iterated poll
information. In Proceedings of the Eleventh International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2012), pages 635–644, 2012.

[17] W. H. Riker and P. C. Ordeshook. A theory of the calculus of
voting. The American Political Science Review, 62(1):25–42,
1968.

[18] M. Roth, A. Ben-David, D. Deutscher, G. Flysher, I. Horn,
A. Leichtberg, N. Leiser, Y. Matias, and R. Merom.
Suggesting friends using the implicit social graph. In
Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
233–242, 2010.

[19] L. Sless, N. Hazon, S. Kraus, and M. Wooldridge. Forming
coalitions and facilitating relationships for completing tasks
in social networks. In Proceedings of the 13th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2014), pages 261–268, 2014.

[20] M. Tal, R. Meir, and Y. Gal. A study of human behavior in
online voting. In Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2015), 2015.

[21] H. van Ditmarsch, J. Lang, and A. Saffidine. Strategic voting
and the logic of knowledge. In Proceedings of the 14th
Conference on Theoretical Aspects of Rationality and
Knowledge (TARK-2013), 2013.

[22] T. Walsh. An empirical study of the manipulability of single
transferable voting. In Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI-2010), pages
257–262, 2010.

[23] M. Zuckerman, A. Procaccia, and J. Rosenschein. Algorithms
for the coalitional manipulation problem. Artificial
Intelligence, 173(2):392–412, 2009.

713

