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ABSTRACT
We study the manipulation problem in elections with bounded single-
peaked width from the parameterized complexity point of view. In
particular, we focus on the Borda, Copelandα and Maximin voting
correspondences. For Borda, we prove that the unweighted manip-
ulation problem with two manipulators is fixed-parameter tractable
with respect to single-peaked width. For Maximin and Copelandα

for every 0 ≤ α ≤ 1, we prove that the unweighted manipula-
tion problem is fixed-parameter tractable with respect to the com-
bined parameter (k, t), where k denotes the single-peaked width
and t denotes the number of manipulators. In addition, we study
the weighted manipulation problem for Maximin and Copelandα

for every 0 ≤ α ≤ 1 in single-peaked elections and achieve several
polynomial-time solvability results.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; G.2.1 [Combinatorics]: Combinatorial algorithms;
J.4 [Computer Applications]: Social Choice and Behavioral Sci-
ences

General Terms
Algorithms

Keywords
single-peaked width; fixed-parameter tractable; parameterized com-
plexity; Borda; Maximin; Copeland; weighted election

1. INTRODUCTION
Voting is a common method for preference aggregation and col-

lective decision-making, and has applications in multi-agent sys-
tems [11], political elections, web spam reduction, pattern recogni-
tion, etc. For instance, in multiagent systems, it is often necessary
for a group of agents to make a collective decision by means of vot-
ing in order to reach a joint goal. Unfortunately, by Arrow’s impos-
sibility theorem [1], there is no (rank-based) voting system which
satisfies a certain set of desirable criteria (see [1] for the details)
when more than two candidates are involved. One possible way to
bypass Arrow’s impossibility theorem is to restrict the domain of
the preferences, for instance, the single-peaked domain introduced
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by Black [3]. Intuitively, in a single-peaked election, one can order
the candidates from left to right such that every voter’s preference
increases first and then decreases after some point as the candidates
are considered from left to right.

Recently, the complexity of various voting problems in single-
peaked elections has been attracting attention of many researchers
from both theoretical computer science and social choice commu-
nities [4, 13, 15]. It turned out that many voting problems being
NP-hard in general become polynomial-time solvable when re-
stricted to single-peaked elections [4, 15]. However, most elec-
tions in practice are not purely single-peaked, which motivates re-
searchers to study more general models of elections. We refer to [5,
8, 10, 12, 14] for some variants of the single-peaked model.

In this paper, we consider a newly introduced generalization of
single-peaked elections, the so-called elections with bounded single-
peaked width [7]. Other nearly single-peakedness concepts like κ-
maverick, κ-global swaps, κ-candidate deletion, and multi-peaked
elections have also been considered to cope with voting problems
[5, 12, 14, 23, 25]. Cornaz et al. [7] first introduced single-peaked
width into the context of complexity studies of voting problems. In
particular, they considered a multi-winner determination problem
and proved that this problem is fixed-parameter tractable (FPT )
with single-peaked width as parameter. Recall that a parameter-
ized problem consists of instances of the form (I, κ), where I de-
notes the main part and κ is an integer parameter. A parameterized
problem is FPT if it can be solved in f(κ) · |I|O(1) time, where
f is a computable function in the parameter κ. Later, Cornaz et
al. [8] showed that the Kemeny winner determination is FPT with
single-peaked width as parameter. Recently, Yang and Guo [24]
studied control problems under Condorcet, Maximin and Copeland
in elections with bounded single-peaked width. They showed that
the destructive control problems (making someone not win the elec-
tion by adding/deleting votes) are generally FPT with respect to
single-peaked width, while the constructive control problems (mak-
ing someone win the election by adding/deleting votes) are gener-
ally NP-hard even when the single-peaked width is bounded by a
small constant.

We mainly focus on the manipulation problem for Maximin,
Copelandα for every 0 ≤ α ≤ 1 and Borda. In the following,
unless stated otherwise, manipulation refers to unweighted manip-
ulation. In the manipulation problem, we are given a set of candi-
dates including a distinguished candidate, a multiset of votes cast
by the voters (nonmanipulators), and a set of manipulators who
have not cast their votes yet. The question is whether the ma-
nipulators can cast their votes in a way so that the distinguished
candidate becomes the winner. In the general case (the domain
of the votes is not restricted), the manipulation problem for Max-
imin, Copelandα for every 0 ≤ α ≤ 1 and Borda is polynomial-
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number of manipulators t

t = 1 t = 2 t ≥ 3

Borda
Gen

P
NP-hard

SPW FPT ?

Maximin
Gen

P
NP-hard

SPWNM FPT

Copelandα Gen
P

NP-hard

α ∈ [0, 0.5) ∪ (0.5, 1] SPWNM FPT

Copeland0.5
Gen

P
?

SPWNM FPT

Table 1: A summary of the complexity of the unweighted ma-
nipulation problem. Let k denote the single-peaked width.
Here, ’Gen’ should be read as ’the general case’, ’SPW’ should
be read as “with respect to k", and ‘SPWNM’ should be read
as “with respect to the combined parameter (k, t)". Moreover,
’P’ stands for polynomial-time solvable. Our results are shown
in bold. The polynomial-time solvability results are from [20],
and the NP-hardness results are from [2, 9, 16, 17, 20]. All
the results shown in this table apply to both the unique-winner
model and the non-unique winner model. Entries with ’?’
means that the corresponding problems are open.

time solvable if there is only one manipulator [20]. However, if
there are two manipulators all these problems, except the manipu-
lation for Copeland0.5, turned out to beNP-hard [2, 9, 16, 17, 20].
To the best of our knowledge, the complexity of the Copeland0.5

manipulation problem with two manipulators is still open. In the
special case, Yang and Guo [22] proved that the Borda manipula-
tion problem with two manipulators is polynomial-time solvable in
single-peaked elections. In this paper, we explore the parameter-
ized complexity of these problems. In particular, we prove that the
manipulation problem with two manipulators for Borda is FPT
with respect to single-peaked width. For Maximin and Copelandα

for every 0 ≤ α ≤ 1, we prove that the manipulation problem
is FPT , when parameterized by the combined parameter (k, t),
where k denotes the single-peaked width and t the number of ma-
nipulators1. To this end, we derive several properties of elections
with bounded single-peaked width. We believe that these proper-
ties are also helpful in solving further voting problems. Our re-
sults imply that the manipulation problem with any constant num-
ber of manipulators is polynomial-time solvable for Maximin and
Copelandα for every 0 ≤ α ≤ 1, in single-peaked elections, in
contrast to the NP-hardness of the problem in the general case.
We remark in our analysis, the single-peaked width is based on all
the votes; that is, the votes by the nonmanipulators union the votes
by the manipulators. Moreover, all the above mentioned results ap-
ply to both the unique-winner model and the non-unique winner
model (definition is in Section 2). Our results concerning the above
problems are summarized in Table 1.

In addition, we study the weighted manipulation problem, where
each voter (manipulator or nonmanipulator) has a non-negative in-
teger weight, in single-peaked elections. Conitzer et al. [6] proved
1An instance of a parameterized problem with combined parameter
(κ1, κ2) can be considered as an instance of the same problem with
the single parameter κ = κ1 + κ2.

number of candidates m

General Single-Peaked

m = 2 m = 3 m ≥ 4 m = 3 m ≥ 4

Borda P NP-h NP-h P NP-h

Maximin P P NP-h P P

Copeland0 P NP-h NP-h P P

Copeland1 P P
P: m = 4

P P
? : m > 4

Copelandα
P

NP-h: NON
NP-h P P

0 < α < 1 P: UNI

Table 2: A summary of the complexity of the weighted ma-
nipulation problem. Here ’NP-h’ stands for NP-hard, and
P stands for polynomial-time solvable. Moreover, ’NON’
and ’UNI’ in the entry in the last row means the nonunique-
winner model and the unique-winner model, respectively. All
the other results apply to both the unique-winner model
and the nonunique-winner model. Our results are in bold.
The polynomial-time solvability results for Maximin in single-
peaked elections follow from several lemmas in [4]. Other re-
sults are from [4, 6, 15, 16, 18]. The entry with “?" means that
the corresponding problem is open.

that the weighted manipulation problem with four or more candi-
dates for Maximin is NP-hard in general. Faliszewski et al. [16]
studied the weighted manipulation for Copelandα. They proved
that the problem with three candidates is NP-hard for Copelandα

with 0 ≤ α < 1, except for the unique-winner model for Copelandα

for every 0 < α < 1 which is polynomial-time solvable. More-
over, the weighted manipulation problem with three candidates is
polynomial-time solvable for Copeland1 [16]. We discuss the unique-
winner model and the nonunique-winner model in detail latter. Un-
less stated otherwise, all the results mentioned throughout this pa-
per apply to both the unique-winner and the nonunique-winner mod-
els. In this paper, we show that the weighted manipulation for both
Maximin and Copelandα for every 0 ≤ α ≤ 1 in single-peaked
elections is polynomial-time solvable even when the number of
candidates is not bounded by a constant. Table 2 summarizes the
complexity of the above problems.

2. PRELIMINARIES
Elections: An election is a tuple E = (C,V), where C is a set

of candidates and V is a multiset of votes (for convenience, the ter-
minologies “vote" and “voter" are used interchangeably throughout
this paper), each of which is defined as a linear order� over C. For
two candidates c and c′ and a vote�, we say c is ranked above c′ or
� prefers c to c′ if c � c′. We use NE(c, c′) to denote the number
of votes ranking c above c′ in E . We drop the index E if it is clear
from the context. We say c beats c′ if N(c, c′) > N(c′, c), and c
ties c′ if N(c, c′) = N(c′, c). For two subsets C and C′ of can-
didates, C � C′ means that every candidate in C is ranked above
every candidate in C′ in the vote�. A voting correspondence2 ϕ is

2A related terminology is voting rule which is defined as a function
mapping an election to a single candidate. A voting correspondence
can be modified to a voting rule using a tie-breaking method.
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a function that maps an election E = (C,V) to a nonempty subset
ϕ(E) of C. We call the elements in ϕ(E) the winners of E . If ϕ(E)
contains only one winner, we call it a unique winner; otherwise,
we call them co-winners. For an election E = (C,V) and a subset
C ⊆ C, we use E|C to denote the election restricted to C. Pre-
cisely, the restricted election E|C has C as the candidate set, and
the votes of E|C are obtained from E by replacing each vote � of
E by a new vote �′ such that for every two candidates a, b ∈ C,
a �′ b whenever a � b.

Single-Peaked Width: An election (C,V) is single-peaked if
there is an orderL of C, from left to right, such that for every vote�
and every three candidates a, b, c ∈ C with a L b L c or c L b L a,
c � b implies b � a, where a L b means a lies on the left-side of b
in L. We call L a harmonious order. See Figure 1 for an example.

a c b d e

5

4

3

2

1

Harmonious order L

P
re
fe
re
n
ce

Figure 1: A single-peaked election
with three votes (1) b �u d �u
e �u c �u a; (2) d �v b �v c �v
a �v e; and (3) a �w c �w b �w
d �w e. The votes�u,�v and�w
are illustrated by the dark line,
the gray line, and the dotted line,
respectively.

A subset C ⊆ C is called an interval if all candidates in C are
ranked contiguously in every vote. For example, for the election
with candidates {a, b, c, d, e} and votes {a �1 b �1 c �1 d �1

e, d �2 c �2 b �2 e �2 a, a �3 e �3 b �3 d �3 c}, {b, c, d}
is an interval. Contracting an interval C is the operation that first
adds a new candidate c′ to the election such that C ∪ {c′} forms a
new interval and the preference between any two candidates of C in
each vote preserves the same as before, and then deletes all candi-
dates in C. For example, after contracting the interval {b, c, d} in
the above example, we get the new election with candidates a, c′, e
and votes {a �1 c

′ �1 e, c
′ �2 e �2 a, a �3 e �3 c

′}, where
c′ is the newly introduced candidate.

Let P = (C1, C2, ..., Cω) be an ordered partition of C with each
Ci being an interval. We say P is a single-peaked partition if con-
tracting all intervals in P results in a single-peaked election with
respect to the harmonious order (c1, c2, ..., cω), where each ci is
the newly introduced candidate for the interval Ci. We say a vote
has its peak at Ci with respect to P if the interval Ci is ranked
above every other interval by the vote. The width of P is defined
as max1≤i≤ω{|Ci|}3. The single-peaked width of an election is
the minimum width among all its single-peaked partitions. Cor-
naz et al. [8] proved that calculating the single-peaked width of an
election and constructing an optimal single-peaked partition can be
done in polynomial time.

Median Group: Let P = (C1, C2, ..., Cω) be a single-peaked
partition of the election (C,V), and let (�1,�2, ...,�n) be an or-
der of V such that for every i, j with 1 ≤ i < j ≤ n the peak of�i
does not lie on the right-side of the peak of �j in P . The set of all
intervals lying between the peak Cl of �dn/2e and the peak Cr of
�bn/2+1c, together with Cl and Cr , denoted G[Cl, Cr], is called
the median group. If there is only one interval in the median group,
we call it a median interval. See Figure 2 for an example.

Voting Correspondences: We mainly study the following vot-
ing correspondences.

3Cornaz et al. [7] defined the width of the partition P as
max1≤i≤ω{|Ci|}− 1, the size of the maximum group minors one.
However, this does not affect the results of this paper.

C1 C2 C3 C4 C5 C6 C7

7

6

5

4

3

2

1

Single-peaked partition

peakpeak

Median group

Figure 2: An illustration of
median group. There are
two votes, where the first vote
has preference C2 � C1 �
C3, ...,� C7 over the intervals,
and the second vote has the
preference C4 � C3 � C5 �
C6 � C2 � C1 � C7. The peak
C2 of the first vote is on the left
side of the peak C4 of the sec-
ond vote.

Borda: In a Borda election, every voter gives 0 points to its last-
ranked candidate, 1 point to its second-last ranked candidate
and so on. A candidate with the highest score is a winner.

Copelandα (0 ≤ α ≤ 1): For a candidate c, let B(c) be the set of
candidates who are beaten by c and T (c) the set of candidates
who tie with c. The Copelandα score of c is then defined as
|B(c)|+α · |T (c)|. A Copelandα winner is a candidate with
the highest score.

Maximin: For a candidate c, the Maximin score of c is defined
as minc′∈C\{c}N(c, c′). A Maximin winner is a candidate
with the highest Maximin score.

Problem Definitions. In the unweighted manipulation problem
studied in this paper, we are given an election E = (C ∪ {p},V)
with single-peaked width k, an optimal single-peaked partition P
and a set of voters who have not cast their votes yet. Here, p is the
distinguished candidate. We call the set of voters who have not cast
their votes the manipulators. The question is whether the manipu-
lators can cast their votes according to the single-peaked partition
P so that the distinguished candidate p becomes the winner under
a specific voting correspondence, e.g., Maximin, Copelandα and
Borda. In the weighted manipulation problem, each voter (manip-
ulator or nonmanipulator) has a nonnegative integer weight. Each
vote defined as � and with weight w is regarded as w individ-
ual votes each of which is defined as �. The assumption that the
single-peaked partition is given in the input is based on the obser-
vation that in many real-world applications, the single-peaked par-
tition is known in advance. This is actually one of the reasons why
domain restricted elections can arise in practice. For example, in
real-world single-peaked political elections, the voters are thought
to agree upon that the candidates are ordered on a common known
left-right dimension. See [3] for related discussion. Moreover, in
this scenario, if the manipulators do not cast their votes according
to the given single-peaked partition, they will be easily recognized
as manipulators. See also [4, 14, 15, 19] for further study of ma-
nipulation problems where the domain of the manipulative votes is
restricted.

Remark. All our results apply to both the unique-winner and
the nonunique-winner models. In the unique-winner model, the
objective is to make the distinguished candidate the unique winner,
while in the nonunique-winner model the objective is to make the
distinguished candidate a winner (that is, either a unique winner
or a co-winner). For simplicity, all our proofs and algorithms are
solely based on the unique-winner model.

3. MAXIMIN
In this section, we explore the parameterized complexity of the

manipulation problem for Maximin. In particular, we prove that
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the manipulation problem for Maximin is FPT , when parameter-
ized by the combined parameter (k, t), where k is the single-peaked
width and t is the number of manipulators. To this end, we intro-
duce some properties of Maximin elections with bounded single-
peaked width. These properties are also helpful in understanding
the behavior of the Maximin correspondence. The first property is
formally stated in Lemma 1. In an informal way, it states that for
each candidate c, the closer another candidate c′ lies to c according
to the single-peaked partition, the less is the number of voters who
prefer c to c′. For a positive integer n, let [n] be the set {1, 2, ..., n}.

LEMMA 1. Let (C1, C2, ..., Cω) be the single-peaked partition
and c be a candidate in a certain interval Ci. Then, N(c, b1) ≤
N(c, b2) for all b1 ∈ Cx1 and b2 ∈ Cx2 with i < x1 < x2,
and N(c, a1) ≤ N(c, a2) for all a1 ∈ Cz1 and a2 ∈ Cz2 with
z2 < z1 < i.

PROOF. We first prove the first part of the claim. Let b1 and
b2 be the two candidates as stated in the claim. For all j ∈ [ω],
we denote the set of votes with peaks at Cj or on the right-side
of Cj by Vrj , and denote the set of votes with peaks at Cj or on
the left-side of Cj by V lj . It is obvious that all votes in V li prefer
c to b1 to b2 and all votes in Vrx1 prefer b1 to c. Let Vc�b1i,x1

be
the set of votes with peaks between Ci and Cx1 and prefer c to
b1. Thus, N(c, b1) = |V li | + |Vc�b1i,x1

|. Due to the definition of
single-peaked partition, all votes in Vc�b1i,x1

prefer c to b2. Therefore,
N(c, b2) ≥ |V li |+ |Vc�b1i,x1

| = N(c, b1).
Due to symmetry, the second part is also correct.

Recall that the Maximin score of a candidate c is equal toN(c, c′)
where c′ achieves the minimum value of N(c, ·). Let c be a can-
didate from a certain interval Ci. Let MIN(c) be the set of can-
didates that achieve the minimum value of N(c, ·); hence, we have
that Maximin(c) = N(c, c′) for every c′ ∈ MIN(c). Accord-
ing to Lemma 1, we have that (Ci−1∪Ci∪Ci+1)∩MIN(c) 6= ∅.
Therefore, to determine the Maximin score of c, it is sufficient to
consider the election restricted to Ci−1 ∪ Ci ∪ Ci+1 whose size
is bounded by 3k, where k is the single-peaked width. In the fol-
lowing, we introduce another property which helps to improve the
upper bound.

LEMMA 2. Let c be a candidate and C′ be an interval with c 6∈
C′. Then, N(c, a) = N(c, b) for every two candidates a, b ∈ C′.

PROOF. Since C′ is an interval, all votes rank the candidates in
C′ contiguously. Therefore, each vote either prefers c to all can-
didates in C′ or prefers all candidates in C′ to c, implying that for
every two candidates a, b ∈ C′, N(c, a) = N(c, b).

According to Lemmas 1 and 2, the Maximin score of a candi-
date c is determined by all candidates in the interval including c,
together with any two arbitrary candidates from the two neighbor
intervals of the interval including c, one from each.

LEMMA 3. Let E = (C,V) be an election with single-peaked
partition P = (C1, C2, ..., Cω) and c be a candidate in an interval
Ci. Then the Maximin score of c in E , denoted by MaximinE(c), is

MaximinE(c) = MaximinE|Ci∪{a,b}(c)

Here, a and b are any two arbitrary candidates in Ci−1 and Ci+1,
respectively (only b appears if i = 1 and only a appears if i = ω).

It is clearly true that in the general case the optimal choice for the
manipulators is to rank the distinguished candidate in the top. This

is because of the monotonicity of Maximin. Recall that a voting
correspondence τ is monotonic if in every τ election (that is, elec-
tion where winners are selected according to τ ), ranking a winner
higher in some vote does not exclude the winner from the winning
set [20]. However, when the election has a bounded single-peaked
width, the correctness of the statement is not straightforward any-
more, since improving one’s position in a vote may destroy the
single-peakedness. In the following, we provide a formal proof to
support the above claim in elections with bounded single-peaked
width.

LEMMA 4. Every Yes-instance of the manipulation problem for
Maximin in elections with bounded single-peaked width has a so-
lution where all manipulators rank the interval Cp including the
distinguished candidate p above every other interval. Moreover, p
is ranked above every other candidate.

PROOF. We prove this lemma by showing that if there is a so-
lution which does not satisfy the lemma, we can construct another
solution which satisfies the lemma. Observe first that it is always
optimal to rank p above every other candidate in Cp, since there is
no single-peaked restriction inside Cp. Therefore, it is sufficient to
prove that ranking Cp in the top is the optimal choice for all the
manipulators.

Assume that v is a manipulator who did not rank the interval Cp
in the top. Let (La, La−1, ..., L1, Cp, R1, ..., Rb) be the single-
peaked partition. Let Cl = {La, La−1, ..., L1} be the set of inter-
vals on the left-side of Cp according to the single-peaked partition
and Cr = {R1, ..., Rb} be the set of intervals on the right-side
of Cp. Without loss of generality, assume that a, b ≥ 1, that is,
Cl, Cr 6= ∅. Furthermore, assume that the manipulator v ranked
some interval L ∈ Cl in the top. Due to the single-peakedness,
the manipulator v has the following preference over the intervals in
Cp ∪ Cr: Cp � R1 � R2 �, ...,� Rb. We consider two cases.

The first case is that for each L ∈ Cl, L � Cp. In this case,
we can create a new solution by recasting the vote of v with �′
defined as Cp �′ L1, ...,�′ La �′ R1 �′, ...,�′ Rb. Here,
the preference between every two candidates in the same interval
preserves the same as before. That is, for every two candidates c
and c′ in the same interval, c is ranked above c′ in the new vote
whenever c is ranked above c′ in the original vote.

The second case is that there is an L ∈ Cl with L ≺ Cp. In this
case, there must be a z ∈ [a] such that Lj � Cp for all j ∈ [z − 1]

and Lj ≺ Cp for all a ≥ j ≥ z. Let C̃ = Cr ∪{Lz, Lz+1, ..., La}.
We can get a new solution by recasting the vote � of v as �′ with
preference Cp �′ L1 �′, ...,�′ Lz−1 �′ C̃, where among C̃, we
have C �′ C′ if and only if C � C′ for every C,C′ ∈ C̃. More-
over, the preference between every two candidates in the same in-
terval preserves the same as before. See Figure 3 for an illustration.

Now we prove the correctness. Let E = (C ∪ {p},V) be the
original election and E ′ = (C ∪ {p},V ′) be the election obtained
from E by replacing the vote �∈ V by �′, as discussed above. We
need to proveMaximinE′(p) > MaximinE′(c) for every c ∈ C,
given that MaximinE(p) > MaximinE(c). For a candidate c,
letMIN(c) be the set of candidates c′ such thatMaximinE(c) =
NE(c, c

′). Let peak(c, right) be the number of votes with peaks
not on the left side of the interval including c. We prove for the
second case (the proof for the first case is analogous). Let

C′ = Cl \ C̃ = {L1, ..., Lz−1}.

Observe first that with recasting �, only the candidates in C′ ∪ Cp
have chance to increase their scores. Moreover, each candidate
can increase his score by at most one. Therefore, it is sufficient
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L6 L5 L4 L3 L2 L1 Cp R1 R2 R3

Single-peaked partition

peak

L6 L5 L4 L3 L2 L1 Cp R1 R2 R3

Single-peaked partition

peakpeak

Figure 3: Case 2 in the proof of Lemma 4. The figure on the
left side shows the original vote � with L2 � L1 � L3 �
Cp � R1 � L4 � L5 � R2 � R3 � L6. The figure on
the right side shows the new recast vote �′ with Cp �′ L1 �′
L2 �′ L3 �′ R1 �′ L4 �′ L5 �′ R2 �′ R3 �′ L6. Here we
have C̃ = {L4, L5, L6, R1, R2, R3}.

to prove that MaximinE′(p) > MaximinE′(c) for every c ∈
C′ ∪ Cp. This clearly holds for every candidate in Cp, since the
new vote preserves the preference between every two candidates in
Cp. We prove the correctness for every candidate in C′ by con-
tradiction. Suppose that c ∈ Li with Li ∈ C′ is a candidate
with MaximinE(p) > MaximinE(c) but MaximinE′(p) ≤
MaximinE′(c). Since recasting the vote � does not decrease the
score of p, we know that the score of c is increased by one after
recasting the vote �. This happens only if Li ∩MIN(c) = ∅ and
Li+1∩MIN(c) 6= ∅. In this case,MaximinE(c) = NE(c, c

′) =
peak(c, right) , where c′ is any arbitrary candidate in Li+1 (the
first equation is due to Lemma 2 and the second is due to the single-
peakedness). Let c′′ be any arbitrary candidate in L1. Then, due to
the definition of the Maximin correspondence, MaximinE(p) ≤
NE(p, c

′′) = peak(p, right) ≤ peak(c, right) =MaximinE(c),
contradicting with the fact that MaximinE(p) > MaximinE(c)
for every c ∈ C. The lemma is proved.

Now we are ready to show the main result of this section.

THEOREM 1. The manipulation problem for Maximin is FPT
with respect to the combined parameter (k, t), where k is the single-
peaked width and t is the number of manipulators.

PROOF. We prove the theorem by proposing an FPT algo-
rithm. The algorithm ranks all the intervals first and then ranks
the candidates in each interval.

Let (C1, C2, ..., Ci, ..., Cω) be the single-peaked partition with
width k, and Ci be the interval including the distinguished candi-
date p. Due to Lemma 4, all manipulators can safely rank Ci in
the top. Let c be any arbitrary candidate. Without loss of gen-
erality, assume c is in the interval Cj . Then, for every candidate
c′ ∈ Cj−1 ∪ Cj+1, N(c, c′) is known. Precisely, N(c, c′) = |V lj |
if c′ ∈ Cj+1, and N(c, c′) = |Vrj | otherwise. Here, V lj (resp.
Vrj ) is the set of votes with peaks at Cj or on the left-side (resp.
right-side) of Cj . Due to Lemma 3 and the above analysis, the
Maximin score of c is min{|V lj |, |Vrj |,MaximinE|Cj

(c)}. Since
MaximinE|Cj

(c) does not depend on how the manipulators rank
the intervals, all manipulators can safely rank the intervals in any
way which is consistent with the single-peaked partition. For ex-
ample all the manipulators can rank the intervals as follows.

Ci � Ci−1 � Ci−2 �, ...,� C1 � Ci+1 � Ci+2 �, ...,� Cω
It remains to rank the candidates in each interval. Let t be the

number of manipulators. We begin with the interval Ci including
p. We enumerate all the possible combinations of t linear orders
over the candidates in Ci, each linear order is assumed to be the
partial vote over Ci cast by a manipulator. Since |Ci| ≤ k, there
are at most k!t combinations. Moreover, each combination gives p
a Maximin score by adding the partial votes corresponding to the
t linear orders of the combination to the election. The algorithm
chooses one combination which gives p the maximum Maximin
score in the election restricted to Ci. Then, the manipulators rank
the candidates in Ci according to the t linear orders of the chosen
combination. Now the final Maximin score of p is known. It re-
mains to rank the candidates in other intervals. We use a similar
method. In particular, for each remaining interval C, we enumer-
ate all possibilities of ranking the candidates in C until we find one
which does not prevent p from being the winner. If for every possi-
bility there is a candidate in C which has an equal or greater score
than that of p, we immediately return “No"; otherwise, we proceed
with the next interval. The algorithm runs in O(ω · k!t) time since
ranking the candidates in each interval takes k!t time and we have
ω intervals to consider.

4. COPELAND
In this section, we study the manipulation problem for Copelandα

for every 0 ≤ α ≤ 1. In particular, we prove that the manipula-
tion problem for Copelandα for every 0 ≤ α ≤ 1 is FPT , when
parameterized by the combined parameter (k, t), where k is the
single-peaked width and t is the number of manipulators. We start
with some useful properties.

LEMMA 5. Every Yes-instance of the manipulation problem for
Copelandα in elections with bounded single-peaked width has a
solution where all manipulators rank the interval including the dis-
tinguished candidate in the top.

The proof for the above lemma is similar to the one for Lemma 4.
We omit the proof, due to space limitations.

The following lemma states that the Copelandα scores of the
candidates in different intervals strictly increase when the intervals
are considered from either side to the median group.

LEMMA 6. Let G[Cl, Cr] be the median group of an election
with candidates set C, with respect to the single-peaked partition
(C1, C2, ..., Cω). Let a1 ∈ Cz1 , a2 ∈ Cz2 , b1 ∈ Cx1 , b2 ∈ Cx2
be any four arbitrary candidates with z2 < z1 ≤ l and r ≤ x1 ≤
x2. Then, the Copelandα score of b1 (resp. a1) is strictly greater
than that of b2 (resp. a2), for every 0 ≤ α ≤ 1.

PROOF. Due to symmetry, we prove only for b1 and b2. Let C1
be the set of candidates included in intervals on the right-side of
Cx1 . Clearly, b2 ∈ C1. Since all votes with peaks at Cr or on the
left-side of Cr , which amount to more than half of the votes, rank
every candidate in Cx1 above every candidate in C1, we know that
every candidate in Cx1 beats every candidate in C1. Thus, b1 beats
every candidate in C1, implying that the candidates in C1 contribute
at least one more point (from b2) to b1 than to b2. Now consider
the candidates in C2 = C \ (C1 ∪ Cx1). That is, the candidates in-
cluded in intervals on the left-side of Cx1 . Due to the definitions of
single-peaked election and single-peaked partition, for every can-
didate c ∈ C2, every vote which prefers b2 to c also prefers b1 to c.
Thus, if b2 beats (resp. ties) a candidate c ∈ C2, so does b1 (resp.
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b1 beats c or ties c). Thus, the candidates in C2 contribute to b1 at
least the same points as to b2. Since every candidate in Cx1 beats
b2, the lemma follows.

Due to Lemma 6, we know that for every candidate c which is
not in the median group, there exists at least one candidate who has
a strictly greater Copelandα score than that of c. This implies that
the Copelandα winners must be included in the median group.

LEMMA 7. Every Copelandα winner for all 0 ≤ α ≤ 1 is from
the median group.

Now we come to the main result of this section.

THEOREM 2. The manipulation problem for Copelandα for ev-
ery 0 ≤ α ≤ 1 is FPT with respect to the combined parameter
(k, t), where k denotes the single-peaked width and t the number
of manipulators.

PROOF. To prove the theorem, we derive an FPT -algorithm.
Let t be the number of manipulators and k be the single-peaked
width of the given election. The algorithm first ranks the inter-
val C including the distinguished candidate p in the top in all the
manipulative votes. If p is not in the median group, we can imme-
diately return “No”, due to Lemma 7. Otherwise, we enumerate
all possible combinations of t linear orders over the candidates in
C. Since C has at most k candidates, there are at most k!t com-
binations. Moreover, each combination of t linear orders gives
a Copelandα score of p in the election restricted to C by ask-
ing the t manipulators to rank the candidates in C according to
the t linear orders of the combinations. The algorithm chooses
one combination which gives p the maximum Copelandα score
in the election restricted to C. Then, the manipulators rank the
candidates in C according to the linear orders in the combina-
tion. Without loss of generality, assume that the single-peaked
partition is (C1, C2, ..., Cl, ..., Cr, Cr+1, ..., Cω), and the median
group G[Cl, Cr] contains Cl, Cr and all intervals between Cl and
Cr (Cl and Cr may be identical. In this case the algorithm be-
comes easier). Since all manipulators rank C in the top and C is
in the median group, we have that either p ∈ Cl or p ∈ Cr (that
is, C = Cl or C = Cr). Without loss of generality, assume that
p ∈ Cl. Due to Lemma 7, to make p the winner, we need only to
make sure that every candidate included in G[Cl, Cr] has no equal
or greater score than that of p. Hence, the optimal solution for all
manipulators is to rank the intervals as follows.

Cl � Cl−1 �, ..., C1 � Cl+1 �, ...,� Cω
In this case, every candidate in G[Cl, Cr] \ Cl gets the least points
from the candidates in

⋃i=l−1
i=1 Ci. It remains to rank the candidates

in each interval. Due to Lemmas 6 and 7, for each interval which is
not in G[Cl, Cr], no matter how the candidates in this interval are
ranked, none of the candidates can have an equal or greater score
than that of p. Hence, we rank them arbitrarily. For each interval in
G[Cl, Cr] \ {C}, we rank the candidates with the similar method
as for Maximin. That is, for each interval C′ ∈ G[Cl, Cr] \ {C},
we enumerate all the combinations of t linear orders over the can-
didates inC′ until we find one which does not prevent p from being
the winner. On the other hand, if no such combinatorial exists, we
return “No". The running time of the algorithm is O(ω · k!t).

5. BORDA
In this section, we study the Borda manipulation with two ma-

nipulators in elections with bounded single-peaked width. Recall
that this problem isNP-hard in general [2, 9] but polynomial-time
solvable in single-peaked elections [22].

THEOREM 3. The manipulation problem with two manipula-
tors for Borda isFPT when parameterized by single-peaked width.

Our FPT algorithm is based on the polynomial-time algorithm
for the same problem in single-peaked elections [22]. The algo-
rithm ranks the intervals according to the single-peaked partition,
beginning with the one including the distinguished candidate and
ending with a one on either side. To rank each interval, the al-
gorithm first assigns respective contiguous positions for the inter-
val, then ranks the candidates in the interval in a brute-force way.
The procedure of ranking the intervals mimics the algorithm for
Borda manipulation in single-peaked elections in [22], and thus
takes polynomial time. Since each interval contains at most k can-
didates (k is the single-peaked width of the given election), ranking
candidates in each interval takesO(k!2) time (each manipulator has
at most k! choices and there are two manipulators). The whole run-
ning time of the algorithm will be O(k!2 · poly(|E|)), where |E| is
the size of the given election4.

Main Idea. We illustrate the algorithm according to Figure 4. In
the first step, the interval Cp including p is ranked in the top of the
two manipulative votes, and p is ranked in the top within Cp. The
final score of p is known now. Assume that p is the current winner.
Then we check all possibilities (at most (k − 1)!2) of ranking the
candidates inCp\{p} until we find one case which does not prevent
p from being the winner. After this, due to the single-peakedness,
only R1 or L1 can be ranked in the next free positions. We check
whether at least one of them can be ranked in the next free positions
of the two manipulative votes simultaneously, without preventing p
from being the winner. This can be done in k!2 time by enumer-
ating all possibilities. Suppose that R1 can be ranked in this way
as shown in Figure 4. Then, again due to the single-peakedness,
only R2 or L1 can be ranked in the next free positions. We do the
same thing for these two intervals as discussed above for R1 and
L1. Differently, suppose that at this time none ofR2 and L1 can be
ranked simultaneously without preventing p from being the winner.
Then, if the given instance is a Yes-instance, the only possible case
is that each of R2 and L1 is ranked in the next free positions of
different manipulative votes, as shown in Figure 4. Note that at this
moment we do not know how the manipulators rank the candidates
in R2 and L1. We will rank them as follows. In fact, our algo-
rithm will always do the following once there is an interval which
has been ranked by one manipulator but not by the other one. Let’s
take R2 as an example. In this case, we are going to rank R2 in the
highest possible free contiguous positions of the second manipula-
tive vote. To this end, for all free contiguous positions, from the
highest to the lowest, we check whether R2 can be ranked in these
positions so that p is still the winner. Each case can be checked in
k!2 time as discussed above. If no such case exists, the instance
must be a No-instance. Suppose that R2 is ranked as shown in Fig-
ure 4 without preventing p from being the winner. Then due to the
single-peakedness, the free positions between L1 and R2 can only
be occupied by L2, L3 and so forth (the intervalR2 may need to be
moved to lower contiguous positions if there are no enough posi-
tions forL4. This does not change the solvability.). We do the same
thing for each interval which has been ranked by exactly one ma-
nipulator until none of them exists. Then, either we find a solution
or the next free positions of the two manipulative votes are “neat”
(the set of intervals that have ranked in the first manipulative vote is

4By employing a similar dynamic programming technique as
in [22], ranking candidates in each interval can be done in O(8k)
time. Hence, the whole running time can be improved to O(8k ·
poly(|E|)).
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the same as that in the second manipulative vote). If it is the latter
case, we go back to the step where we shall consider whether one
interval can be ranked in the next free positions simultaneously as
discussed in the beginning of the algorithm. A formal description
of the algorithm is given in Algorithm 1.

Algorithm 1: The FPT algorithm for the unweighted Borda
manipulation with two manipulators in elections with bounded
single-peaked width.

1 Both manipulators rank p in their highest positions;
2 if Cp \ {p} → {(π1, 2, |Cp|), (π2, 2, |Cp|)} then
3 extend(S1, Cp) and extend(S2, Cp);
4 else
5 Return “NO”;
6 end
7 while

⋃
s∈S1

s =
⋃
s∈S2

s 6= C ∪ {p} do
8 S := S1;
9 if ∃B ∈ N(S) with

B → {(π1, |S|+ 1, |S|+ |B|), (π2, |S|+ 1, |S|+ |B|)}
then

10 extend(S1, B) and extend(S2, B);
11 end
12 else if |N(S)| = 1 then
13 Return “No”;
14 end
15 else
16 Let N(S) = {B,B′};
17 if B → (π1, |S1|+ 1, |S1|+ |B|) and

B′ → (π2, |S2|+ 1, |S2|+ |B′|) then
18 extend(S1, B) and extend(S2, B

′);
19 else
20 Return “No”;
21 end
22 end
23 while S1 6= S2 do
24 Let B be any interval in N(S1 ∩ S2);
25 Let z = 1 if B ∈ S2 and z = 2 if B ∈ S1;
26 while B 6→ (πz, |Sz|+ 1, |Sz|+ |B|) do
27 if N(Sz) \B = ∅ then
28 Return “No”;
29 end
30 else
31 B′ := N(Sz) \B;
32 if B′ → (πz, |Sz|+ 1, |Sz|+ |B′|) then
33 extend(Sz, B′);
34 else
35 Return “NO”;
36 end
37 end
38 end
39 extend(Sz, B);
40 end
41 end
42 Return “Yes”;

We use functions π : C ∪{p} 7→ [|C ∪{p}|] that map candidates
to positions to represent a vote. In particular, π1 and π2 will be the
first and the second manipulative votes, respectively. A candidate c
with π(c) = 1 has the highest position and thus gets the maximum
|C| points. Initially, we set πi(c) = 0 for every candidate c.

For an interval C and two integers kl and kr with 1 ≤ kl ≤
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Figure 4: An illustration of the FPT -algorithm for Borda. In-
side Cp, the distinguished candidate is ranked in the top.

kr ≤ |C| and |C| = kr − kl + 1, we use C → (π, kl, kr)
(resp. C 6→ (π, kl, kr)) to denote that the candidates in C can
(resp. cannot) be safely ranked in the positions {kl, kl + 1, ..., kr}
of π. Here, “safely" means that it is possible to rank the can-
didates in these positions of π without preventing p from being
the winner. Similarly, we use C → {(π1, k

1
l , k

1
r), (π2, k

2
l , k

2
r)}

(resp. C 6→ {(π1, k
1
l , k

1
r), (π2, k

2
l , k

2
r)}) to denote that it is possi-

ble (resp. not possible) to rank the candidates in C in the positions
{k1l , k1l +1, ..., k1r} of π1 and in the positions {k2l , k2l +1, ..., k2r}
of π2 simultaneously, without preventing p from being the win-
ner. Checking whether C → (π, kl, kr) can be done in |C|! time
by enumerating all the linear orders over C, and checking whether
C → {(π1, k

1
l , k

1
r), (π2, k

2
l , k

2
r)} can be done in |C|!2 by enumer-

ating all the two linear orders over C.
A block is a collection of intervals lying contiguously in the

single-peaked partition. For example in Figure 4, {Cp, R1, R2} is
a block, but {Cp, R2} is not since there is an interval R1 between
Cp and R2. For a block S, let N(S) be the set of intervals lying
directly on the left-side or on the right-side of S. For example in
Figure 4, setting S = {Cp, R1, R2}, we have N(S) = {L1, R3}.
Clearly, |N(S)| ≤ 2 for every block S. In our algorithm, each
manipulator maintains a block which initially is empty. Let Si be
the block maintained by the i-th manipulator, where i = 1, 2. For
an interval C ∈ N(Si) and the block Si, we use extend(Si, C) to
denote the operation Si := Si ∪ C, where ’:=’ is the assignment
operator that sets the left-hand operand equal to the right-hand ex-
pression value.

In Line 25, one ofB ∈ S1 orB ∈ S2 must hold. We remark that
the above algorithm can be adapted to handle the corresponding op-
timization problem, where instead of answering ’Yes’ or ’No’, the
algorithm finds a solution for the given instance. For this purpose,
extend(Si, C) will denote both the operation Si := Si ∪C and the
following operation: ranks the candidates in C in the next contigu-
ous positions of the i-th manipulative vote in a way that does not
prevent p from being the winner. Due to space limitations, we omit
further details.

6. WEIGHTED MANIPULATION
In this section, we study the weighted manipulation problem in

single-peaked elections.
Faliszewski et al. [15] examined the weighted manipulation prob-

lem in single-peaked elections with three candidates for positional
scoring correspondences, and proved that the problem isNP-hard
if and only if a1 − a3 > 2(a2 − a3) > 0, where (a1, a2, a3)
is the scoring vector with a1 ≥ a2 ≥ a3. Recall that each posi-
tional scoring correspondence is defined by a non-negative integer
scoring vector (a1, a2, ..., am) with a1 ≥ a2 ≥, ...,≥ am, where
m is the number of candidates. Then every candidate c gets ai
points from each vote that ranks c in the i-th position. The winners
are the candidates who have the maximum total score. Their re-
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sult implies that the weighted Borda manipulation with three candi-
dates is polynomial-time solvable in single-peaked elections. How-
ever, when the number of candidates increases to four, the weighted
Borda manipulation problem becomesNP-hard [15]. Brandt et al.
[4] took the result in [15] a further step by deriving a dichotomy
for the weighted manipulation problem for positional scoring cor-
respondences with no restriction on the number of candidates.

In this section, we complement their results by exploring the
weighted manipulation problem for Copelandα and Maximin in
single-peaked elections. A voting correspondence is weakCondorcet-
consistent if the winners are exactly the weak Condorcet winners
whenever there exists weak Condorcet winners [4]. First recall
that both Maximin and Copeland1 are weakCondorcet-consistent
in single-peaked elections, and thus, the weighted manipulation
problem for Maximin and Copeland1 is polynomial-time solvable
in single-peaked elections (we refer to [4] for the detailed argu-
ments why the polynomial-time solvability holds). However, the
Copelandα voting for every 0 ≤ α < 1 is not weakCondorcet-
consistent even in single-peaked elections [4].

Our result of this section is summarized in the following theo-
rem.

THEOREM 4. The weighted manipulation problem for Copelandα

is polynomial-time solvable in single-peaked elections, for every
0 ≤ α < 1.

PROOF. We first give the proof for the unique-winner model
with three candidates. To this end, we derive a polynomial-time
algorithm. First observe that ranking the distinguished candidate p
in the top is always the optimal choice. Hence, if p is not in the
middle in the harmonious order, all the manipulators have only one
way to cast their votes, and thus, the problem can be solved. As-
sume now that p is in the middle of the harmonious order. Without
loss of generality, let a, b, p be the three candidates and (a, p, b)
be the harmonious order. We consider the following cases to rank
a and b. First observe that p beats at least one of a and b in the
final election, no matter how the manipulators rank a and b. To
check this, let xa, xp and xb be the total weight of the votes (both
manipulators and nonmanipulators) with their peaks at a, at p and
at b, respectively. Since all manipulators have their peaks at p,
we have that xp > 0. Thus, one of xa + xp >

xa+xb+xp
2

and
xb+ xp >

xa+xb+xp
2

must hold, implying that p beats at least one
of a and b. It remains to consider the following two cases. Note
that since all the manipulators rank the distinguished candidate p in
the top, the comparison between p and every a and b is known.

Case 1. p beats both a and b. In this case, p must be the unique
winner no matter the comparison between a and b. Thus, we can
immediately return ’Yes’.

Case 2. p beats exactly one of {a, b}. Without loss of generality,
assume that p beats only a. Then, casting their votes as p � a � b
must be the optimal choice for the manipulators, since otherwise, b
will beat a, implying p cannot be the unique winner.

The above algorithm directly applies to the nonunique-winner
model. Due to space limitations, we only give the main idea of
the algorithm for the weighted manipulation when the number of
candidates is not bounded. Let c1, c2, ..., ci, p, ci+1, ..., cm be the
harmonious order. The manipulators first rank the distinguished
candidate in the top. Then, if {p} is not in the median group (the
median group in the weighted case is the median group in the un-
weighted case with each voter with weight w being considered as
w individual unweighted voters), return “No". Otherwise, all the
manipulators cast their votes as follows. If {p} is on the left-side
of the median group, then all the manipulators cast their votes as
p � ci � ...,� c1 � ci+1 �, ...,� cm. Otherwise, all the manip-

ulators cast their votes as p � ci+1 � ...,� cm � ci �, ...,� c1.
The correctness of the algorithm is based on the weighted versions
of Lemmas 5, 6 and 7.

Note that the weighted manipulation with three candidates for
Copelandα for every 0 ≤ α < 1 is NP-hard in general, for the
nonunique-winner model [6, 16]. Our polynomial-time algorithm
in the above theorem does not apply to the general case since our
algorithm relies heavily on the single-peaked restriction. For ex-
ample, when the distinguished candidate is not in the middle of the
harmonious order, all the manipulators have only one way to cast
their votes. However, in the NP-hardness reduction of the prob-
lem in the general case, the manipulators can cast their votes freely
to balance the scores of a and b.

7. CONCLUDING REMARKS
We have studied the parameterized complexity of the unweighted

manipulation problem under the Borda, Maximin and Copelandα

voting correspondences, and achieved several FPT results, with
respect to the parameters “single-peaked width" and “number of
manipulators". Moreover, we proposed several properties (Lemmas
1-7) of Maximin and Copelandα elections with bounded single-
peaked width. We believe that these properties are helpful in solv-
ing further voting problems. In addition, we proved that the weighted
manipulation problem for Copelandα for every 0 ≤ α < 1 is
polynomial-time solvable in single-peaked elections, regardless of
the number of manipulators and the number of candidates. Tables 1
and 2 summarize our results.

The two FPT -algorithms for Maximin and Copelandα for ev-
ery 0 ≤ α ≤ 1 run in O(k!t · Poly) time, where k is the single-
peaked width and t is the number of manipulators. The factorial k!
corresponds to the number of enumerations over a (candidate) set
of size k. Several algorithms for generating all the permutations
over a set of size k have been proved practical when k is a small
number (see, e.g., http://theory.cs.uvic.ca/). It is plausible that our
algorithms are implementable when both k and t are small (e.g.,
k ≤ 5 and t = 2, 3). The number of candidates, however, can be
very large. For lager k and t, more heuristic methods should be
derived to speed up the algorithms.

We remark that ourFPT -algorithms for the unweighted manip-
ulation problem for Maximin and Copelandα can be extended to
solve the weighted manipulation problem. Nevertheless, the exten-
sion for Copelandα does not cover Theorem 4, since the polynomial-
time solvability result stated in Theorem 4 holds regardless of the
number of manipulators. The FPT -algorithm for the unweighted
manipulation for Borda, however, cannot be extended to the weighted
manipulation since the polynomial-time algorithm in [22] does not
apply to the weighted case.

We end with several open problems. First, it would be interesting
to know whether the fixed-parameter tractability of the manipula-
tion problem remains when parameterized by the single parameter
“single-peaked width". Second, it would be interesting to explore
the parameterized complexity of the manipulation problem for fur-
ther voting correspondences with respect to the parameters “single-
peaked width" and “number of manipulators", such as the second-
order Copeland, STV and Ranked pair. In general, the unweighted
manipulation problem under these voting correspondences isNP-
hard even when there is only two manipulators [21].

Acknowledgments
The author thanks the AAMAS-15 reviewers for their helpful com-
ments. The author was supported by the DFG Cluster of Excellence
(MMCI) and the China Scholarship Council (CSC).

84



REFERENCES
[1] K. J. Arrow. A difficulty in the concept of social welfare. J.

Polit. Econ., 58(4):328–346, 1950.
[2] N. Betzler, R. Niedermeier, and G. J. Woeginger.

Unweighted coalitional manipulation under the Borda rule is
NP-hard. In IJCAI, pages 55–60, 2011.

[3] D. Black. On the rationable of group decition-making. J.
Polit. Econ., 56:23–34, 1948.

[4] F. Brandt, M. Brill, E. Hemaspaandra, and L. A.
Hemaspaandra. Bypassing combinatorial protections:
Polynomial-time algorithms for single-peaked electorates. In
AAAI, pages 715–722, 2010.

[5] R. Bredereck, J. Chen, and G. J. Woeginger. Are there any
nicely structured preference profiles nearby? In IJCAI, pages
62–68, 2013.

[6] V. Conitzer, T. Sandholm, and J. Lang. When are elections
with few candidates hard to manipulate? J. ACM,
54(3):1–33, 2007.

[7] D. Cornaz, L. Galand, and O. Spanjaard. Bounded
single-peaked width and proportional representation. In
ECAI, pages 270–275, 2012.

[8] D. Cornaz, L. Galand, and O. Spanjaard. Kemeny elections
with bounded single-peaked or single-crossing width. In
IJCAI, pages 76–82, 2013.

[9] J. Davies, G. Katsirelos, N. Narodytska, and T. Walsh.
Complexity of and algorithms for Borda manipulation. In
AAAI, pages 657–662, 2011.

[10] G. Demange. Single-peaked orders on a tree. Math. Soc. Sci.,
3(3):389–396, 1983.

[11] E. Ephrati and J. S. Rosenschein. A heuristic technique for
multi-agent planning. Ann. Math. Artif. Intell.,
20(1-4):13–67, 1997.

[12] G. Erdélyi, M. Lackner, and A. Pfandler. Computational
aspects of nearly single-peaked electorates. In AAAI, pages
283–289, 2013.

[13] B. Escoffier, J. Lang, and M. Öztürk. Single-peaked
consistency and its complexity. In ECAI, pages 366–370,
2008.

[14] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra.
The complexity of manipulative attacks in nearly
single-peaked electorates. Artif. Intell., 207:69–99, 2014.

[15] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and
J. Rothe. The shield that never was: Societies with
single-peaked preferences are more open to manipulation
and control. Inf. Comput., 209(2):89–107, 2011.

[16] P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Copeland
voting: ties matter. In AAMAS (2), pages 983–990, 2008.

[17] P. Faliszewski, E. Hemaspaandra, and H. Schnoor.
Manipulation of copeland elections. In AAMAS, pages
367–374, 2010.

[18] P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Weighted
manipulation for four-candidate Llull is easy. In ECAI, pages
318–323, 2012.

[19] U. Grandi, A. Loreggia, F. Rossi, K. B. Venable, and
T. Walsh. Restricted manipulation in iterative voting:
Condorcet efficiency and Borda score. In ADT, pages
181–192, 2013.

[20] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. The
computational difficulty of manipulating an election. Soc.
Choice. Welfare., 6(3):227–241, 1989.

[21] L. Xia, M. Zuckerman, A. D. Procaccia, V. Conitzer, and
J. S. Rosenschein. Complexity of unweighted coalitional
manipulation under some common voting rules. In IJCAI,
pages 348–353, 2009.

[22] Y. Yang and J. Guo. Exact algorithms for weighted and
unweighted Borda manipulation problems. In AAMAS, pages
1327–1328, 2013. http://arxiv.org/abs/1304.3145.

[23] Y. Yang and J. Guo. The control complexity of r-approval:
from the single-peaked case to the general case. In AAMAS,
pages 621–628, 2014.

[24] Y. Yang and J. Guo. Election controls with small
single-peaked width. In AAMAS, pages 629–636, 2014.

[25] Y. Yang and J. Guo. Election control in multi-peaked
elections: a parameterized study. In AAMAS, 2015. extended
abstract.

85




