
Monte Carlo Hierarchical Model Learning

Jacob Menashe and Peter Stone
The University of Texas at Austin

Austin, Texas
{jmenashe,pstone}@cs.utexas.edu

ABSTRACT
Reinforcement learning (RL) is a well-established paradigm
for enabling autonomous agents to learn from experience.
To enable RL to scale to any but the smallest domains, it
is necessary to make use of abstraction and generalization
of the state-action space, for example with a factored rep-
resentation. However, to make effective use of such a repre-
sentation, it is necessary to determine which state variables
are relevant in which situations. In this work, we introduce
T-UCT, a novel model-based RL approach for learning and
exploiting the dynamics of structured hierarchical environ-
ments. When learning the dynamics while acting, a partial
or inaccurate model may do more harm than good. T-UCT
uses graph-based planning and Monte Carlo simulations to
exploit models that may be incomplete or inaccurate, al-
lowing it to both maximize cumulative rewards and ignore
trajectories that are unlikely to succeed. T-UCT incorpo-
rates new experiences in the form of more accurate plans
that span a greater area of the state space. T-UCT is fully
implemented and compared empirically against B-VISA, the
best known prior approach to the same problem. We show
that T-UCT learns hierarchical models with fewer samples
than B-VISA and that this effect is magnified at deeper lev-
els of hierarchical complexity.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents

General Terms
Algorithms

Keywords
Single and multi-agent learning techniques; Reinforcement
Learning; Factored Domains; Model Learning; Hierarchical
Skill Learning; Monte Carlo Methods

1. INTRODUCTION
Suppose you are tasked with driving to a new supermar-

ket downtown. At short notice you might be able to come

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

up with some simple instructions, such as “head south for
approximately 3 miles.” Before actually making the trip you
could consult a map and look at a couple of possible routes,
then settle on the route that seems the best given the dis-
tance, the time of day, etc. Finally you try out your selected
route and use this new experience to help you plan better
in the future.

In further detail, the process of planning your actions is
divided into distinct phases. The first phase is target selec-
tion, in which you decide on the supermarket as your des-
tination. The next is a rough planning phase, in which you
select a high-level action sequence to consider: “head south
for 3 miles.” For the third phase you then simulate the expe-
rience of navigating to your target by looking at a map and
planning out the specific roads you’ll be taking. Finally you
execute an action sequence by following your planned route
to the new supermarket.

In this work we introduce an implementation of this ap-
proach to model-based planning, namely Transition-based
Upper Confidence Bounds for Trees, or T-UCT. We draw
from the widely successful UCT algorithm [6] by extending it
for use with action sequences rather than primitive actions.
This extension allows us to make long-term, compound plan-
ning decisions that respect both the intermediate reward and
transition dynamics of a given environment. T-UCT selects
targets to explore novel areas of the state space, performs
randomized depth-first graph search for rough planning, and
then uses UCT to carry out Monte Carlo simulations. Fi-
nally, T-UCT executes the best plan derived from this pro-
cess to explore the environment.

In Section 2 we begin with some background on our mod-
els and describe B-VISA, a successful earlier approach to
the problem of learning models in hierarchical domains. In
Section 3 we describe the T-UCT algorithm. In Section 4
we apply T-UCT to the task of learning model structures
while simultaneously using these structures for exploration.
Finally we conclude in Section 5.

2. BACKGROUND
This section presents in detail the background necessary

to understand our novel T-UCT algorithm. Though all the
concepts summarized here exist in prior work, a full under-
standing of the specific assumptions and notations is neces-
sary for understanding the remainder of the paper. Specifi-
cally, in Section 2.1 we introduce Markov Decision Processes
and their Factored variants, followed by a discussion of com-
pact models for these domains in Section 2.2. In Section 2.3
we discuss the means of analyzing these models to predict
the dynamics of factored domains. In Section 2.4 we exam-

771

ine learning domain models from experience, and finally in
Section 2.5 we discuss Bootstrapping with VISA, the best
known approach for the problem of learning and exploiting
hierarchical domains.

2.1 (Factored) Markov Decision Processes
A Markov Decision Process (MDP) is a task defined by a

tuple 〈S,A, P,R〉 of states S, actions A, a transition func-
tion P and a reward function R. Here we define P and R
such that P (s, a, s′) = Pr{st+1 = s′|st = s, at = a} is the
probability that action a in state s at time t will result in
a transition to state s′ at time t + 1, and R(s, a, s′) ∈ R is
the reward for transitioning from s to s′ under action a. An
MDP is assumed to satisfy the Markov property which guar-
antees that the distribution of the successor state Pr{st+1}
depends only on st and at. To solve an MDP means to find
an optimal policy π : S → A that maximizes expected cu-
mulative discounted reward. When the functions P and R
of an MDP are unknown, it is possible to learn an optimal
policy through experimentation with Reinforcment Learning
(RL) techniques.

RL research focuses on the question of how to quickly and
accurately compute a policy that solves an MDP. A simple
RL approach to this problem is to construct an agent which
learns a function Q : S ×A→ R that assigns values to each
state-action pair (s, a) in the given MDP. Specifically, the Q
function estimates the cumulative future discounted reward
expected when executing action a in state s and acting opti-
mally thereafter. Once an accurate value function is learned
the optimal policy can be computed with dynamic program-
ming. As the state-action space increases in size, however,
so does the complexity of Q. If we are to efficiently navi-
gate large domains it is therefore necessary to apply further
assumptions to the MDP framework. This can be accom-
plished by factoring the state space to create a Factored
MDP (FMDP). A Factored MDP is an MDP whose state
space can be represented as the cross product of orthogonal
state variables: S = S1 × S2 × · · ·Sn. Thus an FMDP is
defined by a tuple 〈{Si}ni=1, A, P,R〉.

2.2 DBNs and CPTs
An FMDP can be modeled compactly as a set of Dynamic

Bayesian Networks (DBNs) with a single DBN correspond-
ing to each action in the FMDP [2]. Here a DBN is specified
as a two-layer directed bipartite graph with nodes corre-
sponding to state variables and edges corresponding to de-
pendence under the specified action. An example is given
in Figure 1. The edges always move forward in time, in-
dicating that the state st+1 depends only on st. Since we
are analyzing depdencies between variables under different
actions, the dependencies must move forward in time. This
forward-directed dependence follows from our assumption of
a Markov environment. In the figure we see that all state
variables depend on themselves, and additionally that Si

depends on both on itself and Sj .
Each DBN can be encoded as a set of Conditional Proba-

bility Trees (CPTs), one for each variable Si ∈ S. Figure 1
gives an example of such a CPT. Each internal node in the
tree is a refinement on a particular variable, indicating that
the expected effects of an action depend on that variable.
For example, the node Sj in the CPT indicates that the ef-
fects of a2 on Si depend on Sj when Si = 1. Each leaf in the
CPT is predicated on a single assignment of state variables

Si

Sj

Si

Sk

Sj

Sk

0 1

Sj

0 1

Si

t t + 1

l1

l2 l3

a2a1 a3 an

DBN for a2 CPT for Si,a2

Actions

0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1

Cl1

Values of Si

Fr
eq

u
en

cy

0 1

Ol1

Values of Si

Fr
eq

u
en

cy

0 1

Ij,l1

Values of Sj

Fr
eq

u
en

cy

0 1

Ik,l1

Values of Sk

Fr
eq

u
en

cy

Distributions of l1

Figure 1: Top: All actions available in the environ-
ment. Left: A DBN representing the effects of ac-
tion a2 on state variables Si, Sj , Sk. Right: The CPT
encoding transition dynamics for state variable Si

under action a2, with leaves labeled with distribu-
tions. Bottom: The distributions of values that are
tracked at leaf l1 (see Section 2.3).

to values which can be recovered by traversing the path from
the leaf to the root. The context of a leaf l is the assign-
ment of values (edges) to state variables (nodes) on the path
from the leaf to the root. For instance, the context of l2 is
{Si = 1, Sj = 0}.

2.3 Model Dynamics
Each CPT is used to store (st, a, S

t+1
i) tuples1. When the

agent takes action a in state st and observes the resulting
state st+1, we first look up the set of CPTs representing the
DBN for action a. In each CPT for state variable Si and
action a we find the leaf whose context matches st and then
add (st, a, S

t+1
i) to the leaf. Finally we analyze the dataset

of each leaf l to produce distributions Ol, Cl, {Ij,l}j≤n for j
such that Sj is not in the context of l. Each Ij,l represents
an input distribution: values of state variable Sj in state
st for leaf l. We ignore the variables already in the context
of l since their value assignments are fixed for all data stored
in l. Ol is the output distribution: values of Si in state
st+1. Finally, Cl is the change distribution: values of Si

in state st+1 that are different from those of st. The purpose
of the input distributions is to track the states from which

1Prior work uses the tuple (st, a, st+1), however the purpose
of the latter element is to model the distribution of a single
state variable for each CPT. We therefore restrict the result
state st+1 to the value of the state variable that is being
modeled for the given CPT.

772

all data samples have been gathered, allowing the agent to
seek novel states for exploration. The purpose of the output
distribution and change distribution is to model the effects
that the CPT’s action has on the CPT’s state variable.

We now provide a simplified example of what these distri-
butions might look like using the CPT from Figure 1. We
use the notation {Si = v1 : x, Si = v2 : y} to represent
a histogram of values encountered for Si where x instances
of value v1 and y instances of value v2 have been encoun-
tered. Suppose we execute action a2 for the first time in the
state st = {Si = 0, Sj = 1, Sk = 0} and observe the suc-
cessor state st+1 = {Si = 1, Sj = 1, Sk = 1}. We then add
the tuple (st, a2, {Si = 1}) to our CPT at the leaf whose
context matches st. The first refinement in the CPT for
Si is on the state variable Si. Since Si = 0 in state st,
we move to the leaf with Si = 0, namely l1. We then up-
date each distribution modeled by l1. Beginning with the
input distributions, we set Ij,l1 = {Sj = 0 : 0, Sj = 1 : 1},
Ik,l1 = {Sk = 0 : 1, Sk = 1 : 0}. We then update the output
and change distributions: Ol1 = {Si = 0 : 0, Si = 1 : 1}
and Cl1 = {Si = 0 : 0, Si = 1 : 1}. Now suppose we ar-
rive in state st+k = st and execute a2 again, except this
time the action has no effect. Then our distributions be-
come Ij,l1 = {Sj = 0 : 0, Sj = 1 : 2}, Ik,l1 = {Sk =
0 : 2, Sk = 1 : 0}, Ol1 = {Si = 0 : 1, Si = 1 : 1} and
Cl1 = {Si = 0 : 0, Si = 1 : 1}.

These distributions allow us to query our model to answer
four main questions:

1. How can we quickly learn the dynamics of our domain?
2. What changes might occur after executing a?
3. What state st+1 is expected after executing a in st?
4. How can we plan a path from state st to state st+k?

Question 1 is answered by computing each leaf’s entropy
gain as a function of its {Ij,l}. This computation is described
in detail in Section II.F of the previous work by Vigorito
and Barto [10]. Question 2 is answered by searching each
leaf for each CPT in the DBN for a. Each leaf l with a
non-empty distribution Cl encodes a change in state for its
CPT’s associated state variable Si. Question 3 is answered
with Ol: we can predict st+1 under action a by sampling
from the distributions of the leaves corresponding to st for
each CPT in the DBN for a.

To answer Question 4 we introduce transitions. A transi-
tion on a state variable Si is a tuple 〈Si, c, a, v, p〉 where c is
a context, a is an action, v is a value assignment to Si and p
is the probability of success. A transition t = 〈Si, c, a, v, p〉
denotes the statement, “When action a is taken in context
c the state variable Si will change to value v with probabil-
ity p.” These are similar to exits, which are introduced by
Hengst [3] and used by VISA for identifying options. Tran-
sitions give rise to a transition graph and allow us to reduce
the problem of navigating a domain with complex dynamics
to simple graph planning.

To identify the transitions encoded in our model we start
by iterating through all of the leaves in all of the CPTs.
If a leaf’s action results in a change to the state variable
it models in that leaf’s context, then we extract a single
transition from that leaf for each value that Si can change
to. For example, suppose after executing some action a 20
times in state s we observe the value Si changed from 0 to
1 with p = .5, from 0 to 2 with p = .3, and did not change
with p = .2. If we look at the leaf corresponding to s in

the CPT for Si and a we would find the change distribution
Cl = {Si = 0 : 0, Si = 1 : 10, Si = 2 : 6} and 20 total
recorded datapoints. We could then extract two transitions
for Si with their contexts set to the context cl of the leaf l.
The transitions would be represented as 〈Si, cl, a, 1, .5〉 and
〈Si, cl, a, 2, .3〉. Thus these transitions give us model-based
descriptions of the prerequisites and effects for the primitive
action a.

2.4 Model Learning
We seek to find a way to learn environment dynamics from

experience in deeply hierarchical stochastic domains with
specific interest in scalability and sample efficiency. We ex-
pect model inaccuracies to be consistently present and that
some environment dynamics may be entirely missing from
the model. Our ideal algorithm therefore has the following
properties:

• Sample Efficiency - We wish to learn and exploit
model dynamics in as few timesteps as possible.
• Linear Scaling - Planning time should scale linearly

with the number of state variables and actions and the
hierarchical depth of the domain.
• Partial Modeling - Partial models should be usable

for planning.

Given a DBN/CPT model for a Factored MDP it is pos-
sible to compute optimal policies for any particular reward
function [1]. However the problem of computing an optimal
policy now becomes that of obtaining an accurate model.
For small domains, this may be feasible (albeit tedious) to
perform by hand. For larger domains or domains with un-
known dynamics it may not be possible without some form
of automation. Thus model-learning algorithms such as that
developed by Jonsson and Barto [5] seek to explore an MDP
for the purpose of obtaining representative data samples.
These samples are then leveraged to build the DBN/CPT
network that compactly models the dynamics of the under-
lying FMDP. As the stochasticity of a domain increases, the
number of samples needed to accurately model its dynamics
increases as well.

For complex hierarchical domains it can be difficult to
obtain the samples needed for modeling high-level dynamics.
If some state variable Si is only affected by actions taken
from within a particular context, this creates a dependency
in which that context must be achieved in order to collect
data for Si. One can imagine building multiple levels of
these dependencies into a hierarchy. In such circumstances
it may be intractable to collect data for the deeper levels of
the hierarchy under model-free RL, or with using flat models
to learn the environment dynamics.

In this work we explore methods for efficiently learning
high-dimensional, deeply-nested hierarchical environments.
The general approach can be broken down into two sub-
problems. First, we need a model that compactly represents
environment dynamics in a factored domain and can be re-
fined as new data becomes available. The DBN/CPT model
outlined in Section 2.1 achieves compactness through ex-
ploiting the separability of FMDP state variables. Jonsson
and Barto [5] furthermore provide a technique for iteratively
refining DBN/CPT models as data is gathered. By assum-
ing that each state variable is independent of the other vari-
ables in the domain under each action, and by only adding
CPT refinements when this assumption is proven false, we

773

can achieve a logspace reduction in model complexity. For
instance, a domain with 30 state variables and 25 actions
will have 230 · 25 ≈ 25 billion state-action pairs, but we can
model such a domain with only 30 · 25 = 750 CPTs.

The second subproblem is that of data gathering. As dis-
cussed by Jonsson and Barto [5], it can be beneficial for an
agent to gather data according to entropy measurements on
its input distributions. For example, if we’ve seen 50 sam-
ples with Si = 0 and 2 samples with Si = 1, then our dis-
tribution 0 : 50, 1 : 2 has very low entropy. To increase the
entropy of this distribution we would need to collect more
samples when Si = 1. In this way maximizing entropy gain
can push an agent to explore novel data.

In addition to seeking out good data it is necessary to
have the means to reach new areas of the state space. In a
hierarchical domain this task is non-trivial and may not be
possible without some model of the dynamics. To navigate
a domain we therefore need a way to plan our trajectory
through the state space. Thus the data gathering problem is
one of active learning (selecting new areas of the state space)
and path planning (navigating a complex environment).

2.5 B-VISA
Previous work by Vigorito and Barto [10] addresses the

path planning component using the VISA algorithm [4] and
the Options framework [8]. An option consists of a policy
π, an initiation set I, and a termination condition β. When
an agent enters a state s ∈ I it can use the option by exe-
cuting its policy π until it reaches some state s′ such that
β(s′) = 1. Termination is generally assumed to be guaran-
teed, however in practical settings one may simply limit the
number of timesteps that an option may be executed for.
Options are used to formalize the notion of distinct skills in
RL. As an agent explores the FMDP and models the dy-
namics, it leverages its model to create options that allow
it to move to areas of the state space that might otherwise
be difficult to reach. Initially each option only maps states
to primitive actions; however as the agent builds a library
of options it begins to use these alongside primitives when
computing new options. This process of bootstrapping op-
tions that are built with VISA creates a skill hierarchy that
mirrors the structural hierarchy of the FMDP. In this way
an agent is able to reach contexts at higher levels in the hi-
erarchy and collect data at these contexts to further refine
its model.

Bootstrapping with VISA (B-VISA) provides an effective
way to analyze and make use of the DBN/CPT model. This
approach used by Vigorito and Barto [10] suffers from draw-
backs, however. The algorithm relies on entropy gain to de-
cide exploration points in the state space, but it does not
consider intermediate rewards accumulated when navigat-
ing toward an exploration target. This work also employs
Structured Value Iteration (SVI) [1] as the central planning
algorithm both for computing option policies and for gen-
eral exploration. SVI uses a set of CPTs along with a re-
ward tree to compute an optimal policy tree - the algorithm
essentially applies value iteration to trees. SVI scales super-
linearly with the size of the state-action space, and when
options are provided to SVI as part of the bootstrapping
process, this increases the computation time for option poli-
cies and thus computation time increases as model dynam-
ics are learned. It is possible to improve the performance of
SVI by heuristically restricting which options and primitives

are available for computing a particular policy, however we
know of no robust method of filtering options in this way.
When SVI is used for bootstrapping with option policies, it
also becomes necessary to compute the effect distributions
for each of these policies, which is similarly time-consuming.
Finally, SVI relies on having complete information on sup-
plied environment dynamics - if an environment has been
partially learned, it may not be possible to construct a valid
policy even in well-understood areas of the environment.

In this paper we extend the work of Vigorito and Barto
[10] by using UCT as the data gathering mechanism used
to quickly explore and learn a hierarchical FMDP. As we
describe in the next section, our primary contribution is
the replacement of the Options framework and SVI’s exact
planning approach with Monte Carlo planning to consider
intermediate and dynamic rewards and to perform effective
planning in partially learned hierarchical environments.

3. MODEL LEARNING WITH MONTE
CARLO METHODS

Monte Carlo methods offer a promising alternative to ex-
act planning techniques by relying on randomized simula-
tions that can be effective with partial or inaccurate models
and large state spaces. Rather than computing a precise pol-
icy that accounts for all possible states from a model that
is assumed to be perfect, we can instead focus on simulated
experiences based on our immediate needs and the incom-
plete information available to us. UCT is an instantiation
of this approach that effectively manages the exploration-
exploitation tradeoff in considering both known rewards and
novel actions to affect the agent’s behavior [6]. UCT in-
volves repeatedly simulating actions from the current state
by sampling successive states from some available state-
action model. After performing a number of simulations,
the action with the greatest expected reward (i.e., the action
which performs best in simulation) is taken by the agent.
In this section we describe T-UCT, an extension of UCT,
which we use to iteratively learn the CPT refinements of
hierarchical domains while leveraging these structures for
more effective exploration.

3.1 Extending UCT with T-UCT
To apply UCT to hierarchical domains we need to make

proper use of the information provided by our models. Sim-
ply following a path of discounted entropy gain can lead an
agent to execute individual actions that improve entropy
gain without moving to hard-to-reach areas of the state
space. UCT as described by Kocsis et al. [6] applies only
to primitive actions and does not take complex action plan-
ning into account. We therefore extend this approach by
using transitions in place of primitive actions as the basis
for agent trajectory planning. We call this method Transi-
tion UCT (T-UCT). T-UCT is similar to the recent H-UCT
algorithm developed by Vien and Toussaint [9]. However,
while H-UCT requires an action hierarchy to be provided
to the agent, T-UCT computes hierarchical plans directly
from its learned model. Pseudocode for T-UCT is given in
Algorithm 1.

T-UCT proceeds in four distinct phases:

1. A target selection phase (line 5), in which the agent
uses entropy gain to evaluate and randomly select a
number of target contexts from the state space.

774

Algorithm 1 Transition UCT search algorithm.

1: function T-UCTSearch(State s)
2: br ← −∞, T ← OrderTargets()
3: Initialize Q(s, a) to 0 for all s, a
4: repeat
5: t← SelectTarget(T)
6: p← PlanRoughPath(s, t)
7: repeat
8: s′, r, steps← SimulatePath(s,t,p)
9: until enough samples for accurate Q

10: r̄ = r/steps
11: if r̄ > br then
12: bp← p //Select new best path

13: br ← r̄ //Select new best reward

14: end if
15: until NumSuccesses() ≥M or T = ∅
16: return bp
17: end function

2. A rough planning phase (line 6), in which the agent
computes a high-level plan for how to navigate from a
source to a target.

3. A simulation phase (line 8), in which the agent uses
its knowledge of the domain to simulate different tra-
jectories from the source to the target. Each iteration
improves the accuracy of theQ table and thus the qual-
ity of the simulated path with respect to the reward
signal.

4. An execution phase (Algorithm 5), in which the agent
selects a single trajectory based on the performance in
the simulations from the previous step.

We discuss these phases in order.

3.2 Target Selection
The agent begins randomly selecting a set of targets to

evaluate under its selection criterion, in this case entropy
gain. First, the agent iterates through all the leaves in all
the CPTs in its model and computes the expected entropy
gain that would arise from executing each leaf’s action in
that leaf’s context. This general approach is described by
Jonsson and Barto [5]. From information theory we have
that the entropy H of a discrete distribution P is

H(P) = −
∑
i

P (xi) logP (xi)

To compute the entropy gain of executing an action in a
leaf’s context, we take the difference in entropy for all of the
leaf’s I distributions as a result of executing its associated
action. Letting an input distribution I ′ of l be the distribu-
tion I after executing l’s action a in context c, and letting
Hl =

∑
I∈lH(I) and H ′l =

∑
I′∈lH(I ′), the expected en-

tropy gain is H ′l −Hl.
The agent then orders these leaves by their entropy gain in

decreasing order and randomly selects from this list until it
has simulated some pre-determined number M of successful
path traversals. Here a path traversal is considered success-
ful if the agent’s state matches the selected target context
at the end of the simulation; that is, the simulation doesn’t
encounter any errors due to cycles, dead ends, or excessively
long traversals. Before each traversal, the agent selects a
target from the top of the list with probability p, from the
second position with p/2, from the third position with p/4,

and so on. In our implementation we use p = .5. Each item
that is skipped over is popped off of the list.

This randomized selection approach allows the agent to se-
lect targets with high expected entropy gain often, but the
randomization also ensures that alternative targets will be
evaluated as well. The benefit of this approach, versus only
taking the top M targets, is that targets with low rankings
and high intermediate entropy gain (cumulative gain ob-
served while transitioning to a leaf’s context) have a chance
of being evaluated.

Once a target has been selected we proceed to the next
phase of T-UCT: rough path planning.

3.3 Rough Path Planning
The purpose of the rough planning phase is for an agent

to answer two questions. First, given a possibly inaccurate
model of an environment’s transition dynamics, is it possible
to traverse from a source state to a target state? And if
so, what possible paths can we try out? These questions
are answered simultaneously through a series of randomized
depth-first searches through a transition graph constructed
from the agent’s transition model. Algorithm 2 gives the
pseudocode for this process.

Algorithm 2 Rough path planning algorithm.

1: function PlanRoughPath(SourceContext sc, Target-
Context tc)

2: pa←EmptyPath()
3: cd ←MEA(sc, tc) //Means Ends Analysis

4: for all Si in StateVariables(cd) do
5: Ti ←ComputeTransitionGraph(cd, Si)
6: P ← ∅
7: for 1 to M do //M is configurable

8: p←RandomDepthFirstSearch(sc, tc, Ti)
9: Push(P, p)

10: end for
11: Ti ←MergePathsIntoGraph(P)
12: pa[Si] = Ti

13: end for
14: return pa
15: end function

Given some starting state and a target state the agent
begins by computing a means-ends analysis [7] to produce
a difference context cd in line 3. This context is a tuple
of tuples: each entry is a pair of values vs, vt for a state
variable Si and denotes the agent’s wish to change its state
from Si = vs to Si = vt. The agent considers each entry in
isolation and constructs a directed graph Ti of all possible
transitions for the state variable Si in line 5. Vertices in Ti
are defined by the values in the domain of Si, and edges are
defined by transitions taken from a model. For instance, a
transition that causes Si = 0 to change to Si = 6 would be
represented as an edge from the graph vertex for 0 to the
graph vertex for 6. In line 8 the agent performs multiple
randomized depth-first searches from vs to vt to produce a
set of possible paths between these two value assignments.
The agent then merges these paths into a subgraph Ti of Ti
in line 11. An example of Ti and its subgraph Ti can be seen
in Figure 2. Finally in line 12 the path is indexed by the
state variable it describes.

As an example, consider the transitions t1, t2, t3, t4 indi-
cated in Figure 2. The agent begins its randomized depth

775

Si = 16

Si = 4
Si = 11

Si = 2

Si = 6

Si = 15

Si = 3
Si = 0

t1

t2
t3

t4

t5 t6

Si = 7

Figure 2: A full transition graph Ti (all edges) and its
randomized subgraph Ti (solid edges), as described
in Section 3.3. Ti represents a set of possible paths
for Si from a source value Si = 0 to a target value
Si = 3. The dotted lines represent a dead end. The
dashed lines represent transitions in Ti \ Ti.

first search by looking at all transitions that alter state vari-
able Si and whose contexts match our source context’s value
assignment Si = 0. t1 and t5 are examples of such transi-
tions. If we randomly select t1, we “follow” this transition by
looking at its modeled effect of setting Si to the value 4. We
then look at all transitions available to us that alter Si from
4 to some other value. In this case t2 is the only transition
available. We repeat this process of moving to new nodes
and randomly selecting from the available transitions until
we reach the target value assignment Si = 3. On our first
navigation we might therefore find the path t1, t2, t3, t4. On
another round, we might find t5, t6. We repeat this process
and remember the transitions from paths that successfully
move from our source to our target value assignment. In
Figure 2 this is represented by all of the solid edges. This
collection of transitions defines a subgraph Ti ⊆ Ti.

The advantage of working with this randomized subgraph
Ti, versus the full transition graph, is that every node in Ti

is on a path from vs to vt, and furthermore any choice of
directed edge moves us along one of these paths. Thus if
we pass this graph to our simulator (see Section 3.4) we can
avoid exhaustively searching the state space and hoping to
land on our target.

3.4 Simulation
The agent begins with the set of rough paths (i.e. transi-

tion graphs) constructed in the previous step, one for each
state variable. It is now necessary to simulate traversals on
these paths to evaluate their benefit in terms of both feasi-
bility and computed reward. The rough path planning algo-
rithm ignores some important information, such as depen-
dences between state variables, reward functions, and tran-
sition probabilities. Simulation allows the agent to evaluate
the constructed graphs tractably while taking all of these
factors into account.

Algorithm 3 shows the pseudocode for T-UCT simula-
tions. These simulations are similar to those described for
UCT [6] with special handling for transitions and action se-
quences. Step 6 uses UCT’s standard UCTSelect function,
selecting from a set of transitions T rather than a set of
primitive actions.

The rough path that is generated is broken into subpaths
for individual state variables (see line 12 of Algorithm 2).
This rough path is passed to Algorithm 3 in line 8 of Al-
gorithm 1 as well as recursively in line 10 of Algorithm 3
itself. Since it is necessary to simulate these subpaths in

some order, T-UCT uses a directed acyclic2 causal graph
to topologically order state variables. The causal graph is
encoded by the DBN: for each pair of state variables Si, Sj ,
we say that Si depends on Sj if any of the CPTs associated
with Si have refinements on state variable Sj . In this case
we add a directed edge from Sj to Si in the causal graph of
our domain, indicating that the value of Sj is significant in
determining the effect some action has on Si.

The agent simulates variable subpaths in reverse order of
each variable’s depth in the causal graph, beginning with
deeply nested variables and working its way up to the roots.
The intuition here is that altering a deeply nested vari-
able that is directly or indirectly dependent on other vari-
able settings will require changes in those variables as well,
whereas altering a root variable would not require changing
any other variables. So the agent begins simulating with ac-
tion sequences that have widespread effects on its state, and
ends with action sequences whose effects are more localized.
When the target context has been reached the agent calls
Algorithm 4 in line 17.

Algorithm 3 T-UCT path simulation algorithm.

1: function SimulatePath(SourceContext sc, Target-
Context tc, Path p)

2: S ← ∅, s′ ← sc, cd ←MEA(sc, tc) //Means Ends Analysis

3: for all v in GetTopologicalVariables(cd) do
4: while sc[v] 6= tc[v] do
5: T ← GetTransitions(sc, p[v])
6: t← UCTSelect(sc, T)
7: ct ← Context(t)
8: at ← Action(t)
9: p′ ← PlanRoughPath(sc, ct)

10: sc, rt, nt ← SimulatePath(sc, ct, p
′)

11: s′, r ← SimulateAction(sc, at)
12: r ← rt + γnt · r
13: Push(S, (s, at, r, nt + 1))
14: sc← s′

15: end while
16: end for
17: r, n← UpdateQ(S)
18: return s′, r, n
19: end function

Algorithm 4 is a modification of the standard temporal
difference update used in Q-Learning [11] that considers
sequences of actions to compute cumulative discounted re-
ward. State-action values (Q) are computed in reverse order,
beginning with the last action in the sequence and ending
with the first. Each item in S represents execution of a
transition, which consists of all steps necessary to reach the
transition’s context as well as the transition’s final action. In
line 5 the agent accounts for cumulative discounted reward
for successive states and actions. In line 6 the agent updates
its Q function based on the learning rate α. In line 7 the
agent takes care to update the discount factor γ′ such that
the reward is discounted for each step taken per transition.
Finally in line 8 the agent estimates the cumulative reward
r based on the observed reward r′ and the maximal reward
from the state-value function.

2As with VISA, an acyclic causal graph is not required, but
will improve performance. VISA handles cycles by merging
state variables into strongly-connected components. T-UCT
simulations are simply more likely to succeed with an accu-
rate topological ordering.

776

Algorithm 4 T-UCT Q Update for Action Sequences.

1: function UpdateQ(StateActionRewardStack S)
2: γ′ ← 1, r ← 0, n← 0
3: while S 6= ∅ do
4: s, a, r′, n′ ←Pop(S)
5: r′ ← r′ + γ′r
6: Q(s, a)← αr′ + (1− α)Q(s, a)

7: γ′ ← γ′ · γn′

8: r ← λr′ + (1− λ) arg maxa′ Q(s, a′)
9: end while

10: return r, n
11: end function

3.5 Execution
The final step of T-UCT is to execute an action sequence

based on the best computed path. The path p that is re-
turned by Algorithm 1 takes the form of a stack of state-
action pairs. Each action is paired with the state that is ex-
pected to follow as a result of executing the action. At each
timestep t the agent pops the top pair s, a off of the stack,
executes a, and observes the successor state st+1. If s and
st+1 match then the agent continues to the next timestep.
If no change is observed from st to st+1, the agent executes
a again up to a maximum of 10 times. If st+1 and s don’t
match then the agent has diverged from the expected path
and thus restarts Algorithm 1. Pseudocode for the execution
phase is given in Algorithm 5.

Algorithm 5 T-UCT Execution Algorithm.

1: function ExecutePath(State st, Path p, MaxTries N)
2: if p = ∅ or n ≥ N then //Path empty or failed

3: p←T-UCTSearch(st), n← 0
4: end if
5: s, a←Pop(p)
6: st+1 ←TakeAction(a)
7: if IsMatch(st, st+1) and n < N then
8: n← n+ 1 //Increment counter

9: Push(p, (s, a)) //Retry action

10: else if not IsMatch(s, st+1) then
11: p←T-UCTSearch(st+1), n← 0 //Find new path

12: end if
13: ExecutePath(st+1, p,N)
14: end function

4. EXPERIMENTS
In the following experiments we compare T-UCT with B-

VISA and UCT for the purpose of successfully modeling
environment dynamics. Each experiment is supported with
independent t-tests which show that T-UCT outperforms
both B-VISA and UCT with p < .001. We evaluate perfor-
mance first on the light box domain [10] in Section 4.1 and
then the random lights domain in Section 4.2.

4.1 The Light Box Domain
In this experiment we provide an empirical comparison of

our own T-UCT against our implementation of B-VISA. The
purpose of this experiment is both to show the effectiveness
of T-UCT and the baseline performance of our implementa-
tion. Our environment is the light box domain: a collection
of 20 lights and 20 toggle actions in which a light can only
be toggled if its dependencies are met, and each action has

L04
L18

L19L09L08
L07

L06
L05

L17

L03
L02L01

L11

L14

L10 L12

L16

L15

L13

L20

L04
L18

L19L09L08
L07

L06
L05

L17

L03
L02L01

L11

L14

L10 L12

L16

L15

L13

L20

Figure 3: The light box domain introduced by Vig-
orito and Barto [10] represented as a causal graph.
Directed edges represent dependencies.

a 10% chance of having no effect. The causal graph for this
domain is given in Figure 3. The causal graph indicates the
dynamics of the environment. For instance, light 17 is de-
pendent on lights 11 and 12, and thus light 17 can only be
toggled “on” if lights 11 and 12 are already on. Additionally
if the agent attempts to toggle a light whose dependencies
aren’t met, the entire domain is reset to “off”.

Lights in this domain are arranged hierarchically, and
lower levels of the hierarchy must be understood before an
agent can reliably manipulate lights in higher levels. Gen-
erally an agent will not be able to reliably toggle lights in
upper levels of the hierarchy until it understands their dy-
namics. For example, the agent will often fail toggling light
17 until it learns that light 17 depends on lights 11 and 12
being on, as well as the dependencies for lights 11 and 12.

The ground truth model of the light box domain contains
424 refinements. 400 of these (one for each CPT) are re-
flexive refinements: a CPT for action a and state variable
Si always depends on Si. The additional 24 refinements
stem from dependencies between state variables in the causal
graph, and are indicated by the 24 directed edges of Figure 3.

We note that some clarifications are necessary to stick to
this number of refinements. The reset mechanics in par-
ticular have the possibility of effecting new refinements in
the ground truth model. For example, if light 18 is off,
and an agent attempts to toggle light 20, all lights will turn
off. Thus, all lights are dependent on light 18. To avoid
these refinements, when a reset is triggered, we pass the tu-
ple (st, a, st) instead of (st, a, st+1) to the agent. Thus the
agent learns that toggling a light with unmet dependencies
has no effect on the state, but must still handle the added
difficulty of having the domain reset. Secondly we note that
if a light is already on, then no dependencies need be met to
toggle the light off. These two details restrict the domain’s
ground truth model to 424 total refinements.

As shown in Figure 4 we see that T-UCT is able to find all
refinements in approximately half the number of timesteps
required by B-VISA. T-UCT performs particlarly well in
comparison with B-VISA when learning deeper levels of the
model hierarchy. We attribute this improvement to the fact
that T-UCT considers intermediate entropy gain when ex-
ecuting sequences of actions, rather than picking a target
state and only considering the entropy gain at that state.
Action sequences become longer at deeper levels of the hi-
erarchy, and thus the agent benefits most from T-UCT’s
intermediate reward consideration at these levels. Our next
experiment demonstrates this advantage more clearly.

777

Figure 4: A comparison of T-UCT, B-VISA, and
UCT agents on the light box domain [10]. The
data show the number of timesteps required for
the agents to learn all of the 424 CPT refinements
needed to model the domain, averaged over 25 trials.
Shaded regions represent standard error.

Figure 5: A comparison of T-UCT, B-VISA and
UCT agents on the random light domain. The graph
shows the number of correct transitions identified by
each agent out of the 20 available, averaged over 25
trials with a maximum of 50,000 timesteps. Shaded
regions represent standard error.

4.2 The Random Light Domain
Our next experiment was designed to test the effective-

ness of T-UCT at navigating deeper hierarchies. We ran-
domly generated a domain with similar rules to the light
box domain and selected a domain with a greater number
of hierarchical levels. A causal graph is shown in Figure 6.

Similar to the light box domain, the random light domain
is comprised of binary variables that can be switched on or
off if their dependencies are met. If a toggle action is taken
on a variable with unmet dependencies, the entire domain
is reset to off and the tuple (st, a, st) is recorded by the
agent. Additionally we initialize every CPT with a reflexive
refinement at the root: each CPT for state variable Si and
action a depends on Si. The purpose of this heuristic is

L04

L18 L19

L09L08L07

L06L05

L17

L03L02L01

L11

L14

L10 L12

L16L15L13

L20

L04

L18 L19

L09L08L07

L06L05

L17

L03L02L01

L11

L14

L10 L12

L16L15L13

L20

Figure 6: A randomly generated analogue of the
light box domain represented as a causal graph. Di-
rected edges represent dependencies.

to focus our evaluation on the agent’s ability to learn non-
trivial transition dynamics.

The results in Figure 5 show that T-UCT is able to ef-
fectively navigate through a deeply hierarchical domain and
quickly learn the environment dynamics. In all cases T-UCT
is able to solve the domain in less than 21,000 timesteps. T-
UCT’s consideration of complete entropy gain along an ac-
tion sequence, rather than B-VISA’s focus on entropy gain
at endpoints, allows the agent to make better use of its ac-
tions.

5. CONCLUSION AND FUTURE WORK
We have presented a new model-based planning algorithm

for navigating hierarchical domains and maximizing expected
rewards. In our test domains T-UCT’s sample efficiency con-
sistently outperformed B-VISA, and performed particularly
well with deeper levels of hierarchy. T-UCT meets two of our
three desiderata from Section 2.4 through its use of partial
models and its sample efficiency.

T-UCT was designed with linear scaling in mind, how-
ever both T-UCT and B-VISA rely on tracking the effects
of all actions on all state variables. This results in O(n2)
processing time and memory usage for domains on n vari-
ables and n actions. Ideally a model-learning solution would
be capable of ignoring particular state-action pairs that are
unlikely to be related. Avoiding unnecessary computation
in this manner is thus a promising direction for future work.

While we did not perform experiments based on extrinsic,
stochastic rewards it is conceivable that model-based path
planning would allow an agent to more easily exploit an envi-
ronment’s reward dynamics by enabling the agent to reach
high-reward areas of the state space that might not oth-
erwise be accessible. T-UCT’s effectiveness stems from its
ability to maximize cumulative reward and thus the source of
the reward, intrinsic or extrinsic, is irrelevant. Nonetheless,
one area of improvement for T-UCT would be to balance
exploiting extrinsic rewards with intrinsic (entropy-based)
rewards for the purpose of model learning.

Acknowledgements
This work has taken place in the Learning Agents Research
Group (LARG) at the Artificial Intelligence Laboratory, The
University of Texas at Austin. LARG research is supported
in part by grants from the National Science Foundation
(CNS-1330072, CNS-1305287), ONR (21C184-01), AFOSR
(FA8750-14-1-0070, FA9550-14-1-0087), and Yujin Robot.

778

REFERENCES
[1] C. Boutilier, R. Dearden, and M. Goldszmidt.

Stochastic dynamic programming with factored
representations. Artificial Intelligence, 121(1):49–107,
2000.

[2] T. Dean and K. Kanazawa. A model for reasoning
about persistence and causation. Computational
intelligence, 5(2):142–150, 1989.

[3] B. Hengst. Discovering hierarchy in reinforcement
learning with hexq. In ICML, volume 2, pages
243–250, 2002.

[4] A. Jonsson and A. Barto. A causal approach to
hierarchical decomposition of factored mdps. In
Proceedings of the 22nd international conference on
Machine learning, pages 401–408. ACM, 2005.

[5] A. Jonsson and A. Barto. Active learning of dynamic
bayesian networks in markov decision processes. In
Abstraction, Reformulation, and Approximation, pages
273–284. Springer, 2007.

[6] L. Kocsis and C. Szepesvári. Bandit based
monte-carlo planning. In Machine Learning: ECML
2006, pages 282–293. Springer, 2006.

[7] A. Newell, H. A. Simon, et al. Human problem solving,
volume 104. Prentice-Hall Englewood Cliffs, NJ, 1972.

[8] R. S. Sutton, D. Precup, and S. Singh. Between mdps
and semi-mdps: A framework for temporal abstraction
in reinforcement learning. Artificial intelligence,
112(1):181–211, 1999.

[9] N. A. Vien and M. Toussaint. Hierarchical monte-carlo
planning. 2015.

[10] C. M. Vigorito and A. G. Barto. Intrinsically
motivated hierarchical skill learning in structured
environments. IEEE Transactions on Autonomous
Mental Development, 2(2):132–143, June 2010.

[11] C. J. C. H. Watkins. Learning from delayed rewards.
PhD thesis, University of Cambridge, 1989.

779

	Introduction
	Background
	(Factored) Markov Decision Processes
	DBNs and CPTs
	Model Dynamics
	Model Learning
	B-VISA

	Model Learning with MonteCarlo Methods
	Extending UCT with T-UCT
	Target Selection
	Rough Path Planning
	Simulation
	Execution

	Experiments
	The Light Box Domain
	The Random Light Domain

	Conclusion and Future Work

