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ABSTRACT
Burstiness in queues where customers arrive independently
leads to rush periods when wait times are long. We propose a
simple signaling scheme to decrease wait times by distribut-
ing customer arrivals more uniformly. Agents receive one
of several signals with suggestions on what time to join the
queue. We quantify the efficiency gains, both analytically
and empirically, with respect to a number of parameters of
the proposed signaled queue, such as burstiness of arrivals,
number of distinct signals, and propensity of customers to
follow suggestions.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Management; Design; Performance

Keywords
Queueing; Signaling; Social welfare

1. INTRODUCTION
Queueing problems are encountered throughout multia-

gent systems, operations research, economics, management,
and telecommunications. Many queueing models have been
proposed and analyzed in the literature. Some areas that
have been examined so far are the equilibrium pattern of cus-
tomer and operator’s interactions [13], the pattern that cus-
tomers abandon queues based on wait times [5], and apply-
ing games models to dynamic queueing problems [3]. While
the literature on queueing theory is very large, the use of
signals to decrease wait times appears to be under explored.

Our starting point is the observation that while queues are
found in many places in every-day life, not all queues should
behave in the same way. Most queues operate according
to a simple FIFO principle. Customers that arrive first are
served first. Example of this type of queueing can be found
at check-in in airports, in the grocery store, and in the doc-
tor’s surgery. In each case, there exists a scope for applying
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signaling to improve the queue performance. First, in some
situations, the FIFO (first-in first-out) paradigm is not op-
timal. Although operators have more information than cus-
tomers, they do not take advantage of it, e.g., airlines know
when each upcoming flight will leave. In other situations,
the use of FIFO queues is simply not appropriate. For ex-
ample, in the doctor’s surgery, one should prioritize patients
according need (or likelihood of infecting other patients, or
of being infected by others). Such prioritization can be im-
plemented via a signaling scheme. Finally, even in the FIFO
queue, bursty arrivals can lead to poor queue performance.
For example, at airports, customers arrive in bursts, i.e.,
the arrival rate fluctuates highly over time. These bursts
cause long wait times because many people are entering the
queue at the same time. A signaling system can also be used
at an airport to make wait times shorter. When customers
check-in online for their flights, they receive a signal sug-
gesting them what time to arrive at the queue, along with a
conditional reward as incentive to comply. The signals will
redistribute customers arrival times such that arrivals are
spaced out and arrival bursts do not occur. This approach
can be generalized to any system that has a method to de-
liver signals to the customers, flexibility in customer arrival
times, and bursts of customer arrivals. To encourage cus-
tomers to act as intended by the signals, incentives based on
the difference between their signals and their actual arrival
times can be used.

In this paper, we start from a multiagent FIFO queueing
system (Section 3). We then augment the FIFO queue with
a signaling scheme and a corresponding model of customer-
response (Section 4). The operator sends a distinct signal
to each customer. Each signal is simply a set of suggested
arrival times. This is done only once before the arrival of
the first customer. In turn, each customer can slightly mod-
ify or modulate its arrival time according to the received
signal. To make our analysis tractable, we make an im-
portant behavioral assumption on how customers modulate
their arrival times in response to the signals received. The
modulated arrival time is a convex combination of the nom-
inal arrival time (when there is no signaling) and the closest
suggested time in the customer’s signal set. Although this
behavior is simplistic, it does reflect the reality of human
response to signals [4] (and can be modified accordingly to
include more complex behaviors). By its linearity, it is even
more reflective of machine response.

Our proposed signaling scheme works in many queueing
settings, as long as these settings share the following char-
acteristics. A producer of a resource (e.g., a commodity or

811



service), a number of consumers. First, the consumers com-
municate an intent to consume the resource (e.g., prepay-
ment, registration), the producer communicates signals to
the consumers along with incentives for following these sig-
nals, the consumers choose when to consume the resource—
We assume that customers have some flexibility as to when
they arrive. Our signaling solution is especially useful when
the environment is rapidly changing, i.e., where agents do
not have sufficient time to learn or adapt their arrival times
to those of other agents. Moreover, just as signaling reduces
wait times in queues, it is easy to see that signaling can also
reduce peak-demand in power networks and congestion in
road networks.

Through both probabilistic analysis (Section 4.2) and sim-
ulation (Section 5), we quantify the performance improve-
ment of the signaled queue as a function of a number of
parameters of the signaling scheme, of the arrival pattern
of customers, and of the responsiveness of customers to the
signals. In many cases, the performance improvement is sig-
nificant.

Example 1 (Airport). Our signaling solution can be
applied to an airport check-in setting. Upon booking a flight,
each customer receives an additional signal. This signal in-
dicates a number of suggested arrival time at check-in. For
example, a customer may receive the signal “15” and have
the option of checking out at 10:15am, 11:15am, etc. When
the customer arrives at check-in, he receives a reward based
on how close he arrived to one of the suggested times of
his signal. The customer could also receive an extra reward
based on the length of the queue at arrival. The rewards can
be monetary or otherwise.

2. RELATED WORKS
Our work builds upon queueing systems and multi-agent

systems. In particular, the notion of wait times that we
take as our performance metric has been characterized in the
case of FIFO queues in [10]. Alternative modes of priority
to arrival time in a queue have been proposed in numerous
works (e.g., [9]). These modes include: agent-priority [12],
shortest-job first [11], and multiple queues [16]. All of these
do not exhibit signaling between an operator and the cus-
tomers. The problem of optimization of multiple queues or
queueing networks is usually modeled as a Markov decision
problem [18]. In contrast to our work, these lines of work do
not exhibit signals sent by the operator as control variables.

Our signaling approach is an alternative to other exist-
ing approaches to managing queue, such as advanced book-
ing, reservations, and differential pricing deployed at theme
parks (e.g., Disney parks, Sea World). Optimization of a
single queue has been studied when the service rate (µ in
our notation) or the arrival rate (λi in our notation) of cus-
tomers can be controled [7]. This is however not the case
in our model, where the operator only controls the signals
sent to customers. So-called Active Queue Management al-
gorithms [1] have been proposed to deal with burstiness in
communication networks by dropping packets in real-time.
However, such approaches are useless when we exclude the
option of turning customers away. A potential feature of
our proposed solution is that it not employ any real-time
control action: all signals are generated and sent at a single
time instant. This feature also sets our work apart from the
studies of queueing systems with feedback [2].

In our work, we adopt a model of a heterogeneous popu-
lation of customers characterized by samples from a proba-
bility distribution, which is commonly used in statistics to
model aggregate effects [8]. The intricate behavioural as-
pects of queueing customers, although widely studied [15,
20], is not a focus in this paper.

The works most closely related to ours concern multi-
agent queues, where the agents can interact strategically
(as in the case of queueing games [15]), or by following
fixed policies as in our model. In particular, two notions
of signals have been introduced in such queues. [13] gives
an overview of game theoretic aspects of queueing among
utility-maximizing agent. In contrast to the notions of sig-
naling of [13]—where the signal process is typically the length
of the queue at every time instant, we consider a set of sig-
nals that are sent only once at the start of time. [5] ex-
amines how wait time announcements affect the actions of
customers in a multi-server system. These announcements
are updated in real-time, whereas the signals in our proposed
system are sent once before the first customer arrival.

Beyond obvious applications in managing queues of hu-
man customers in cities [14], our solution approach can be
applied in a number of areas, notably communication net-
work queues [17], transportation network queues [19]. The
queueing liteature is extensive and our survey is not exaus-
tive. However, this is one of the first times that signaling and
queues have been combined to regulate arrival processes.

3. FIRST-IN FIRST-OUT QUEUES
Most queues operate on a first come, first served basis.

In a first-in first-out (FIFO) queue, the person who comes
in earlier is served earlier. In such situations, burstiness
can cause the queueing system to be overwhelmed, and to
excessively long wait times.

We examine a simple FIFO system; there are i ∈ {1, ..., N}
customers and only one server. The service rate is µ, where
1/µ is the mean service time. For simplicity of presenta-
tion, we will examine a special case of the M/M/1 queue [6]
where the service time is the same for each customer, i.e., a
constant service time a = 1

µ
. Note that these assumptions

are to aid exposition and that our results generalize to i.i.d.
service times in a straightforward fashion.

Each customer arrives at the end of the queue at a nominal
arrival time xi. We will assume that x1 ≤ x2 ≤ x3 ≤ . . . ≤
xN . Let e1, e2, . . . denote independent exponential random
variables with parameters λ1, λ2, . . ., respectively. As in the
case of M/M/1 queues, we assume the time between consec-
utive arrivals are independent and exponentially distributed,
such that

xi =

i−1∑
j=1

ej , for all i = 2, . . . , N.

The parameter λi is the arrival rate of the i-th customer; a
large value of λi indicates that more customers are arriving
per unit time. Although µ is a constant, the arrival rate λi
varies over the the customer index i and hence over time.
This varying arrival rate models arrival bursts, when many
customers join the queue in a short time period, causing long
wait times.

Each customer leaves the queue after some waiting period,
or nominal wait time, di. The time that each customer leaves
the queue is then xi + di. The wait time of each customer
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Figure 1: Illustration of K sequences of suggested
times corresponding to different signals. There is
a shift of p/K between sequences corresponding to
consecutive signals, and a period of p between sug-
gested times within each sequence.

depends on the wait times of the customers in front of him.
In general, every other customer after the first customer has
a (random) wait time of

di = max{a+ xi−1 + di−1 − xi, 0}.

The traditional FIFO queue operator has no control over
the wait times {di} due to the lack of actuation capabilities.
Our objective is now to reduce the total wait times of all
customers by introducing a new queueing system that in-
volves signals sent by the operators to the customers before
they arrive.

4. NEW QUEUEING SYSTEM WITH SIG-
NALS

We aim to decrease wait times by having the operator
send signals to all of the customers incentivising them to
arrive at suggested times. We call the resulting system a
signaled queueing system or signaled queue. For example,
when airline customers check-in online, they may be offered
a discount on future flights, if they arrive at the check-in
desk at a certain time.

At time t = 0, the operator picks two parameters: a real
number p > 0 called the period, and an integer K called the
number of signals. The operator samples N i.i.d. random
variables s1, . . . , sN from an uniform probability distribution
over support {0, 1, . . . ,K − 1}. Then, for every customer
i = 1, . . . , N , the operator sends the signal si.

The value of the signal corresponds to one of the following
sequences of suggested arrival times:

0, p, 2p, . . . , if si = 0

δ, p+ δ, 2p+ δ, . . . , if si = 1

...

(K − 1)δ, p+ (K − 1)δ, . . . , if si = K − 1,

where for simplicity, we write δ = p/K to denote the interval
between consecutive signal values. The suggested arrival
times corresponding to different signals are also illustrated
in Figure 1.

4.1 Customer response
In our proposed queueing system, each customer’s new or

adjusted arrival time at the end of the queue, yi, will be a
function of their original arrival time or the nominal arrival
time, xi, the signal they received, si, and a parameter σi that
models how much customer i pays attention to the signal:

yi = f(xi, si, σi).

We now propose a model for how customers will respond
to the signals. The parameter σi represents customer i’s
tendency to follow the signal, i.e., arrive at a time close to
a suggested arrival time. To model a heterogeneous pop-
ulation of customers, we assume that σ1, . . . , σN are i.i.d.
random variables with the interval [0, 1] as support. When
σi = 0, the customer pays no attention to the signal and
behaves as if he had never received a signal, and therefore,
yi = xi. When σi = 1, the customer arrives at a suggested
arrival time close to its nominal arrival time xi. For sim-
plicity, we take this suggested arrival time as (bxi

p
c + si

K
)p,

which is either the closest suggested arrival time below or
above the nominal arrival time xi.

In sum, we consider the following instance of this function
yi = f(xi, si, σi) as a model of customer response:

yi = (1− σi)xi + σi

(
bxi
p
c+

si
K

)
p, for i = 1, . . . , N,

where b·c denotes the round-down-to-the-nearest-integer op-
erator. The equation satisfies our constraints that yi = xi
when σi = 0 and yi = (bxi

p
c + si

K
)p when σ = 1. The

set of yi is not necessarily sorted in ascending order. Let
y(1) ≤ y(2)... ≤ y(N) denote the sequence of sorted ad-
justed arrival times. We define the corresponding adjusted
wait times h1, . . . , hN . Assuming that h1 = 0, for every
i = 2, 3, . . . , N , the wait time for the customer arriving at
time y(i) is

hi = max{a+ y(i−1) + hi−1 − y(i), 0}.

4.2 Performance Comparison
In this section, we compare the performances of the sig-

naled system and the FIFO system by examining the wait
times experienced by customers. Our objective is to show
that these wait times are shorter in the signaled case. The
following theorem gives a performance guarantee on signaled
queues, relative to FIFO queues. It says that we expect that
the wait-time experienced by customers in the FIFO queue
to be larger than in the signaled queue. In particular, the
theorem bounds the probabilistic performance improvement.
To set notation, recall that hi is the wait-time of the i-th
customer to arrive in the signaled queue, whereas di is the
wait-time of the i-th customer to arrive in the FIFO queue.

Remark 1. The customers corresponding to di and hi
need not the same physical customer.

Remark 2 (Comparing di and hi). How meaningful is
a comparison between di and hi? Arguably, customers can
comply with the suggested arrival times and wait outside the
queue before joining the queue. In this case, such customers
experience two wait times: inside the queue and outside the
queue. We argue that the wait time outside the queue can
be put to better use than time in the queue: having a coffee
or shopping in the airport check-in example.

Theorem 1. Let µ1 = Eσi and µ2 = Esi/K. Let v =
V(σisi/K) = Eσ2

i E(si/K)2 − (Eσi)2(Esi/K)2. For every
customer i ∈ {1, . . . , N}, every ζ > 0, every z ≥ 0, and
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Figure 2: Plots of P(di > ζ + z | di−1 = z) in solid line
and the bound on P(hi > ζ + z | hi−1 = z) in broken
line versus ζ, as derived in Theorem 1. We used the
following set of values of the parameters: a = 5, p =
5, λ = 4, ζ ∈ [0, a], γ such that the three fractions on
the right-hand side of (2) are approximately equal.

every γ ≥ 0, we have:

P(di > ζ + z | di−1 = z) = 1− e−λ(a−ζ), (1)

and P(hi > ζ + z | hi−1 = z)

≤ Nλ−2

(γ −N/λ)2
+

Nλ−2

((ζ − a− γ)/2−N/λ)2

+
v

( ζ−a−γ
2p

− µ1µ2)2
. (2)

The proof of Theorem 1 appears in the Appendix.
The probabilities of Theorem 1 are further illustrated in

Figure 2. We observe that indeed for all values of ζ, the
upper bound on P(hi > ζ + z | hi−1 = z) is less than P(di >
ζ + z | di−1 = z).

Theorem 1 shows that customers in the signaled queues
are less likely to wait for a long time than customers in
the FIFO queues. As further illustration, Figure 3 shows
empirically that the signaled system’s wait times are more
likely to be small than the FIFO system’s wait times.

5. EMPIRICAL RESULTS
This section presents in-depth simulations to illustrate the

performance of signaled queues when compared to FIFO
queues. Thus, this section complements empirically the pre-
vious section.

Specifically, we examine how the values of different pa-
rameters affect wait times in the signaled queueing system.
Questions to be examined include: how many distinct sig-
nals K there should be; what should the period p be; and
finally, how much should customers adhere to their suggested
times for the system to work adequately. To this end, we
define the relative performance of the signaled queue com-
pared to the traditional FIFO queue as the ratio between

the sums of adjusted and nominal wait times:
∑N

i=1 hi∑N
j=1 dj

. If

this ratio is significantly smaller than one, then signaling is
indeed decreasing the aggregated customers’ wait times in a
noticeable manner.

Throughout our simulations, we set the number of cus-
tomers N to 5000, the service time a to 5. To model bursty
arrivals, the arrival rate sequence {λi} is piecewise-constant,
alternating between a high value and a low value every N/4
consecutive customers (cf. top of Figure 8). Each simulation

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500
Histrogram Comparing Nominal and Adjusted Delays

 

 

Nominal Delays (d)
Adjusted Delays (h)

Figure 3: Histogram comparing the probability dis-
tributions of the sum of FIFO wait times,

∑N
j=1 di,

and the sum of adjusted wait times,
∑N
j=1 hi, for

10,000 trials and one hundred customers, N = 100.
There is a higher probability that the sum of the
adjusted wait times will be within the first bin than
the sum of FIFO wait times to be within the first
bin.

scenario is repeated over 100 trials, and average relative per-
formance is plotted along with error-bars corresponding to
one standard deviation.

5.1 Relative Performance versus Interval
The operator can vary the length of time between two con-
secutive signals, the interval δ = p/K. We set σi = 1 for
every i (all customers arrive at the nearest suggested time).

First, we investigate the total time y(N) − y(1) in the sig-
naled queue compared to the total time xN−x1 without sig-

nals. For the case δ = a, Figure 4 shows the ratio
y(N)−y(1)
xN−x1

as a function of the number of distinct signals K. As ex-
pected, this ratio is close to 1 for small values of K. How-
ever, as K increases, so does the period p = δK, which leads
to large values of (bxN

p
c+ sN

K
)p.

Figure 5 compares the relative performances for three val-
ues of δ. A larger value of δ leads to a better performance.
This is expected because the more time between customer
arrivals, the lower their wait times. However, a large δ also
leads to a large period p and a large total time y(N) − y(1).

The number of signals per period, K, affects the difference
between a customer’s nominal arrival time and the nearest
of his suggested arrival times. This means that the customer
would have to make a large adjustment to follow the sug-
gestion. Figure 6 shows that when K is large, the average
relative adjustment required from the customer can become
non-negligible.

5.2 Relative Performance versus Burstiness
We now investigate the relative performance for different
burst patterns, as modeled by the sequence {λi}. During
a burst, many customers arrive in a short amount of time,
according to a high arrival rate, λ̄. We consider the burst
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Figure 4: The relative difference between the nomi-

nal total time and the adjusted total time,
y(N)−y(1)
xN−x1

,

depends on the number of signals K. As K increases,
the signaled system takes more time than the FIFO
system.

patterns of Figure 7. In each pattern, there is the same
number of customers with a high arrival rate, who arrive in
one or multiple bursts. Figure 8 shows that the relative per-
formance improves as bursts (rush periods) become shorter
(and more numerous).

Finally, in Figure 9, we examine how the relative perfor-
mance depends on the value of the arrival rate λ̄ during
bursts, relative to the normal one λ. The larger the differ-
ence between the two, the better is the relative performance
of the signaled queue.

5.3 Relative Performance versus σi
In the previous simulations, the distribution of the random
variable, σi, that determines how carefully each customer
follows its suggested arrival times, has been ignored—we
have set σi = 1 uniformly. We had assumed that all cus-
tomers follow their suggested arrival times exactly. In this
section, we take {σi} as i.i.d. samples from a probability
distribution over the support [0, 1]. To make things more
realistic, we choose the beta distribution with shape param-
eters α and β (cf. Figure 11), and corresponding probability
density function

g(x) =
1

B(α, β)
xα−1(1− x)β−1, x ∈ [0, 1].

where the B denotes the beta function. Figure 10 shows
how the shape parameters of the beta distribution affect the
relative performance.

In Figure 10, we compare the different beta distributions
with the ideal case, σ = 1, and the worst case, σ = 0. When
σ = 1, all of the customers follow their signals with some er-
ror. When σ = 0, none of the customers follow their signals
and they all arrive at their original arrival times, thus the
system performance is always 1 because none of their arrival
times change. When σ is determined by a beta distribution,
there are different probabilities for the degree a customer
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delta=a
delta=0.5a
delta=1.5a

Figure 5: Comparing the relative performances of
different ratios between the interval and service time
when K varies from 1 to 2,000. When δ < a, cus-
tomers are arriving faster than customers are leav-
ing so the performance of the system is worse. When
δ > a, customers are arriving slower than the rate
that customers are being served so the performance
is good because not many people are waiting. How-
ever, when δ > a, the total time for the signaled
system is much larger than the FIFO system. We
choose δ = a because it spaces out the signals enough
such that the system performance is good but not
too much that the total time is too large.

listens to the suggested arrival times. The probability den-
sity functions of the beta distributions used in Figure 10 are
shown in Figure 11.

Figure 10 shows that the smaller the shape parameter β,
the better the system performance. When the mean of the
beta distribution tends towards one, the system performance
increases because the probability that customers listen to
their signals increases. The more distribution weight is near
1, the better the signaled queue performs. One way to ensure
customers act as intended by the signals is to give incentives
based on the difference between their signals and their actual
arrival times.

Remark 3 (Incentives). Rewards may or may not be
necessary to ensure that customers listen to their signals. If
the operator chooses to use rewards, these do not have to be
monetary. For example, the crowd-sourcing traffic app Waze
gives customers incentives in the form of points when they
report traffic incidents. The underlying human response to
incentives is however beyond the scope of this paper.

APPENDIX
A. PROOFS

Proof of Theorem 1. The proof is broken down into
four parts. First, we derive the probability that the FIFO
wait time is larger than a constant. Second, we bound the
probability that the adjusted wait time is larger than a con-
stant. This is done in three steps, first the probability is
bounded by two terms, then, each of these is bounded sep-
arately. We then compare the two probabilities for all i.
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Figure 6: The average relative adjustment made
when each customer listens to their signals com-

pletely, 1
N

∑N
i=1

y(i)−xi
xi

, as K varies from 1 to 5000.

As the number of signals per period, K, increases
the average adjustment also increases. We intro-
duced periodic signals to avoid large adjustments
such that customers would only have to make rea-
sonable adjustments to arrive at their signals. Ob-
serve that K should be chosen small enough such
that these adjustments are reasonable.

Part I. The first part of the proof is devoted to

P (di > ζ + z | di−1 = z) .

First, observe that conditioned on the event di−1 = z, we
have

di = max{a+ xi−1 + z − xi, 0}.

We assume that the nominal arrival times, xi, are deter-
mined by a nonhomogenous Poisson process, where the ex-
pected number of arrivals per unit time varies with time.
The nominal arrival times are independent of each other
and will be Poisson distributed.

We define ei as the difference between two consecutive
nominal arrival times; xi = xi−1 + ei. We assume that
x1 = 0 such that xi =

∑i
j=1 ej . The ei are independent of

each other and exponentially distributed with the parameter
r. We rewrite our wait time using ei.

di = max{a+ xi−1 + z − xi, 0} =

di = max{a+ z − ei, 0}

We aim to find the probability that the FIFO wait time
will be greater than a constant. Since ζ + z > 0, we can
write

P (di > ζ + z | di−1 = z)

= P (a+ z − ei > ζ + z ∩ a+ z − ei > 0)

= P (ei < a− ζ ∩ ei < a+ z)

= P (ei < a− ζ)

= 1− e−λ(a−ζ).

Part II. The second part of the proof is devoted to

P (hi > ζ + z | hi−1 = z) .

Figure 7: Burst patterns with different numbers R
of customers per burst, for R = N/4, N/8, N/20, N/40.
When R is large, then there are a small number of
arrival bursts but the period is very large. When
R is small, there there are lots of quick bursts of
arrivals.

Observe that like di, the new wait time hi depends on z,
the variable y(i), and the service time a:

hi = max{a+ y(i−1) + z − y(i), 0}.

Since ζ + z > 0, we can write

P (hi > ζ + z | hi−1 = z) (3)

= P
(
max{a+ y(i−1) + z − y(i), 0} > ζ + z

)
(4)

= P
(
y(i−1) − y(i) > ζ − a

)
. (5)

Recall that the non-ordered adjusted arrival time is

yi = (1− σi)xi + σi(b
xi
p
c+

si
K

)p

There exists an index that depends on the index of the or-
dered arrival times, k(i), such that

y(i) = (1− σk(i))xk(i) + σk(i)(b
xk(i)
p
c+

sk(i)
K

)p

There exists another index k(i−1) that depends on the index
of the ordered arrival times, such that

y(i−1) = (1− σk(i−1))xk(i−1)

+ σk(i−1)(b
xk(i−1)

p
c+

sk(i−1)

K
)p

For ease of notation, we write:

αi = (1− σk(i−1))xk(i−1) − (1− σk(i))xk(i)

βi = σk(i−1)(b
xk(i−1)

p
c+

sk(i−1)

K
)p− σk(i)(b

xk(i)
p
c+

sk(i)
K

)p

y(i−1) − y(i) = αi + βi.

We can rewrite (5) as:

P (hi > ζ + z | hi−1 = z)

= P (αi + βi > ζ − a) .

By introducing an arbitrary constant γ and conditioning, we
obtain:

P (αi + βi > ζ − a)

= P (βi > ζ − a− αi | αi < γ}P{αi < γ)

+ P (βi > ζ − a− αi | αi ≥ γ)P (αi ≥ γ) .
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Figure 8: Comparing the relative performances of
different burst patterns as K varies from 1 to 2,000.
The number of customers arriving during a burst is
varied; R = N

4
, N

8
, N
20
, N
40

. When R is small, then the
burst is also small. K should be big enough such
that the signal period p is bigger than the burst.

By observing that

P (βi > ζ − a− αi | αi ≥ γ) ≤ 1

and that

P (βi > ζ − a− αi | αi < γ) ≤ P (βi > ζ − a− γ) ,

we obtain:

P (hi > ζ + z | hi−1 = z) (6)

≤ P (βi > ζ − a− γ) + P (αi ≥ γ) . (7)

Part III. Now, we bound the second term on the right-hand
side of (7):

P (αi ≥ γ) (8)

≤ P
(
(1− σk(i−1))xk(i−1) ≥ γ

)
(9)

≤ P
(
xk(i−1) ≥ γ

)
(10)

≤ P (xN ≥ γ) (11)

≤ P (xN −N/λ ≥ γ −N/λ) (12)

≤ P
(
xN −N/λ ≥ (γ −N/λ)

λ√
N

√
N

λ

)
(13)

≤ Nλ−2

(γ −N/λ)2
, (14)

where we used the facts that αi is the difference of two non-
negative valued random variable, and that 1−σk(i) ≤ 1, and
the last inequality follows by Chebychev’s Inequality.
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Rush Rate = Normal Rate

Figure 9: Comparing the relative performances of
different arrival rates as K varies from 1 to 2,000.
We defined two values for the arrival rate; a large λ̄,
and a small λ. When λ̄ is much larger than λ, our
system performs very well and decreases the wait
times by a lot. When λ̄ is slightly larger than λ, the
system performs well. In the extreme case, when
λ̂ = λ, our system does not decrease wait times by
very much.

Part IV. Now, we turn our attention to:

P (βi > ζ − a− γ)

= P(σk(i−1)(b
xk(i−1)

p
c+

sk(i−1)

K
)p

− σk(i)(b
xk(i)
p
c+

sk(i)
K

)p > ζ − a− γ)

≤ P
(
σk(i−1)(b

xk(i−1)

p
c+

sk(i−1)

K
)p > ζ − a− γ

)
≤ P

(
σk(i−1)b

xk(i−1)

p
cp > ζ − a− γ

2

)
+ P

(
σk(i−1)

sk(i−1)

K
p >

ζ − a− γ
2

)
.

where we used the Union Bound to obtain the last inequal-
ity. Next, we consider the two terms on the right-hand side
separately. First, observe that, by similar arguments as Part
III,

P
(
σk(i−1)b

xk(i−1)

p
cp > ζ − a− γ

2

)
(15)

≤ P
(
xk(i−1) >

ζ − a− γ
2

)
(16)

≤ Nλ−2

((ζ − a− γ)/2−N/λ)2
. (17)
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Figure 10: Comparing the relative performances of
different distributions of the number of customers
listen to their signals, σ, as K varies from 1 to 2,000.
The ideal case is when all of the customers listen to
their signals, σ = 1. The worst case is when nobody
listens to their signals, σ = 0. Realistically, not ev-
ery customer is going to follow their signals exactly.
We choose σ to be a beta distribution. We examine
the performances of three different beta distribu-
tions and all perform better than when σ = 0. The
plots of the beta distributions probability density
functions are shown in Figure 11. The system per-
forms best when the mean of the beta distribution
is close to one.

Finally, we bound:

P
(
σk(i−1)

sk(i−1)

K
p >

ζ − a− γ
2

)
(18)

= P
(
σk(i−1)

sk(i−1)

K
− µ1µ2 >

ζ − a− γ
2p

− µ1µ2

)
(19)

≤ v

( ζ−a−γ
2p

− µ1µ2)2
, (20)

where we used the independence property and Chebychev’s
Inequality, and the definitions of v, µ1, and µ2. The claim
of (2) follows by combining (14), (17), and (20).
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