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ABSTRACT
Unmanned Aerial Vehicles (UAVs) are increasingly becom-
ing instrumental to many commercial applications, such as
transportation and maintenance. However, these applica-
tions require flexibility, understanding of natural language,
and comprehension of video streams that cannot currently
be automated and instead require the intelligence of a skilled
human pilot. While having one pilot individually supervis-
ing a UAV is not scalable, the machine intelligence, espe-
cially vision, required to operate a UAV is still inadequate.
Hence, in this paper, we consider the use of crowd robotics
to harness a real-time crowd to orientate a UAV in an un-
known environment. In particular, we present two novel
real-time crowd input aggregation methods. To evaluate
these methods, we develop a new testbed for crowd robotics,
called CrowdDrone, that allows us to evaluate crowd robotic
systems in a variety of scenarios. Using this platform, we
benchmark our real-time aggregation methods with crowds
hired from Amazon Mechanical Turk and show that our
techniques outperform the current state-of-the-art aggrega-
tion methods, enabling a robotic agent to travel faster across
a fixed distance, and with more precision. Furthermore, our
aggregation methods are shown to be significantly more ef-
fective in dynamic scenarios.

Categories and Subject Descriptors
I.2.9 [Robotics]: Operator interfaces; I.2.11 [Distributed
Artificial Intelligence]: Multiagent systems

General Terms
Human Factors, Experimentation

Keywords
real-time crowd control; real-time human computation; crowd-
sourcing; crowd robotics

1. INTRODUCTION
Unmanned aerial vehicles (UAVs) are increasingly becom-
ing central to many commercial, humanitarian, and law en-
forcement applications. For example, maintenance engineers
use UAVs for remote inspection, and determine whether
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buildings, machines, or power lines require repair [7], on-
line distributors1 and humanitarian organisations [3] are us-
ing UAVs to transport small packages, and law enforcement
agencies are using UAVs to monitor traffic and assess haz-
ardous situations [8]. Most of these applications currently
require a skilled pilot, and cannot be automated. Engineers
maintain many different structures, that can be damaged in
many different ways, thus they require accurate computer vi-
sion to be able to identify the areas in need of repair. Drone
couriers delivering aid or packages require natural language
processing to navigate to a given description of the drop
target. And law enforcement agencies need vision compre-
hension to be able to understand when people are in danger.

Consequently, given that these tasks require the intelli-
gence and skills of a pilot, using a pilot to control UAVs for
these applications has its drawbacks. Piloting a UAV is a
taxing process, and a single operator will eventually suffer
from fatigue and cognitive overload [2]. Given the human
limitations of operators, they may be unable to both effec-
tively operate the robot and simultaneously review all sensor
streams. Furthermore, it is hard to envisage that such an
approach would scale to hundreds or thousands of UAVs in
the future.

Unfortunately, automating these tasks requires artificial
intelligence capable of understanding natural language, and
flexible image recognition and comprehension, on a level sim-
ilar to that of a human. This goal is still a long way off [5].
Crowd robotics can help bridge the gap between the limi-
tations of artificial intelligence and the desired outcome of
automated UAVs. Crowd robotics is the process of using
a real-time crowd of non-experts to influence the control
of a robotic agent, in this case a UAV. The crowd retains
the human intelligence to be able to follow natural language
instructions and comprehend camera footage, but is not lim-
ited to a single pair of eyes. Crowd robotics enables many
more people to observe the camera, and in doing so, they
are more likely to observe and accurately identify important
details. Furthermore, while a pilot may fatigue, a crowd
robotics team is a tireless workforce. More specifically, indi-
viduals of the crowd that tire and whose performance drops,
can be replaced by new crowd members. As such, the pool
of workers is always being replenished with fresh individuals.

A number of attempts have been made in the past to de-
ploy crowd robotics systems. For example, online crowds
control large telepresence robots to roam museum atriums
[10] or to steer mobile webcams [4], but these are known
and controlled environments, where fast response times and

1Such as Amazon Prime Air
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efficient path planning is not critical. In these settings, ag-
gregation methods were used to combine the inputs of the
individual crowd workers and thereby harness the collective
intelligence of the crowd. However, by focusing on static en-
vironments, they do not address a number of key challenges
in the UAV setting. UAVs typically operate in unknown,
dynamic environments. Thus, UAVs have strict time con-
straints to react to changes in the environment in real time.
Furthermore, UAVs have limited flight time, and should en-
deavour to keep moving, minimising stationary time or time
spent backtracking. Additionally, these applications have
commercial interests at stake. As crowd robotics relies on
an open system (i.e., anyone may participate), unreliable
members of the crowd may negatively impact the system
and therefore should be filtered out to ensure a desirable
outcome.

Solving these challenges requires real-time methods of ag-
gregation that focus on the constraints and abilities of UAV
hardware, while also limiting the influence of unreliable crowd
members. These aggregation methods need to be computed
online, so that they can be applied to robotic agents in real
time. In traditional crowdsourcing, methods of opinion ag-
gregation are often applied offline [11] and require a lot of
computational power that is too prohibitive for the real-
time nature of our scenarios. Furthermore, other methods
of consensus have been achieved through the use of machine
learning techniques, but given that these scenarios have no
ground truth available, it is difficult to apply those tech-
niques here. In addition, there is currently no principled
approach to evaluating these aggregation methods and mea-
suring their effectiveness under differing use cases and con-
ditions.

Against this background, we first introduce a novel frame-
work for evaluating aggregation methods employed by a
crowd robotics system. Furthermore, we describe novel ag-
gregation methods designed for the UAV domain. In more
detail, this paper advances the state of the art in the follow-
ing ways:

1. We present CrowdDrone, an application that allows
multiple users to simultaneously influence the path
taken by a UAV in real time.

2. We introduce a principled approach to measuring and
comparing different real-time input aggregation meth-
ods.

3. We describe novel opinion aggregation methods for
real-time control of robotic agents. These aggregation
methods focus on filtering out unreliable crowd mem-
bers online and translating from a simplified interface
for crowd input, to a more expansive set of outputs for
robotic control.

4. We test these aggregation methods using a real crowd
gathered from Amazon Mechanical Turk. In total, 480
crowd members took part, with up to 13 simultaneous
users. We show that these aggregation methods enable
a robotic agent to travel faster across a fixed distance,
and with more precision, than the current state-of-the-
art algorithm for aggregating real-time crowd input.

The rest of this paper is structured as follows, next in
Section 2 we discuss the related work. Then in Section 3 we
describe CrowdDrone, a novel testbed framework for crowd

robotics. Section 4 goes on to describe the model behind in-
put aggregation, and the novel real-time aggregation meth-
ods introduced in this paper. Finally in Section 5 we eval-
uate these aggregation methods in two different scenarios,
and present the results.

2. RELATED WORK
There are several real-world examples where web users have
been given the opportunity to control robotic agents. In
1998 a telepresence robot was allowed to roam the atrium of
a museum [10], and this is now becoming a more common
occurrence in museums.2,3 However, this method of control
requires the environment and the location of the exhibits
to be known in advance. This is not suitable for our UAV
applications, where the environments are typically unknown.

More recently, [4] developed the Legion system, in which
a real-time synchronous crowd can collaboratively interact
with any user interface. The crowd may be asked to perform
a wide range of tasks, such as word processing, data entry,
or pilot a small remote-controlled mobile webcam. Legion
defines a number of methods for aggregating input from the
crowd, some of which attempt to correct for noisy or er-
roneous crowd members. Notably, the Leader aggregator,
in which a single crowd member that most agrees with the
crowd assumes sole control of the agent, was the most suc-
cessful for real-time control of the mobile camera. For this
reason, we will use it as a benchmark for our crowd robotics
system. However, the majority of the aggregators specified
in Legion are not designed for real-time robotic control ap-
plications, and are instead more general, for the sharing of
any interface, and therefore do not apply to our setting.

Crowd robotics requires that we aggregate the input of
many individuals in the crowd in order to create a timely
and more effective operator than any non-expert individual
in the crowd. To achieve more effective operations, we re-
quire a method of selecting input that is conducive to the
task at hand. In this context, we recognise that a number
of techniques could be used for this purpose. Namely, ma-
chine learning techniques, specifically supervised learning,
are capable of learning rules that map input to favourable
output, but these techniques require that we have knowl-
edge of when an outcome is favourable [9]. However, in our
applications, we do not know the environment, or the cor-
rect identification of targets (e.g., damage or dropzones),
and computer vision is not currently capable of reliably ver-
ifying this [5]. Hence, machine learning techniques would
not be applicable to our scenarios. Instead we turn to the
concept of agreement metrics [6]. These metrics give a score
of how much consensus there is amongst the input, trusting
that combined human intelligence can inform us if an action
is beneficial to the task at hand. In particular, voting pro-
tocols as a means of aggregating highly agreed-upon votes,
is particularly useful when votes need to be aggregated in
real-time, due to the low computational complexity involved
[6]. However, there has been little work done to prove the vi-
ability of voting protocols in real-time aggregation settings.
For a crowd robotics aggregation method to be viable, it
needs to be capable of accurately representing the crowd’s
opinion, be calculable in real-time, and show robustness to
unreliable crowd members. To date, the viability of these

2http://www.afterdark.io
3http://www.nma.gov.au/engage-learn/robot-tours
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real-time voting protocols in a robotic setting has not been
tested. We are the first to evaluate these protocols using a
real-time crowd of workers from Amazon Mechanical Turk.

Next we discuss CrowdDrone, a system that enables us to
evaluate these real-time opinion aggregation methods in the
space of UAV control.

3. CROWDDRONE
A crowd robotics system must be capable of gathering and
maintaining a real-time crowd, recruited online using a crowd-
sourcing platform, such as Amazon Mechanical Turk4 (AMT).
Furthermore, a crowd robotics system requires a robot that
can maintain a constant connection to the internet, such
that it can stream sensor output to the crowd, then act
upon their feedback. Given that a crowd robotics system is
open to anyone online, the experience, skill, and reliability
of crowd members may vary greatly. For this reason crowd
robotics requires opinion aggregation methods that can fil-
ter out this noise. Furthermore a crowd robotics system
must also be scalable, as crowd members dynamically join
and leave, the system should remain real-time such that the
feedback from the crowd can influence the path of the robot
in a timely manner.

To address these requirements, we developed the open-
source platform, CrowdDrone, available for download on-
line.5 CrowdDrone is powered by standard web technolo-
gies (i.e., HTML, JavaScript, WebSockets) and a well-known
robotics library, ROS6, that enables seamless portability
from real robots to simulated robots. CrowdDrone can use
simulated environments to enable researchers to quickly de-
velop dynamic environments, that would otherwise be cost
prohibitive to build in reality. We use an established simula-
tion environment, Gazebo.7 It is developed and maintained
by the Open Source Robotics Foundation, and it realisti-
cally simulates robots and environments to help avoid the
common problems of robotics, such as short battery life and
dangerous behaviours towards the robot or human opera-
tors.

CrowdDrone applies the crowd robotic principles men-
tioned above to the control of a UAV, specifically a quad-
copter. A multi-rotor UAV was chosen, as it is more com-
monly used by drone delivery systems and law enforcement
agencies. In this paper the robot is simulated in a physically
realistic environment, as it enables fast creation of interest-
ing test scenarios (see Section 5.1), but the system could
just as easily be applied to a real robot.

CrowdDrone uses the retainer model [1] to hire and main-
tain a real-time crowd from AMT. The retainer model is a
method of pre-hiring a crowd and alerting them to all partic-
ipate simultaneously when the task is ready. The crowd then
observes the imagery from a camera on board the robot, and
votes on the direction they wish the robot to move next (see
Figure 1). These votes are combined through various real-
time input aggregation methods (discussed in Section 4.1).

Within crowd robotics systems, most members of the crowd
are non-experts, and so we must ensure that the control
scheme is simple and accessible (i.e., it is safe to assume all
AMT users have keyboards, whereas a control pad is not a

4http://www.mturk.com
5https://github.com/ElliotSalisbury/CrowdDrone
6http://www.ros.org
7http://www.gazebosim.org

sensible control scheme). For this reason, we use a reduced
set of actions for a UAV. Even though a UAV is capable
of four or more degrees of freedom, we constrain the input
set to influence only two degrees, moving forward or back-
ward, and yawing left or right. As such, the control scheme
can be reduced to simply the four arrow keys on a standard
keyboard. The arrows on the keys intuitively represent the
input actions.

In what follows we first model the decision problem to
be solved in the CrowdDrone platform. We then go on to
describe the novel voting methods for real-time aggregation
of crowd member inputs.

4. INPUT AGGREGATION MODEL
As in Section 3, CrowdDrone consists of three main com-
ponents. A robotic agent, a real-time crowd, and an input
aggregation algorithm. In more detail, the agent, a drone,
has a set of actions that it may perform, Θ. As previously
mentioned, the control method is simplified, such that the
agent is capable of only performing four actions, moving for-
ward (↑), backward (↓), yawing left (←), and yawing right
(→).

Θ = {↑, ↓,←,→} (1)

The actions of the drone may be dictated by votes gen-
erated by a crowd. In more detail, we assume the crowd is
comprised of N members, U = {1, 2, · · · , N}. Each mem-
ber, u, is capable of voting for actions they wish the agent to
perform, vtu ∈ Θ, where, t ∈ R≥0, is the timestamp of when
this vote is received, and t = 0 is the start of the experiment.
This voting process allows crowd members to express their
opinion about which direction they wish the agent to go, by
interacting with the given interface, such as pressing the ↑
key on their keyboard to suggest that they wish the agent
to move forward.

Let Vu =
{
vt1u , v

t2
u , · · · , vtku

}
denote the set of all actions

performed by the member u, and V is the union of these
over all members of the crowd, that is:

V =
⋃
u∈U

Vu (2)

We then define an input aggregation function that com-
bines the votes of the members, into a single stream of out-
put actions that the agent will perform.

f : 2U × 2V × R≥0 −→ Θ (3)

The function f takes as parameters, U the set of all mem-
bers; V the set of all votes; t the current time; and outputs
an action θ ∈ Θ.

If all the inputs of the crowd were known in advance,
function f could be computed offline with traditional crowd-
sourcing methodologies. However, due to the real-time na-
ture of our applications, f has to be computed online, with
real-time crowdsourcing. This means that the output θ at
any time t can only be computed based on all inputs received
prior to time t (rather than all those beyond t in the offline
case). Hence, in the next section we explore the algorithms
that implement f in real-time.

4.1 Input Aggregators
Aggregating votes from a real-time source presents a number
of key challenges:
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Figure 1: The CrowdDrone System Diagram

• Computational Complexity: as the crowd size grows
large, so too will the rate of input received per second.
The input aggregation algorithms must remain respon-
sive even at large scale.

• Accuracy: due to unreliable or malicious crowd mem-
bers, we need to be able to filter out their input, and
aggregate input beneficial to the task at hand. To ac-
curately represent the crowd, we want to perform the
actions that move the robot closer to where the ma-
jority of the crowd wishes to go.

The following methods have been chosen such that they
can be applied in real time, in unknown environments with-
out a ground truth. Thus, in what follows, we describe the
voting strategies used for the input aggregation evaluated as
part of the CrowdDrone system. We then go on to compare
the various aggregation methods (Section 4.2), discussing
their relative strengths and weaknesses.

4.1.1 Mob
The Mob aggregator as implemented in Legion [4], is the
simplest and most naive approach to combining the input
of the crowd. Whenever a member in the crowd submits a
vote, the agent will immediately perform that action, until
a new vote is received. See [4] for implementation details.

4.1.2 Leader
The Leader aggregator was originally described in [4]. The
aggregator hosts elections of duration d seconds, selecting
the crowd member who has agreed most often with the other
crowd members’ votes and then allows that member full con-
trol of the robotic agent for the duration of the next election.
See [4] for implementation details.

4.1.3 Real-Time Majority
The Real-Time Majority aggregator calculates a winner as
follows. In brief, whenever a member in the crowd submits
a vote, the Real-Time Majority aggregator gathers all the
votes over the past d seconds and calculates the action θ
that most crowd members voted for, while weighting the
influence of those users based on their past agreement with
the crowd.

In more detail, the Real-Time Majority aggregator first re-
quires a weight for each crowd member u to reduce the influ-
ence of unreliable crowd members. This weight is iteratively

recalculated every d seconds and is a value proportional to
that member’s agreement with the crowd. To calculate this
weighting, it is first beneficial to define a function (Equa-
tion 4) that retrieves the latest vote from a member, and a
function (Equation 5) that returns the set of members whose
latest vote was for a given action θ in the past d seconds.

latestV ote(u) = vt
′
u | ∀vt

′′
u ∈ V : t′ ≥ t′′ (4)

votedFor(t, θ) = {u | ∃vt
′
u = latestV ote(u) ∧

vt
′
u = θ ∧
t− d < t′ ≤ t }

(5)

With those two functions defined, we can now calculate

the weight w
(i)
u of a given member u during the recalculation

iteration i. The weight is calculated as the percentage of
members who all voted for the same action.

w(i+1)
u = αw(i)

u +(1−α)
|votedFor(i · d, latestV ote(u))|∑

θ∈Θ

|votedFor(i · d, θ)| (6)

Where w
(0)
u = 0.5, an initial value chosen to give fair

weighting when little is known about the member’s reliabil-
ity. Here, α is a historical decay rate to reduce the influence
of previous agreement and ensure the weighting represents
a recent agreement history. Then, whenever a vote is re-
ceived, the action chosen by the agent is calculated using
the following function:

fvote(U, V, t) = arg max
θ∈Θ

∑
u∈votedFor(t,θ)

w(bt/dc)
u (7)

Where bt/dc calculates the latest iteration index at cur-
rent time t. For each action, the weights for the members
that voted for it are summed and the action with the highest
sum will be the action executed by the agent.

4.1.4 Real-Time Borda
The Borda count election method is often used in social
choice theory [6]. Borda count requires voters to rank can-
didates in order of preference, giving 1 point to the least
preferred candidate, 2 to the second least, and so on. The
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candidate who receives the most points wins the election. It
is considered a fairer method than majority voting because it
can sometimes elect broadly acceptable candidates, instead
of those preferred by the majority. Hence, in the context of
CrowdDrone, the Real-Time Borda aggregator can be used
to reduce the ability of malicious members, who may have
the majority, to influence the election. Instead, because the
most-voted for action is not always the winner, more broadly
acceptable actions voted for by the well-meaning crowd may
win the election.

Given that crowd robotics requires real-time input from
crowd members, it is not feasible to elicit rankings of actions
in order of the crowd member’s preference. Instead, from a
single vote we can assume a natural ranking. For example, if
the member intends the agent to move forward (↑), then we
can assume that they rank forward (↑) as their top choice,
and since backward (↓) is the opposite action, it would rank
as their least desired action. However, little can be inferred,
from just a single vote, about the actions in-between these,
the actions of yawing left (←), right (→), or performing a
new element of the action set, no action at all (∅), and would
therefore all be given the same ranking. We introduce ∅ to
denote an instance of ‘no action’, so that if there is divided
consensus amongst the crowd, the best action may be to
remain stationary. This ranking is denoted as φu ∈ Φ(t),
where Φ(t) is the set of all members’ votes in the past d
seconds from the current time t converted into rankings.

Additionally, due to the nature of robotic control, we can
refine this method further. As in Section 3, CrowdDrone
uses a simplified set of actions for input, but this does not
mean that the output set must also be reduced. The robotic
agent can perform both linear and angular components in
a single action at the same, such as moving forward while
rotating left. With this in mind, the Real-Time Borda aggre-
gator allows us to calculate a member’s ranking for both the
linear action set and the angular action set. We can then run
two elections for both linear and angular motion and com-
bine the two winning components into a single expanded
action. The robotic agent will then perform a combined lin-
ear and angular action. Until now, the use of this expanded
output set has been impractical for all other aggregation
methods. The Leader aggregator can only forward the re-
duced inputs of the leader, and a Real-Time Majority vote
on both linear and angular component actions would ensure
that both elections always select an angular and a linear ac-
tion combined. Whereas, Borda ranked voting enables us to
sometimes choose inaction, ∅, for a single component (e.g.,
to apply only a forward linear action, but have no angular
component).

To denote this increased set of output actions, we intro-
duce a set ~Θ of vectors comprising of a linear component
and an angular component.

~Θ = {↑, ∅, ↓} × {←, ∅,→}

Thus, we need to convert a crowd member’s vote θ into
two rankings, a linear and angular ranking. We represent
this as a vector φu, which is comprised of a linear ranking
and an angular ranking (see Equation 8). For example, if
a crowd member votes ↑, the vote is translated to the two
rankings

〈
〈3, 2, 1〉, 〈1, 2, 1〉

〉
. The first linear ranking shows

the member prefers ↑ to ↓, and the second angular rank-

ing shows preference for no angular action ∅, rather than
turning.

φ(θ) =


〈
〈3, 2, 1〉, 〈1, 2, 1〉

〉
if θ = ↑,〈

〈1, 2, 3〉, 〈1, 2, 1〉
〉

if θ = ↓,〈
〈1, 2, 1〉, 〈3, 2, 1〉

〉
if θ =←,〈

〈1, 2, 1〉, 〈1, 2, 3〉
〉

if θ =→

(8)

Real-Time Borda then calculates the sum of the rankings,

φ̄(t), for each possible candidate vector ~θ ∈ ~Θ, from every
ranked vote as follows:

φ̄
(t)
~θ

=
∑

φu∈Φ(t)

φu~θ (9)

The chosen action performed by the robotic agent is then
the candidate with the greatest sum of points, as computed
by fborda (see Equation 10).

fborda(U, V, t) = arg max
~θ∈~Θ

φ̄
(t)
~θ

(10)

4.2 Comparison
Now that the four methods have been introduced, here we
discuss the relative strengths and weaknesses of each ag-
gregation method. In more detail, in our applications, op-
erating in real time and responding to real-time changes is
critical. The Mob aggregator is likely to remain the most re-
sponsive to real-time changes, because it instantly performs
the latest vote. Then the Real-Time Majority and Real-
Time Borda both recalculate the best action to perform af-
ter every new vote is received, ensuring that their output
is always up to date with the crowd’s opinion. Finally, the
Leader aggregator aims to be responsive to real-time events
because, with a single user in charge, there is no deliberation
required. Provided the leader reacts quickly, so too will the
agent. Furthermore in situations of uncertainty, for example
a situation where two equally viable paths are presented, the
Mob, Real-Time Majority and Real-Time Borda aggregators
could struggle when the crowd’s intentions are divided, but
the Leader aggregator has only one person in control and
thus no divided consensus.

These aggregators, however, come with a number of short-
comings. For example, the Mob aggregator does not consider
the crowd members’ reliability or whether the rest of the
crowd agrees with the vote. Hence, some instantly applied
votes may contradict the previous vote, resulting in ‘thrash-
ing’, where the agent performs an action and shortly after,
performs the opposite action. Furthermore, this method is
susceptible to attacks where even a single malicious mem-
ber can undermine the entire system [12]. Thus, while Mob
may perform well in ideal conditions, in applications where
the reliability of the crowd is not controlled, Mob is unlikely
to perform well. Conversely, the Leader aggregator chooses
only the most agreed-with crowd members, and thus is less
susceptible to malicious crowd members. However, the ag-
gregator can only ever select the most average crowd mem-
ber for direct control. As a consequence, the control scheme
can never achieve a greater performance than that of the av-
erage individual, who may be too slow to react in real time.
On the other hand, the Real-Time Majority and Real-Time
Borda are required to balance real-time reactions with reli-
ability. Enough people must first vote for an action before
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it happens, whereby there is a delay between the first vote
for an action, and it eventually being acted upon.

Next, we describe the method and results of the empir-
ical evaluation of the aggregation methods detailed in this
section.

5. EMPIRICAL EVALUATION
The evaluation of the real-time consensus methods, described
above, allows us for the first time to determine which meth-
ods of aggregation are suitable for crowd robotics in a real-
world experiment. Furthermore we aim to determine if some
methods are more suited to specific scenarios, such as a dy-
namically changing environments.

The following experiments uses a real-time simulation en-
vironment (Section 5.1) capable of realistically simulating
the dynamics of the agent in a given scenario, and a simul-
taneous crowd of voters with an interface for shared control
(bottom right of Figure 1), in which the crowd can observe
the simulated agent and then vote on actions they wish the
agent to take. It was deemed necessary for CrowdDrone to
use a simulated environment for the practical reason that
performing experiments with real-time crowds from AMT is
time-consuming, and that it enables us to quickly create dy-
namic environments. To ensure fair benchmarking, we keep
the user interface and the dynamics of the simulated agent
the same, only varying the method of input aggregation and
scenario.

When hiring the real-time crowd from AMT, the crowd
was instructed in how to control the UAV with a pictorial
diagram (seen in Figure 1). Short bullet points informed
them that others would also be controlling the drone and
that they should ensure the flight remains sensible. How-
ever, the crowd was not directly incentivised to perform the
tasks correctly. Instead, they were informed only that they
would receive payment provided that they vote, regardless
of whether those votes were beneficial.

For these experiments, the constant parameter, d, used
by the Leader, Real-Time Majority, and Real-Time Borda
aggregators, denotes the election duration. This parameter
determines how long the aggregators wait before considering
members’ votes no longer relevant. If the duration is too
short, we would disregard many members’ votes and then
our calculation of the crowd’s intentions would be biased
towards the faster crowd members. However, if d is too long,
then the aggregation algorithm may consider outdated votes.
Outdated input may no longer be relevant if the robotic
agent has since moved far from the initial location of the
vote. We empirically chose the duration to be 2 seconds long,
due to pilot experiments showing that the mean crowd input
rate is 40 votes per minute. An election with a duration of 2
seconds ensures that we are capturing most of the members’
latest votes when calculating a consensus.

5.1 Real-time Environment
As discussed in Section 3, CrowdDrone uses a simulated
environment as it enables the fast development of dynamic
scenarios. The environment used for the evaluation in this
paper is bounded by visually distinctive walls that serve two
purposes. Firstly, this prevents the drone from leaving the
experimentation area. Secondly, it provides the users with
an easy means to orientate themselves in the world. Inside
this environment we can envision a number of scenarios that
provide a challenge for calculating group consensus. For

(a) The Figure Of Eight Scenario

(b) The Dynamic Blocked Path Scenario

Figure 2: The CrowdDrone testbed environments

this study, we have considered two scenarios. The first is
a simple scenario designed to evaluate the performance of
the aggregation algorithms (Section 5.1.1). The second is a
scenario in which the crowd must respond to changes in the
environment (Section 5.1.2).

5.1.1 The Figure of Eight Scenario
The Figure of Eight (FOE) scenario has a number of equidis-
tantly spaced rings arranged in a figure of eight pattern.
Thirteen rings are placed in total, six around each circular
section, and one shared ring in the middle (see Figure 2a).
The crowd then attempts to fly the drone through the rings.
This provides a simple environment in which to test and
measure the basic functions of crowd robotics. Given the
uniformity of the layout of the rings, the time taken to fly
between each ring is a simple metric to compare the ag-
gregator methods against. Additionally, given that in this
scenario we know the optimal path beforehand, we can also
calculate a positional error from the optimal path to mea-
sure how much the aggregators deviate from it.

5.1.2 The Dynamic Blocked Path Scenario
The Dynamic Blocked Path (DBP) scenario presents the
crowd with the end goal far away down a long empty corri-
dor. They must then navigate down this corridor. However,
at five equally spaced points down the corridor, a wall will
appear directly in the path of the drone. This impedes their
progress and they must navigate around this new wall, re-
acting dynamically to the new environment, and attempt to
reach the end goal (see Figure 2b). The wall consists of four
randomly creatable sections. The two sections closest to the
drone will always appear, ensuring the crowd must react,
and one of the remaining two sections is created randomly,
to ensure the crowd cannot learn where the open section
may appear. This scenario is designed to test the crowd’s
ability to react to changes.
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5.2 Evaluation Metrics
In order to compare the various aggregation algorithms, we
define the following metrics relevant to the field of crowd
robotics.

1. Time between rings: this is a general measure of
how well the input aggregation algorithm performs. A
longer time taken to travel a fixed distance can mean
that there are more contradictory movements, more
hesitation, or that a less than optimal path was taken.

2. Positional Error: the average distance from the op-
timal path can show how well the input aggregation
method is filtering out noise, and responding to real-
time updates.

3. Stationary time: the time spent stationary per minute
is a measure of when the drone is either rotating or
stopped (i.e., action ∅ is chosen) because of divided
consensus as in the case of Real-Time Borda.

4. Inaction time: the time spent, per minute, not per-
forming any action can be an indicator of low crowd
participation.

5. Input rate: the rate of users’ inputs per minute.
Higher input rates correlate with greater crowd en-
gagement, and can also be indicative of disagreement
with the agent’s actions.

6. Reaction time: the time taken between the wall ap-
pearing, in the DBP scenario, and the drone reacting
to the new environment. The drone is considered to
have reacted when its heading has changed by at least
20 degrees in an attempt to change course and navigate
around the newly spawned obstacle.

5.3 Results
In this section we evaluate the various aggregation meth-
ods (Section 4.1) as used in the two scenarios (Section 5.1).
We ran 10 experiments for each aggregation method on each
scenario. The real-time nature of these experiments is pro-
hibitive to running large numbers of repeats. The total num-
ber of active crowd members (those who voted at least once),
varied from 4 to 13 per experiment, and on average, 4.4 votes
from unique crowd members were received every d seconds
(i.e., 2 seconds). For the FOE scenario, we acquired on aver-
age 29 minutes of flight time, passing through an average of
254 rings, or over 1km of flight for each aggregation method.

5.3.1 Performance
The performance measured in the FOE scenario shows that
the Real-Time Borda aggregator is significantly8 faster at
travelling between the rings, than other aggregators (Fig-
ure 3a), and 1.8 seconds faster than the Leader aggregator,
the current state-of-the-art aggregation method for real-time
control. However, despite this faster result, the Real-Time
Borda aggregator shows a similar positional error (39cm) to
that of the Leader method (Figure 3b). Instead, for posi-
tional accuracy, the Real-Time Majority aggregator is signif-
icantly closer to the optimal path (10 centimeters) than the

8All results reported as significant were confirmed with t-
tests at a Bonferroni corrected significance level p < 0.05
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and all figures show 95% confidence intervals.
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Figure 3: Performance Graphs

Leader aggregator. The Mob aggregator has even greater
positional accuracy (15cm). This is because it instantly ap-
plies the crowd input, thus if it navigates off-course, a crowd
member will quickly correct it. However, this is only true if
there are no malicious crowd members. Mob has no method
for reducing the influence of unreliable crowd members, and
thus is susceptible to a single crowd member quickly and re-
peatedly voting for their own intentions, and thus navigating
the drone off-course [12].

The Real-Time Borda aggregator also shows significantly
less time spent stationary (9 seconds) than the others (Fig-
ure 3c), as the aggregator enables the drone to move and
turn at the same time. Notably, the other aggregators spend
nearly half the time rotating, which is expected on a circular
path such as the Figure of Eight. The Leader aggregator re-
mains inactive 12.5 seconds per minute, significantly longer
than any other aggregator (Figure 3d), which is because con-
trol is given to a single operator, and the drone can only ever
act as quickly as that operator gives commands.

These results show that if the application is likely to con-
tain a flight path that requires a lot of turning (i.e., pa-
trolling or surveying), then the Real-Time Borda saves time.
Whereas if the task requires precision (i.e., package deliv-
ery), then the Real-time Majority aggregator would be a
better choice.

5.3.2 User Input
The Leader aggregator has significantly fewer inputs per
minute (Figure 3e), which is indicative of a lower crowd
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Figure 4: A short extract of real crowd input and the aggregated output.

engagement in these tasks. This effect may be explained by
a lack of feedback. For many users their input ‘appears’ to
have no effect, given that only a single user is controlling the
robot, whereas, for other aggregation methods, the crowd’s
input has an appreciable effect on the drone’s actions.

Figure 4 shows an example of typical crowd input for the
DBP scenario centered around the moment a wall appears.
We can see the clear differences in user input rate between
the Leader aggregator and the Real-Time Borda aggregator.

5.3.3 Response to dynamic events
The reaction time is the time taken for the drone to react
to an external change (see Figure 3f). The Real-Time Borda
aggregator is significantly faster to react (1.2 seconds), the
separated linear and angular preferential elections require
fewer crowd members to vote for an action before the drone
reacts. The Mob aggregator is also able to react quickly (1.6
seconds), as it instantly applies the input of the fastest crowd
member, but slow crowd members can negatively affect its
reaction time. Similarly, the Real-Time Majority can only
react to the event when a majority of users have changed
their vote, thus slow users can affect this aggregator too.
The Leader aggregator, instead, only reacts as quickly as the
crowd member currently in direct control of the UAV. If the
leader reacts too slowly, the crowd begins to disagree with
them, and another leader will be elected (see Figure 4a).

Figure 4 shows a comparison between the Leader and the
Real-Time Borda aggregators, for the same DBP scenario
with similar crowd sizes. At the far left of Figure 4a we can
see the current leader highlighted with a grey background,
User 3, but due to inaction control is then passed to User
2. When the wall appears, User 2 does not react, while the
rest of the crowd shows disagreement with this, and thus
control is again passed, now to User 5. It is the combination
of low input rates and these slow to respond leaders, that
make the Leader aggregator a poor choice for scenarios that
require quick reaction times. In contrast, Figure 4b shows
that the Real-Time Borda aggregator outputs many more
actions per minute, often making many micro adjustments
along the flight path. After the wall appears, we can see the
drone begins turning even before the majority of users have
reacted. This is due, in part, to User 1 and 3’s fast reactions.
Furthermore, we can see that User 2 has been consistently

disagreeing with the crowd, therefore User 2’s votes would
have a lower weighting.

In general our results show that the Leader aggregator
is often unsuitable for real-time control of a UAV. Instead,
for applications that require speed, and quick reactions the
Real-Time Borda aggregator performs best. On the other
hand if the application requires accuracy, at the cost of
speed, Real-Time Majority is a better choice.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced CrowdDrone as a testbed plat-
form for evaluating various real-time aggregation methods of
crowdsourced input. We then described two novel methods
of real-time aggregation, Real-Time Majority and Real-Time
Borda, and used CrowdDrone to evaluate their suitability
for crowd robotic applications. Our empirical evaluation on
a real-time crowd hired from AMT showed that the Leader
aggregator, the state-of-the-art method, is not ideal for real-
time control of a UAV. The input rate and reaction times of
individual users are too slow for practical use. The Mob ag-
gregator is also not usable for our applications, given that it
does not filter unreliable users. Thus, malicious crowd mem-
bers are capable of manipulating the UAV to their own ends.
Instead, Real-Time Majority and Real-Time Borda provide
faster or more accurate control while still reducing the im-
pact of unreliable crowd members. The results show that
Real-Time Majority is useful in applications where precision
is required, and that Real-Time Borda is a faster alternative
for patrolling and surveying applications.

There are a number of challenges that remain to be ad-
dressed. Given the costs (i.e., fuel, lost packages, damaged
drones) associated with drone deployments, there is a need
to measure the robustness of real-time aggregation methods
to malicious crowd members. In future work, the Crowd-
Drone platform will be extended to measure just how reli-
able these aggregation methods are under noisy conditions,
and provide performance guarantees for using the aggrega-
tors within a ratio of beneficial to malicious crowd members.
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