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ABSTRACT

While operating in domestic environments, robots will necessarily
face difficulties not envisioned by their developers at programming
time. Moreover, the tasks to be performed by a robot will often
have to be specialized and/or adapted to the needs of specific users
and specific environments. Hence, learning how to operate by in-
teracting with the user seems a key enabling feature to support the
introduction of robots in everyday environments.

In this paper we contribute a novel approach for learning, through
the interaction with the user, task descriptions that are defined as a
combination of primitive actions. The proposed approach makes
a significant step forward by making task descriptions parametric
with respect to domain specific semantic categories. Moreover, by
mapping the task representation into a task representation language,
we are able to express complex execution paradigms and to revise
the learned tasks in a high-level fashion. The approach is evaluated
in multiple practical applications with a service robot.

Categories and Subject Descriptors
1.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms

Keywords

Human-robot interaction, communication and teamwork; Robot plan-

ning and plan execution.

1. INTRODUCTION

While operating in domestic scenarios, robots will necessarily
encounter situations not envisioned by their developers at program-
ming time. Often, they will therefore require to be specialized
and/or adapted to the needs of specific users and to specific environ-
ments. In these environments, learning how to operate interacting
with non-technical users seems a key enabling feature to support
the introduction of robots in our everyday lives.

To this end, multiple authors have proposed to rely on natural
language interaction and dialogue to enable robots to learn how to
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accomplish complex and tasks. There are, however, various chal-
lenges that still need to be tackled for instructing robots using nat-
ural language. Robust speech recognition, mapping the given com-
mands into robot behaviors, or resolving the ambiguities arising
from natural language are among the problems to be faced to build
areliable system.

In this paper we attempt to tackle some of such challenges by
presenting a novel approach for learning, through the interaction
with the user, task descriptions that are defined as a combination
of primitive actions. We use a grammar-based approach to first
acquire the description of the action, later converted into a plan
readily executable by the robot. The action learnt by the robot in
this way can involve sequences of actions, conditional branches and
iterations that can be characterized by multiple open parameters
specified at run-time. The two main contributions of our paper are
the following:

e A novel approach for learning the syntactic structure of the
taught actions, represented as parametric tasks that can be
instantiated at run-time;

e A new language representation, called Task Description Lan-
guage, mapped to the Petri Net Plans (PNP) formalism [11].
This mapping allows us to give a clear execution semantics
and to express complex execution paradigms, such as parallel
actions.

In addition, we show how to revise the tasks learned, allowing the
user to refer to their composing actions in a high-level fashion.

In the remainder of the paper, we first give a brief overview of
the related work, underlining the major differences with respect to
other techniques proposed in literature. We then describe in de-
tail the proposed approach and how it has been deployed on a ser-
vice robot. After presenting a set of tests designed to validate our
method, we then conclude the paper with a discussion of the pre-
sented work and with some hints on possible future work.

2. RELATED WORK

The problem of teaching a robot new tasks through Natural Lan-
guage Interaction is a new research topic that has emerged in the
last decade. Usually, the tasks to be learnt are represented as a com-
position of primitive behaviors that the user can use as background
knowledge to teach the robot. The sequence of such actions is often
represented in a graph-like structure that is encoded in a specifically
designed language. For example, in [5] and [2], the authors use
a language called Robot Control Language (RCL) and compound
action specifications, respectively, for representing and executing
route instructions, parsed from natural language commands. These
works, although focusing on understanding and executing the de-
scription of a command from the natural language interaction with
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Figure 1: Interaction scheme designed for processing verbal instruction and for generating executable plans.

a user, do not analyze the problem of learning new actions to be
used in later stage.

Such a problem is instead faced by [7], where the authors present
a first and simple method for learning by from demonstrations of
high level tasks, which are built from a pre-existing behavior knowl-
edge. In this work, the learning approach is divided in two main
phases: first, the user gives a demonstration of the action to be
learnt, while in a second phase the robot has the opportunity to re-
fine the acquired capabilities, by practicing for a small number of
trials under the teacher’s supervision.

The problem of teaching new tasks to a robot through natural lan-
guage is also analyzed in [8], where the authors introduce a method
for teaching tasks in the form of directed acyclic graphs, composed
of available action primitives. In their work, the task is verbally de-
scribed and interpreted through a grammar-free Automatic Speech
Recognition (ASR). As in previous works, the task to be learnt is
first demonstrated by the user. Next, the robot has the possibility
of engaging the human in a spoken language dialog to query any
unspecified effects of conditional alternatives. Differently from
previous works, the authors focus the learning process on natural
language interaction, also allowing the user to teach behaviors that
involve conditional branches. A similar contribution is also given
by [10], where the problem of teaching soccer skills to a team of
robots via spoken language is addressed. In this latter approach, the
authors design a predetermined set of actions and queries that are
associated with a predefined grammar. This grammar specifies all
the possible natural language commands understood by the robot.
The proposed vocabulary includes a set of soccer behaviors (e.g.,
shoot and pass), and if-then-else control expressions. An interest-
ing aspect of this framework is the possibility of directly querying
the robot for its internal state. However, the expressive power of
this work is limited, not being able to handle loops and not allow-
ing the user to correct previously taught actions.

These two contributions have been presented in [6], where the
authors describe an enhanced approach that allows the user to teach
actions involving loops. Their speech interface is based on the
Google free-form ASR and they represent actions as Instruction
Graphs. This system also enables the user to correct an existing
behavior by letting the robot step through the sequence of actions
of a chosen task. This revision approach works really well for sim-
ple behaviours, but may become cumbersome as task complexity
increases.

The above-cited approaches make significant steps forward in
extending the language used for task specification. However, they
do not address the problem of teaching a robot parametric tasks.
It has been shown, by strong linguistic theories based on cogni-
tive studies [4], that when humans talk about an action, they refer
to a general structure representing its underlying concept, which is

852

characterized by a set of arguments participating in it. Therefore,
when teaching a new task to a robot, in order to make the learn-
ing process more intuitive, some authors have suggested to refer
to general action structures, instead of teaching instances of more
general concepts.

For example, in [3], a simple approach for learning parametric
actions is presented. By exploiting the Microsoft ASR Engine the
authors show how a robot can be taught how to poke a general
object. Open parameters are expressed by using chosen keywords
and they are specified at run-time. However, the proposed method
is limited to a sequence of actions that do not include branches
or loops. Moreover, the actions learnt can be characterized only
by a single open parameter, leaving the open question of how to
generalize the method to multiple parameters.

A final example tackling the problem of learning parametric tasks
is presented in [9]. In this work, the authors describe a three-tier
representation that supports both the conversion of natural language
into robot actions and the application of existing planning algo-
rithms. However, this framework does not allow to represent condi-
tionals and loops and it does not enable the user to revise previously
taught tasks.

Differently from these works, our approach allows a user to teach
or specify to a robot new possibly parametrized actions by combin-
ing primitive behaviors. Our system makes a significant step for-
ward by allowing the user to refer to multiple parameters during the
teaching process, allowing for a rich task specification language,
inspired by the Robot Control Language [5]. The Task Descrip-
tion Language, in fact, differently from RCL, allows to represent
also conditionals, parallel actions as well as variables. Moreover,
by associating execution plans in PNP, we rely on an execution se-
mantics that let us capture more expressive task specifications (e.g.,
action parallelization). This double representation of the tasks al-
lows us to decouple the problem of capturing the wide variety of
linguistic expressions uttered by a user from the problem of defin-
ing a clear operational semantics. Finally, we present an innovative
approach for task revision that allows the user to refer to the primi-
tive actions that constitute a task in a high-level fashion.

3. APPROACH

In this work we propose an approach to dynamically teach a
robot new complex task descriptions through user interaction. With
the term complex we refer to tasks that are compositions of prede-
fined robotic action primitives (i.e., atomic behaviors that are not
further decomposable in terms of simple actions). Once learnt, a
complex task will instantiate a specific plan and, for this reason, in
the rest of the paper, we will refer to complex learned actions ei-
ther as tasks or plans, while their composing actions will be called
primitives or primitive actions.



Unlike previous works, in our approach the task learned by a
robot take as input arguments that are not statically associated to a
specific instance, e.g. the red book, but they are filled with possible
semantic categories, e.g. object. For example, a possible imple-
mentation of a bringing task could be represented by the general
concept of bringing an object to a location. In each task, the argu-
ments can assume different values every time a command is given
to the robot, e.g. “bring the book to the office”.

Our learning process is based on a spoken dialog with a user that
incrementally explains to the robot how the task is composed in
terms of primitives. To this end, the Task Description Language
(TDL) has been designed in order to give a structure to the task de-
scriptions, enabling for the use of different patterns of execution of
the involved primitives, e.g. conditional branches or while loops.
The interaction with the user is mainly based on spoken inputs,
however the proposed approach also allows for the use of examples
to drive the learning process (e.g., it is possible to tell the robot
“go to the location for example the office” to check if the robot
correctly executes the command). Moreover, we also investigate
the possibility of using dialogs to update a previously learned task
by removing, inserting and replacing some of its parts with new
TDL constructs. Generally, our interactive and action learning ap-
proach takes place in three consecutive phases: Processing verbal
instructions; Generating executable plans; Updating plans. Figure
1 reports the interaction scheme of the first two processes that we
designed.

3.1 Processing verbal instructions

The first step in learning new actions through user interaction
consists of acquiring a natural language description of the com-
mand and its interpretation, associated with a structured representa-
tion. Specifically, taking inspiration from the Robotic Control Lan-
guage proposed in [5], we designed a Task Description Language
(TDL), to create a first representation of the tasks to be learnt.

TDL is a high-level representation for complex procedure spec-
ifications, described using natural language. TDL acts as a bridge
between the instructions as expressed by humans and the final plan
of the robot, and it is specified by the grammar reported in Table 1.
In TDL, tasks are described as a composition of procedural compo-
nents that can be primitive actions or structural elements describing
different execution patterns, that embed other TDL constructs in a
recursive way. Starting from the capabilities of our robotic plat-
forms, we first define a set of primitive actions so that every com-
plex TDL structure is expressed as a function of them. Below, we
list the primitives we defined to test our approach:

e goTo: the action of going from a point to another point in
the space. It takes one parameter: the destination.

e follow: the action of following someone or something in
front of the robot, in an open-loop fashion.

e takePicture: the action of taking a snapshot of the scene,
acquired through some visual sensing device. It outputs the
name of the picture taken, which can be stored in a variable
(@picture) to be recalled in the dialogue by the user.

e say: tells the robot to call the Text-to-Speech service to syn-
thesize a string into voice. Its parameter is the sentence to be
said.

e sendEmail: the action of sending an email to an address
with a content. Its two arguments are: the content of the mail
and the address where to send it.

e pickUp: the action of picking up an object. It takes the
object to be picked up as a parameter.
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e drop: the action of releasing an object.

Additionally, we defined two conditions to be checked in the
if-then—-else and do—until constructs:

e in: to check whether the robot is located in a particular lo-
cation or not.

e isPerceived: to verify whether an object is perceived by
the robot or not. If the anyone parameter is passed as an
argument, a person detector functionality is activated.

The list of parameters (see Table 1) passed to the primitives can
either hold variables, denoted with an @ character followed by a
string, or instances, represented by strings. Such lists are used to
instantiate the arguments of the primitive actions, and are bounded
to the parameters of the task being described. This feature is fun-
damental for teaching the robot general concepts of actions, where
arguments are only referenced as possible semantic categories and
not as specific instances of them.

For example, consider the case of teaching a robot the general
concept of the bringing action. We can assume that, for a par-
ticular instance, this action will require two arguments: an object
to be brought and a location where the object must be brought.
This general conceptual structure of the action is instantiated at
the beginning of the learning interaction, after the user tells the
robot a phrase like “I’ll teach you how to bring an object to a loca-
tion”. Consequently, two variables are created (i.e. @object and
@location) for the current task. During the explanation, the user
can refer to these variables as arguments of prompted primitive ac-
tions. Let us assume that the task corresponding to the bringing ac-
tion is composed by the sequence of four primitives: a goTo action
needed to reach the object to be brought, followed by a pickUp
action, then another goTo action to reach the final location and,
finally, a drop action to release the object. When referring to a
primitive that requires one or more arguments, it is possible to bind
them with the task variables, e.g. goTo: [@location]. The fi-
nal TDL structure for this particular instance of the bringing action
therefore will be:

(do — sequentially
( goTo : [@object] )
( pickUp : [@Qobject] )
( goTo : [@location] )
(drop : [@object] ) ).

In order to acquire such a description of the action we propose
an interaction scheme that is based on a spoken dialog with a user
that prompts step by step the elements composing the final TDL.
The process is structured in three steps:

e Automatic Speech Recognition to translate the user vocal in-
put into text.

e Interpretation, where the transcribed input is translated into
a TDL construct.

e Decision about how to proceed in the dialog flow (e.g. asking
for confirmation about the learned action or possible clarifi-
cation about the input received).

The ASR phase is realized using a grammar-based engine that
allows us to implement specific grammars for describing the TDL.
The grammars drive the recognition process: by attaching a proper
semantic output to each grammar rule, we obtain a representation
of the linguistic semantics of a recognized utterance, which is later



Table 1: The constructs defined in Task Description Language.

Primitive Action

TDL Form Example
Condition < Condition>:[Parameter List] ( isPerceived:[door] )
<Action>:[Parameter List] ( goTo:[office] )

<Variable>=<Action>:[Parameter List]

( @picture=takePicture:[] )

Sequence of Actions | do-sequentially <TDL, > ... <TDL,, >

( do-sequentially ( goTo:[office] ) ( say:[hello] ) )

Conditional

If <Condition> then <TDL, > else <TDL2 >

( If in:[Office] then ( say:[hello] ) else ( say:[I am lost] ) )

Counting Loop do-n-times <TDL> <lInteger>

( do-n-times ( turn:[around] ) 10 )

Do-until Loop do <TDL> until <Condition>

( do ( follow:[ @person] ) until ( in:[Office] ) )

translated to a specific TDL. This representation is based on the
frame concept inspired by the notion defined in the Frame Seman-
tics linguistic theory [4]. The general meaning expressed by each
frame can be enriched by semantic arguments that are part of the
sentence and provide additional meaning to the action. As an ex-
ample, the command “go fo the office” will be mapped to the Mo-
TION frame, while the sub-phrase “to the office” will fill the spe-
cific frame element GOAL representing the destination of the MO-
TION. The representation will then be translated in the following
TDL structure:

(goTo : [office] ).

The adopted ASR provides also for the possibility of using special
grammar rules that trigger a free-form dictation ASR engine. We
use this feature to recognize the names of new tasks that are not
predefined in the grammar, as well as messages to be uttered when
performing the say primitive.

The process of learning new tasks does not only consist of con-
verting spoken instructions to TDL and consequently instantiat-
ing a new plan. In fact, the acquisition of knowledge about new
tasks also involves the learning of new linguistic forms in order to
verbally recall them. To this end, after a new plan has been cor-
rectly built, the ASR grammars are augmented with new syntactic-
semantic structures corresponding to the learned task, e.g. bring
the @object to the @location for the task “bring the object to the
location".

3.2 Generating Executable Plans

Once the spoken description of the task given by the user has
been converted in its corresponding TDL structure, it is processed
to obtain an executable plan described with the Petri Net Plans
(PNP) formalism [11]. PNP, is a plan-representation framework
based on Petri Nets, which includes a rich set of features suitable
for expressing executable actions: non-instantaneous actions, sens-
ing and conditional actions, action failures, concurrent actions, in-
terrupts, and action synchronization in a multi-agent context are
among the aspects that can be described by such a formalism. This
versatility allows us to represent and precisely characterize within
PNP not only the multiple details of the plan uttered by the user,
but also every action and dialog between the user and the robot.
Moreover, with this additional representation we are able to decou-
ple the problem of understanding user utterances from the issue of
executing a task on the robot.

Starting from the TDL structure representing the plan extracted
from the utterances of the user, in order to obtain an executable
plan, a tree structure is created by recursively decomposing it in its
elementary parts. Such tree is composed by nodes labeled with the
TDL forms contained in the input TDL and by edges representing
the constituency relation (see Figure 2). Once the tree has been gen-
erated, starting from its leaves, each TDL construct is replaced by
the corresponding PNP structure. Figure 3 shows the PNP structure

854

Input TDL:

( do — sequentially
(turn: [right] )

( do-sequantially <TDL1> <TDL2>)

( if <TDL3> then <TDL4> else <TDL5> )

(isPerceived:[counter] ) (say:[lamlost])

(say:[canIget coffee please?])

(if ( isPerceived : [counter] )

then ( say : [can I get coffee please?] )

else ( say:[Iamlost])).

Figure 2: Tree structure created from an example input TDL.

corresponding to each TDL constructs shown in Figurel. By query-
ing a KB that holds the information about the primitive actions (i.e.,
their name and their input and output semantic categories), each
component of the PNP structures is then renamed to form a cor-
rect executable plan. In particular, when dealing with a parametric
primitive action, the system is able to query the KB in order to bind
the variable used in the TDL structure with the variable used in the
primitive action. By converting the TDL structure into a specific
PNP, an exact mapping between natural language and executable
PNPs is obtained, thus providing a suitable execution semantics.
Once the PNP representation of the action has been created, an
update message is sent to the speech recognition module and to
the KB to flag that the new plan has been learnt. Specifically, this
message is used to store in the KB the number of variables used by
the learnt plan, their name and the associated TDL structure needed
during the update phase, as described in the following section.

3.3 Updating Plans

A feature of our approach consists of allowing the user to correct
parts of the taught plan as desired. The work by [6] is the only
example of plan revision in a task teaching framework: the authors
propose a task correction mode, during which the robot describes
the action sequence and asks, at each step, whether the user wants
to replace a primitive action with another one. We propose a way
for referring to each primitive action composing the newly learnt
plan in a high-level fashion, allowing the user to add replace or
delete a particular action in a task.

To update a previously taught task, the user can vocally select
it and subsequently refer to its primitive actions. By naming the
action that needs to be modified, the desired operation, and the op-
tional parameters needed, the plan is modified accordingly. For
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example, assuming that the user needs to replace a say action with
a goTo action, this can be achieved by telling the robot: “I want
you to perform the go to location action instead of the say action".
When multiple actions of the same kind are instead present in a
plan to be modified, the user can distinguish them by referring to
their parameters (e.g., “the go to location") and/or by specifying
the ordinal number with which they appear in the TDL structure
(e.g., “the second go to"). Once the updating command has been
acquired by the robot, the old plan TDL structure is retrieved from
the KB. If the command univocally identifies an operation in the
plan (i.e., there are not any ambiguities in the given command) the
old TDL structure is modified accordingly, otherwise a clarification
dialogue is started by the robot. Finally, the new TDL is translated
into its corresponding PNP to enable its execution on the robot.

4. SYSTEM DEPLOYMENT

Our goal in this section is to demonstrate the effectiveness of the
approach, showing that our teaching methodology can be adopted
to learn high-level parametric plans, also allowing to represent mul-
tiple execution paradigms expressed using natural language. To this
end, we have deployed our system on a robotic platform to show the
advantage of using an intermediate representation, namely TDL,
together with the PNP formalism to model the learning, revision
and execution processes. To ground the semantic categories ex-
pressed in TDL, a semantic map built with the aid of the user
has also been given to the robot [1]. The proposed approach has
been implemented on a Videre Design platform equipped with a
Hokuyo laser range finder and a Kinect. For localization and nav-
igation, standard software packages of the ROS framework have
been adopted. Finally, for the ASR engine, we used the Microsoft

Speech Platform running on an external tablet with a push-to-talk
microphone, used to implement the connected speech interface.
Figure 4 shows an image of the robot interacting with a user.

4.1 Interaction Example

In order to better understand the process of learning a complex
plan, we report a video showing an example interaction that guides
the teaching process of the bringing an object to a location plan'.

H: I'll teach you how to perform the “bring an object to
a location” plan.

R: Ok, tell me how to perform this action.

H: First, go near the object, for example “the DVD”.

R: [moves near the DVD]

R: did I perform the right action?.

H: Yes.

R: Should I do anything else afterwards?.

H: Yes, pick up the object.

R: Ok, can you put the DVD on the tray?

R: [waits for the user]

U: [confirms through a dialog box]

.. [The action is added to the task and the interaction continues]

H: bring the book to the office
R: [performs the new instance of the action]

The interaction starts with a sentence that instantiates the struc-

"https://vid.me/HXnG



Figure 4: The Videre Design platform used in the experiments in-
teracting with a user.

ture of the plan, defining its general name (e.g. bring), and its ar-
guments, (e.g. object and location). Afterwords, the explanation
phase begins: the use of predefined keywords enables for recalling
constructs of TDL associated with them. For example, the word
“first” at the beginning of the second sentence uttered by the hu-
man specifies to the system that the prompted primitive is part of
a sequence. The resulting interpretation of this statement will be
a do-sequentially construct, where the first action to be per-
formed is a goTo: [Robject]:

( do — sequentially
( goTo : [@object] ) ).

In this example, an instance of the semantic category object, e.g.
the DVD, is provided so that the robot can show the user that the
action he prompted has been correctly understood. The action is
then executed using the example as input argument. Note that in-
stead of using predefined keywords to point out the end of a TDL
construct, e.g. endif, we rely on a question-answer modality to de-
termine its scope boundaries. In this example, the question “Should
I do anything else afterwards?” is used to understand if the next
instruction belongs or not to the current TDL construct, i.e. the
do-sequentially. The interaction continues with the second
action. This time the user refers only to the semantic category, but
because of the binding between variables and instances provided
in the previous example, the robot asks directly the user to put the
DVD on the tray, as the @ob ject has been locally instantiated be-
fore. Doing so, the pickUp primitive is simulated and the learning
process continues by inserting it in the current TDL construct, e.g.

(do — sequentially
( goTo : [@object] )
( pickUp : [@Qobject] ) ).
It is important to underline that the use of examples while explain-
ing a task is not mandatory. In fact, it is possible to refer only to

the semantic categories involved in the task, without using direct
instances and skipping the demonstration about the action to per-

form. Using or not using examples during the teaching phase does
not affect the final plan instantiation.

At the end of the interaction, the final TDL structure is processed
yielding the PNP plan corresponding to it. Accordingly, the lan-
guage of the robot is augmented by inserting in the ASR grammar

the semantic-syntactic structure corresponding to the command “bring

an @object to a @location”. Now it is possible to call the plan for
any location and any object defined in the ASR grammar.

S. SYSTEM VALIDATION

In order to validate the system, three different kinds of analysis
have been carried out. First, we taught our robot five different tasks.
During this teaching phase we measured the accuracy of the system
as well as the time needed for teaching each task. We then counted
the number of non parametric tasks that should have been taught to
act on a particular set of instances, comparing it with the number
of parametric tasks needed to act on the same set of targets. For
example, following an unparameterized approach, in order to learn
the bring an object to a location task valid for every object and
location in the environment, one should have taught the robot a sin-
gle task for each combination of instances of object and location.
Next, we replicated the tests performed on different mobile bases
by the authors of related works. This test aimed at verifying the ex-
pressive power of our approach with respect to the others found in
literature. Finally, since we adopted a formalism able to represent
a wide variety of execution paradigms, we attempted to show how
other kinds of tasks could be learned by the robot. In particular, we
successfully managed to teach the robot a task involving parallel
actions. This is a first example of the several possible extensions
that are achievable by creating new TDLs and providing them with
a suitable execution semantics using PNP.

5.1 Expressivity and Effectiveness Evaluation

The aim of our work is to create an interactive task teaching
framework, based on a natural language interaction with the user;
however, we do not evaluate our approach through a user study,
since usability is not the purpose of this paper. Rather, we make an
assessment of the expressivity and effectiveness of our approach.
In particular, to understand the impact of learning parametric ac-
tions and to measure the efficiency of our approach, we first taught
our robot five basic tasks, each involving one or two parameters.
The five tasks we selected for the evaluation are just illustrative ex-
amples of what our system can learn, and they are reported in the
following list:

e enter @location: this action allows to add another possible
linguistic reference for the goTo: [@location].

o take an @object: This task is represented by goTo: [@obJject ]

followed by pickUp: [@object]. As the pickUp prim-
itive, this task requires the robot to be near the target object.

e bring an @object to a @location: (see above).

e give @person an @object: this task represents the action of
bringing an object that the robot already carries to a person,
assuming that the position of the person is known.

e check an @object for a @person: this task consists of going
in front of an object, taking a snapshot of it and sending an
email with the picture to the person.

In order to show the overall behavior of the system while learn-
ing this set of tasks, we asked 5 users not familiar with robots to
test the teaching framework. Each user was first given a brief ex-
planation of the task teaching framework and the semantic map and



Table 2: Results obtained for the evaluation of the proposed task teaching framework.

Task Min | #Err | #Mis | # Cor | AT No Err | AT w Err
enter @location 4 0.2 0.4 0 29 38
take an @object 5 0.6 0 0 41 52
bring an @object to a @location 7 0.2 0.6 0.6 57 74
give @person an @object 6 1 0.4 1 49 79
check an @object for a @person 5 0.6 0 0 55 69

primitives available to the robot. Next, the user was asked to teach
the robot each of the previously described actions in a random or-
der. For each task we measured the following quantities:

e The minimum number of instructions required to teach a spe-

cific task (Min).

The average number of instructions not recognized by the au-
tomatic speech recognition (Err). In this measure, only the
instructions that the ASR could not process were considered.

The average number of instructions misrecognized (Mis) by
the natural language understanding.
learned task (Cor).

The average time in seconds needed to teach a specific task
when no errors or misrecognitions were encountered (AT no
Err).

The average time in seconds needed to teach a specific task

The average number of corrections needed to modify a wrongly

when errors or misrecognitions were encountered (AT w Err).

Table 2 reports the numerical results obtained for the analysis.
Notice that the time measured refers only to the interaction with
the user, as we avoided examples requiring the action of the robot.

A first fact that can be noticed from the table is the cost, in terms
of time, of a correction process. When one or more corrections have
been required, the average time needed to correctly teach a task in-
creases of 16.2s on average. Additionally, it can be noticed that the
longer a task is, the higher is the probability of having a misrecog-
nition. This expected result is in fact underlined by the highest
number of misrecognitions obtained for the two longest tasks (e.g.,
bring an @object to a @location and give @person an @object).
For these particular tasks we also obtained the highest difference
between AV no Err and AV w Err, respectively of 17s and 30s.
The effects of a misrecognition can be rather different: in the start-
ing phase of a procedure it may not require a correction (e.g. for
the enter task), while in other cases one or more corrections might
be needed (e.g for the bring and give tasks).

Finally, in order to give an idea of the teaching steps saved with

this parametric approach, we counted the number of non parametrized

tasks that should have been taught to the robot in order to cover the
same exact set of possible instantiated tasks. This particular anal-
ysis has been carried out considering the scenario presented in [1],
built through the direct interaction with a user. Such an environ-
ment consists of 23 objects and 10 persons, located in 10 different
rooms. In this specific environment, in order to obtain the equiv-
alent of the five parametric tasks, we should have taught the robot
723 single tasks by combining all the instances of the involved se-
mantic categories for each task. The gain in terms of number of
interaction is straightforward, especially if we consider the possi-
bility of dynamically extending the number of objects, or in general
the knowledge about the environment.
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5.2 Comparison with Related Works

A second validation of the learning ability of our system has been
carried out by acquiring the same tasks that systems presented in
other related works learned. The dinner is ready task in [8] is used
to test the presented approach. Such a task is composed by a se-
quence of goTo and say primitives, interleaved with some con-
ditional branches regarding the presence of specific persons in the
environment. We taught our robot the exact same task, resulting in
the following TDL.:

(do — sequentially

( goTo : [dining room] )

(if ( isPerceived : [jeremy] )
then ( say[“Jeremy set the table”])
else ( say[“cannot find Jeremy”]) )

(goTo : [living_room] )

(if ( isPerceived : [kevin] )
then ( say[“Kevin come to dinner”])
else ( say[“cannot find Kevin”] ) )

(goTo : [bedroom] )

( say[“turn off the television”])

(goTo : [living room] )

('say : ["task complete”] ) ).

The average training time for this particular task was 185 sec-
onds. Even though the environment we used for reproducing the
task was different, our system was able to learn the same sequence
of actions learnt by the other robot. Such a result demonstrates the
learning ability of the system, independently from the actual sce-
nario.

In a similar way, we managed to interactively teach the get coffee
task presented in [6] to our robot. In this case, we had to slightly
adapt the task learnt as the set of primitives provided by the CoBot
platform, was different from ours. Indeed, due to the lack of spe-
cific primitives, we exploited the do-until loop to surrogate the tasks
that required quantified parameters, e.g. move forward 5.4 meters,
terminating the loop with a specific perception condition. Instead
of referring to generic numbered landmarks, instead, we used ob-
jects on the map to trigger some perception checks. The average
training time for this task was 92 seconds. The following TDL
reports the result obtained:

( do — sequentially
(do ( getCloser:[])
until ( isPerceived : [door] ) )
(turn: [right])
(if ( isPerceived : [counter] )
then ( say : [can I get coffee please?] )
else ( say: [I am lost] ) ).
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Figure 5: The resulting PNP for the patrolling task.

5.3 Teaching a More Complex Task

As a third and final validation, we used TDL to capture an addi-
tional execution paradigm already available in the PNP formalism.
To this end, we instructed our robot to execute a complex task in-
volving primitive actions to be performed in parallel. This pattern
has been realized using an ad-hoc TDL construct. We therefore de-
signed a non parametric task to patrol a wing of our department.
Such a task consists of visiting three different rooms, while con-
tinuously checking for the presence of persons. If a human is de-
tected, the robot sends an email sent to the security staff. The loop
is ended when the robot reaches the final destination. The TDL
structure representing the task is the following:

(do
(do — sequentially
(goTo : [office] )
( goTo : [storage_room| )
( goTo : [printer_room| ) )
and
(do

(if ( isPerceived : [anyone] )

then ( sendEmail : [security] )

else ( continue ) )

until (in: [printer_room] ) ) ).

The resulting PNP is instead shown in Figure 5. According to
this specific definition of the patrolling task, the two branches are
performed in parallel, by exploiting one of the key features of the
PNP formalism.

6. CONCLUSION AND FUTURE WORK

In this paper we presented a novel approach for learning, through
the natural interaction with the user, executable plans described as
a combination of primitive actions. Specifically, our system uses
a grammar-based approach to first acquire the description of the
action, later converted into an executable Petri Net Plan, passing
through an intermediate representation expressed in a specifically
developed language called Task Description Language. The pro-
posed approach makes a significant step forward by making task
descriptions parametric with respect to domain specific semantic
categories. Moreover, by mapping the task representation into a
plan representation language, we have been able to express com-
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plex execution paradigms and to revise the learnt plans in a high-
level fashion. The teaching framework has been deployed on a
Videre design robot, showing the advantage of using an interme-
diate representation, namely TDL, together with the PNP formal-
ism to model the learning, revision and execution processes. With
a double task representation we have shown how it is possible to
decouple the problem of capturing the wide variety of linguistic
expressions uttered by the user and the problem of defining a clear
operational semantics.

For future works, a number of additional features need to be ad-
dressed. We are first investigating the issues that arise during the
possible failure of an action. We would like in fact to enable the
user to teach the robot how to recover from a specific action failure.
This can achieved by exploiting the PNP formalism that allows to
implement actions interrupts based on particular conditions. More-
over, we are investigating the possibility of specifying optional pa-
rameters during the teaching phase when using examples. Instead
of just telling the robot if it performed the correct action or not, the
user could indeed exploit this particular phase for specifying op-
tional parameters specific to the taught plan (e.g., by saying “Yes
but stop a little bit closer” for the goTo action). Finally, we are
planning to deploy and monitor our robot in our department for an
extended period of time, by letting it freely interact with the users
present in the environment.
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