
Frontier-Based RTDP: A New Approach to Solving the
Robotic Adversarial Coverage Problem

Roi Yehoshua, Noa Agmon and Gal A. Kaminka ∗

Computer Science Department
Bar Ilan University, Israel

{yehoshr1,agmon,galk}@cs.biu.ac.il

ABSTRACT

Area coverage is an important problem in robotics, where
one or more robots are required to visit all points in a given
area. In this paper we consider a recently introduced version
of the problem, adversarial coverage, in which the cover-
ing robot operates in an environment that contains threats
that might stop it. The objective is to cover the target
area as quickly as possible, while minimizing the probability
that the robot will be stopped before completing the cov-
erage. We first model this problem as a Markov Decision
Process (MDP), and show that finding an optimal policy
of the MDP also provides an optimal solution to this prob-
lem. Since the state space of the MDP is exponential in the
size of the target area’s map, we use real-time dynamic pro-
gramming (RTDP), a well-known heuristic search algorithm
for solving MDPs with large state spaces. Although RTDP
achieves faster convergence than value iteration on this prob-
lem, practically it cannot handle maps with sizes larger than
7 × 7. Hence, we introduce the use of frontiers, states that
separate the covered regions in the search space from those
uncovered, into RTDP. Frontier-Based RTDP (FBRTDP)
converges orders of magnitude faster than RTDP, and ob-
tains significant improvement over the state-of-the-art solu-
tion for the adversarial coverage problem.

Categories and Subject Descriptors

I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms

Algorithms, Theory

Keywords

Mobile robot coverage, adversarial coverage, motion and
path planning, Markov decision process, real-time dynamic
programming

∗Supported in part by ISF Grant #1511/12. Thanks to K.
Ushi.

Appears in: Proceedings of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2015), Bordini, Elkind, Weiss, Yolum (eds.), May,
4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
There are many real-life applications that require a robot,

or a group of robots, to cover an area. For example, a vac-
uum cleaning robot that needs to clean an entire room [5], in-
trusion detection, mine cleaning [11] and search-and-rescue
missions.

Most previous studies of the coverage problem dealt with
non-adversarial settings, where nothing in the environment
is hindering the robot’s task. However, on many occasions,
robots and autonomous agents need to perform coverage
missions in hazardous environments, such as operations in
nuclear power plants, exploration of Mars, demining and
search and rescue in the battlefield.

Hence, our work addresses the problem of planning for a
robot whose task is to cover a given terrain without being
detected or damaged by an adversary, as introduced in [15].
Each point in the area is associated with a probability of
the robot being stopped at that point. The objective of
the robot is to cover the entire target area as quickly as
possible while maximizing its own safety. We will refer to
this problem as the adversarial coverage problem. Here we
discuss the offline version of this problem, in which the map
of threats is given in advance, therefore the coverage path
of the robot can be determined prior to its movement.

In this paper, we show how the adversarial coverage prob-
lem can be modeled as a Markov Decision Process (MDP).
MDPs are a natural choice for implementing a solution to
this problem because they explicitly represent costs and un-
certainty in results of actions, as well as doing lookahead
to examine the potential consequences of sequences of ac-
tions. We show that, given an appropriate definition of the
MDP, finding an optimal policy for the model also provides
an optimal solution to the adversarial coverage problem.

Since the state space of the MDP is exponential in the
size of the target area’s map, using classical (synchronous)
value iteration techniques to find the optimal policy is pos-
sible only for small-sized maps. Therefore, in order to han-
dle larger maps, we use real-time dynamic programming
(RTDP), which is a well-known heuristic search algorithm
for solving MDPs with intractably large state space [1]. Al-
though RTDP achieves faster convergence than value itera-
tion on this problem, practically it cannot handle maps with
sizes larger than 7×7. This is because the search graph rep-
resenting the problem is highly connected, and thus RTDP
trials often get trapped in loops (moving repeatedly between
the same states).

Hence, we introduce the use of frontiers, states that sep-
arate the covered regions in the search space from those

861

uncovered, into RTDP. In each step of the trial, Frontier-
Based RTDP (FBRTDP) searches for a path with minimum
expected cost from the current state to a new frontier state,
choosing outcomes of this path stochastically according to
their probability. FBRTDP avoids getting trapped in loops
by advancing towards a new frontier in each step. The use
of frontiers speeds up the convergence of RTDP quite dra-
matically, while retaining its focus and anytime behavior.
Finally, we show that FBRTDP attains significant improve-
ment over the state-of-the-art solution to the problem [16],
in terms of both the coverage time and probability to com-
plete the coverage.

2. RELATED WORK
The problem of robot coverage has been extensively dis-

cussed in the literature (see [7] for a recent exhaustive sur-
vey). Grid-based coverage methods, such as we utilize here,
use a representation of the environment decomposed into a
collection of uniform grid cells, e.g., [6], [10].

Other optimization problems related to adversarial cov-
erage include the Canadian Traveller Problem (CTP) [14],
in which the objective is to find a shortest path between
two nodes in a partially-observable graph, where some edges
may be non-traversable. In contrast, here the graph is fully-
observable and the agent must visit every node in the graph
(some of them may stop the robot). MDPs have been shown
to be useful in solving CTP in certain types of graphs [12].

The offline adversarial coverage problem was formally de-
fined by us in a recent study [15]. There we proposed a sim-
plistic heuristic algorithm that generates a coverage path
which tries to minimize a cost function, that takes into
account both the survivability of the robot and the cov-
erage path length. The heuristic algorithm worked only for
obstacle-free areas, and without any guarantees. In a follow-
up paper [16] we have addressed a more specific version
of the problem, namely, finding the safest coverage path.
There we suggested two heuristic algorithms to solve this
problem with some theoretical guarantees. However, these
algorithms could handle only one level of threats, i.e., the
environment could contain either safe or dangerous areas. In
contrast, here we suggest a model that can find optimal (or
near optimal) coverage paths that meet any desired risk and
time levels in environments that can contain any number of
threat levels, in addition to obstacles.

Perhaps the simplest algorithm for solving MDPs is value
iteration, which solves for an optimal policy on the full
state space. However, in many realistic problems, such as
the one we discuss here, only a small fraction of the state
space is relevant to the problem of reaching a goal state
from a fixed start state s. There are different heuristic al-
gorithms for solving MDPs, including offline and realtime
methods. Real-Time Dynamic Programming [1] and its vari-
ants (such as Labeled RTDP [4]) have been shown to outper-
form other heuristic search methods for solving MDPs, such
as AO*/LAO*, on several benchmark problems [4]. The ad-
vantage of real-time heuristic methods is that states that
are more likely to be visited in the search graph (as defined
by the probability function) are updated more frequently,
which leads the algorithm to focus on updating states which
are more relevant to the problem solving. In our case, states
that are more likely to be visited by the robot represent cov-
erage paths that encounter a smaller number of threats, thus

updating those states more frequently can focus the search
for the optimal coverage path.

3. ADVERSARIAL COVERAGE PROBLEM

DEFINITION
We are given a map of a target area T , which is decom-

posed into a regular square grid with n cells. We assume
that T can be decomposed into a regular square grid with
n cells. There are two types of cells: free cells and cells
that are occupied by obstacles. Some of the free cells con-
tain threats. Each free cell ci is associated with a threat
probability pi (0 ≤ pi < 1), which measures the likelihood
that a threat in that cell will stop the robot. We assume
the robot can move continuously, in the four basic direc-
tions (up/down, left/right), and can locate itself within the
work-area to within a specific cell. The robot’s task is to
plan a path through T such that every accessible free cell
in T (including the threat points) is visited by the robot at
least once.

The objective is to find a coverage path of T that max-
imizes the probability of covering the entire area and also
minimizes the coverage time. Clearly, there is a tradeoff
between these two objectives: trying to minimize the risk
involved in the coverage path could mean making some re-
dundant steps, which in turn can make the coverage path
longer, and thus increase the risk involved, as well as increase
the coverage time.

We now formally define this objective function. First,
we denote the coverage path followed by the robot by A =
(a1, a2, ..., am). Note that m ≥ n, i.e., the number of cells in
the coverage path might be greater than the number of cells
in the target area, since the robot is allowed to repeat its
steps. We define the event SA as the event that the robot
is not stopped when it follows the path A. The probability
that the robot is able to complete this path is:

P (SA) =
∏

i∈(a1,...,am)

(1− pi) (1)

In order to take into account both the accumulated risk
and the coverage time, we define the following cost function:

f(A) = −α · P (SA) + β · |A| (2)

where α, β ≥ 0, and |A| is the number of the steps the
robot needs to take in order to complete the coverage path. 1

Therefore, we wish to find a coverage path A that minimizes
the cost function f(A), i.e., f(A) ≤ f(B) for all possible
coverage paths B.

The problem of finding a minimum time coverage path
(α = 0) is equivalent to finding a Hamiltonian walk in
a graph, which is known to be NP-complete [13]. Find-
ing a coverage path with maximum probability to complete
(β = 0) has also been shown to be NP-complete [16]. By
reduction, the problem in the general case of α, β ≥ 0 is
NP-complete as well.

4. MDP MODELING
We now formulate the adversarial coverage problem as an

undiscounted stochastic shortest-path problem [3]. Stochas-
tic shortest path (SSP) problems are a subclass of MDPs,
and they are given by:
1The travel time is uniform along the grid, thus coverage
time is measured directly by the number of steps.

862

S1. a discrete and finite state space S
S2. an initial state s0 ∈ S
S3. a set G ⊆ S of goal states
S4. Actions A(s) ⊆ A applicable in each state s ∈ S
S5. Transition probabilities P (s′|s, a) for s ∈ S, a ∈ A(s)
S6. Positive action costs Ca(s, s

′) > 0
S7. Fully observable states
Let us denote the SSP that represents the adversarial cov-

erage problem by M. We now describe each of M’s compo-
nents.

States. The set of states in our model contains all possi-
ble configurations of the environment’s coverage status and
the robot’s location. A coverage status of the environment is
represented by a boolean matrix that indicates for each cell
in the grid if it has already been visited by the robot or not.
The state captures all relevant information from the history
of the robot’s movements, thus it satisfies the Markovian
property.

The initial state s0 is the state in which the robot is lo-
cated at the starting cell of the coverage path, and this is
the only cell marked as visited. The goal states G are the
states in which all the grid cells are covered. In addition,
one of the states in S is defined as a dead state, denoted
by sd, which represents the situation where the robot was
stopped by a threat. This dead-end state requires special
attention, as discussed in section 4.1. The goal states, as
well as sd, are termination states, i.e., taking any action in
them causes a self-transition with probability 1.

Actions. There are only four possible actions the robot
can perform - go up, down, left or right. There could be
fewer than four actions applicable in a given state, depend-
ing on the number of obstacles that surround the cell in
which the robot currently resides.

The Transition Function. The transition function de-
scribes the probability that the robot will be able to move
from its current location to the next location on its coverage
path. More specifically, if the current state is s, in which the
robot is located in cell ci, and the robot executes an action
a that leads it to cell cj , then we distinguish between two
possible cases:

Case 1. cj is a safe cell, i.e., pj = 0. In this case there is
only one possible outcome for (s, a). The outcome is a new
state s′, in which cj is added to the environment’s coverage
status and the robot’s location is changed to cell cj . The
transition probability in this case is Pa(s

′|s) = 1.
Case 2. cj is a dangerous cell. In this case there are

two possible successor states to (s, a). The first one, s′,
represents the possibility that the robot will be able to enter
the new cell cj . In s′, cj is added to the environment’s
coverage status and the robot’s location is changed to cell
cj . The transition probability to s′ is Pa(s

′|s) = 1 − pj ,
where pj denotes the probability that the threat in cell cj
will stop the robot. The second successor state is sd, which
represents the possibility that the robot will be stopped by a
threat in the cell cj . The transition probability to this state
is Pa(sd|s) = pj .

Note that the probabilities on all the outgoing transitions
of each state/action pair sum to 1.

The Cost Function. We define a uniform fixed cost
Ca(s, s

′) = 1 for actions that lead the robot to a safe cell.
For actions that lead the robot to a cell cj with threat

probability pj , we define different costs for the two possible
outcomes of this action. If the robot was not hit by the

threat, the cost of the transition to the next state s′ is de-
fined as Ca(s, s

′) = 1
1−pj

. Otherwise, the transition cost to

the dead-end state sd is defined as Ca(s, sd) = −D·
log(1−pj)

pj
,

where D ≥ 0 is a fixed penalty assigned to reaching the dead
state.

The value of the penalty D should be set according to
the desired balance between the risk and the coverage time
(α/β). For example, setting D = 0 should make the model
find the shortest coverage path, while setting D = ∞ should
make it find the safest coverage path. For the in-between
cases, to help us calibrate the value of D, we will define that
when α = β, i.e., when the risk and the coverage time factors
have equal importance, the penalty on making a move to a
dangerous cell (with a minimum threat probability) will be
equal to making one step in the grid. In particular, if pmin

is the minimum threat probability, then D is set to:

D = −
α

β
·

1

log(1− pmin)
(3)

Note that this is the only place in the model where the
risk and the time factors are combined together.

This concludes the definition of the model M represent-
ing the adversarial coverage problem. To demonstrate the
model, let us consider the following simple grid (cells are
numbered 1 to 2 from top to bottom and left to right, the
numbers in the cells indicate the threat probabilities pi):

0 0
0.4 0.2

Assume that the robot starts the coverage at cell (1, 1) and
then moves right to cell (1, 2). Let us denote the current
state of the environment and the robot by s1. Figure 1
shows the graph describing the possible transitions from s1.
Circular nodes of the graph represent states of the MDP
and the rectangular nodes represent actions. Inside each
state node there is a description of the coverage status of
the environment and the robot’s position (marked by ’R’).
Edges from actions to states are annotated with transition
probabilities and costs.

As can be seen in the graph, there are two possible actions
in state s1: going left (a1) and going down (a2). Moving left
to the safe cell (1, 1) (i.e., choosing action a1) has only one
possible outcome with probability 1. In the resultant state
s2, the coverage status of the environment does not change,
only the robot’s location. On the other hand, going down
to the dangerous cell (2, 2) (i.e., choosing action a2) leads
to two possible outcomes. If the move succeeds, i.e., the
robot is not stopped by the threat, then the state changes
to s3, in which the robot is located at cell (2, 2) and this
cell is added to the coverage status of the environment. The
cost of this transition is: 1

1−0.2
= 1.25. However, if the

move fails, then the robot moves to the dead-end state sd.
The probability of the transition to sd is 0.2, which is the
threat probability in cell (2, 2). The cost of this transition

is: −D · log(1−0.2)
0.2

= 1.116D.

The solution of an MDP takes the form of a policy π
mapping states s into actions a ∈ A(s). The value function
of a policy π, V π, represents the expected cost incurred from
following policy π from any given state s in S, i.e.:

V π(s) = E

[∞
∑

t=0

Cat(st, st+1)

]

(4)

863

1 1 R

0 0

s1

Go left

a1

Go down

a2

1 R 1

0 0

s2

1 1

0 1 R

s3

Dead

sd

P = 1, C = 1

P = 0.8, C = 1.25

P = 0.2, C = 1.116D

Figure 1: An example for a state in the MDP

and its outgoing transitions. Edges from actions

to states are annotated with transition probabilities

and costs.

where s0 = s, and at = π(st) is the action taken at time
step t and causes a transition from state st to state st+1.

An optimal policy is a policy π∗ that has a minimum ex-
pected cost for all possible initial states. Such a policy is
guaranteed to exist if the following assumption holds [3]:

S8. The goal is reachable from every state with non-zero
probability.

In M, all states except for the dead-end state satisfy this
assumption (since all threat probabilities are less than 1).
We discuss how to treat the dead-end state in section 4.1.

An optimal value function, denoted by V ∗(s), assigns to
each state its value according to an optimal policy π∗, and
satisfies the following fixed point equation, also known as
Bellman’s optimality equation [2]:

V ∗(s) = min
a∈A(s)

∑

s′∈S

P (s′|s, a)
[

Ca(s, s
′) + V ∗(s′)

]

(5)

Value iteration (VI) is a standard dynamic programming
method for solving MDPs based on Eq. (5). VI algorithms
start with an initial guess for V0 and repeatedly update so
that V gets closer to V ∗.

We now prove the correctness of the model M.

Theorem 1. (correctness) The optimal policy of the MDP
M represents an optimal solution to the adversarial coverage
problem.

Proof. By definition, the optimal policy π∗ of MDP M min-
imizes the expected cost:

E

[∞
∑

t=0

Cat(st, st+1)

]

(6)

where s0 is the initial state, and at = π∗(st) is the action
taken at time step t according to the policy π∗.

The sequence of actions (a0, a1, a2, ...) taken by the op-
timal policy must eventually lead to a goal state. This is
due to the fact that all action costs are positive (except for
actions in the goal states), thus if the sequence of actions
never reaches a goal, then the expected cost of the optimal
policy becomes infinite, which violates assumption S8 that
states that there must be at least one policy that reaches a
goal state from any state.

Now denote by n the number of state transitions needed
for the optimal policy to reach a goal state from the initial
state s0. Then the expected cost can be written as:

E

[n−1
∑

t=0

Cat(st, st+1)

]

(7)

where sn is a goal state.
From the linearity of expectation, we get:

E

[n−1
∑

t=0

Cat(st, st+1)

]

=

n−1
∑

t=0

E
[

Cat(st, st+1)
]

(8)

Now let us denote by (c1, ..., cn) the sequence of cells that
were visited by the robot following the actions in (a0, ..., an−1),
and their threat probabilities by (p1, ..., pn). According to
the cost function Ca(s, s

′) in the MDP model, the expected
cost of moving to cell cj is:

E[C(cj)] = (1− pj) ·
1

1− pj
+ pj ·

[

−D ·
log(1− pj)

pj

]

= 1−D log(1− pj)

(9)

The resultant expression is also true for the expected cost
of moving to a safe cell cj , since in that case pj = 0, thus
E[C(cj)] becomes equal to 1.

Thus, the sum in Eq. (8) becomes:

n−1
∑

t=0

E
[

Cat(st, st+1)
]

= n−D

n
∑

j=1

log(1− pj) (10)

The result is a sum of two expressions - the first is de-
termined by the coverage path length (n) and the second
is determined by the accumulated risk that was taken by
the robot along the path. It is trivial to verify that if there
are two coverage paths with the same accumulated risk but
with different lengths, then the optimal policy will prefer the
shorter one. We now prove that if there are two coverage
paths with the same length but with different accumulated
risks, then the optimal policy will prefer the safer path. Let
us denote the sequence of cells visited along the first cov-
erage path by (u1, ..., ul) and the sequence of cells visited
along the second path by (v1, ..., vm). Let us assume that
the first path is safer than the second, i.e., it has a greater
probability to complete. Thus, we can write:

∏

i∈(u1,...,ul)

(1− pi) ≥
∏

j∈(v1,...,vm)

(1− pj) (11)

Since the logarithm is a monotonically increasing function
of its argument, the above expression is equivalent to:

∑

i∈(u1,...,ul)

log(1− pi) ≥
∑

j∈(v1,...,vm)

log(1− pj) (12)

864

If we multiply both sides by −D and add n (the path
length), we get:

n−D
∑

i∈(u1,...,ul)

log(1− pi) ≤ n−D
∑

j∈(v1,...,vm)

log(1− pj)

(13)
Note that the expressions on both sides of Eq. (13) are

similar to the expression on the right-hand side of Eq. (10).
Thus, we can conclude that the expected cost of a policy that
generates the first coverage path is lower than the expected
cost of a policy that generates the second one. Therefore,
the optimal policy of MDP M is guaranteed to produce the
safer coverage path.

In the in-between cases, where we want to find an opti-
mal coverage path that takes into account both the coverage
time and the accumulated risk, we can adjust the penalty D
according to the desired levels of risk and the time. The opti-
mal policy will then produce a coverage path that minimizes
the expected cost defined in Eq. (10), which is dependent on
D. The higher the penalty D is set, the more safer coverage
paths will be favored over shorter ones.

4.1 MDPs with Dead Ends
Researchers have realized that allowing dead ends in goal-

oriented MDPs could break the existing methods for solving
them (e.g., [9]). In MDPs with dead ends the objective of
finding a policy that minimizes the expected cost of reaching
the goal becomes ill-defined, since it implicitly assumes that
for at least one policy the cost incurred by all of the policy’s
trajectories is finite.

This problem can be resolved by assigning a finite positive
penalty D for visiting a dead end, and augmenting the ac-
tion set A of the MDP with a special action a′ that causes a
transition from the dead end to the goal with probability 1.
This MDP now satisfies assumption S8, since reaching the
goal with certainty is possible from every state. However,
this solution comes with a caveat - it may cause non-dead-
end states that lie on potential paths to a dead end to have
higher costs than the dead ends themselves. As a conse-
quence, the optimal policy may prefer getting into a dead
end rather than reaching the goal. Kolobov et al. [8] suggest
resolving this issue by capping the cost of each state by D.
They use the following modified Bellman equation:

V π(s) = min
{

D, min
a∈A(s)

∑

s′∈S

P (s′|s, a)
[

Ca(s, s
′) + V π(s′)

]

}

(14)
They show that MDPs with dead ends can be solved with

VI that uses Eq. (14) for updates. Moreover, all heuristic
search algorithms for solving SSPs (such as RTDP) and their
guarantees apply to this type of MDPs if they use Eq. (14)
in lieu of Bellman’s update.

5. REAL-TIME DYNAMIC PROGRAMMING
RTDP [1] is a heuristic-search DP algorithm for solving

non-deterministic planning problems with full observability.
In relation to other dynamic programming methods, RTDP
has two benefits. First, it is focused, namely it updates only
states that are encountered in the search and thus relevant
to the problem solving. Second, it has a good anytime be-
havior, i.e., it produces good policies fast and these policies
improve smoothly with time.

RTDP works by repeated trials or runs (see algorithm 1).
Each trial starts at the initial state s0 and ends in a goal
state or a dead-end state. At each step, action selection is
greedy based on the current value function, and outcome
selection is stochastic according to the distribution of pos-
sible successor states given the chosen action. The values
V (s) of the visited states are updated along the way, using
Bellman’s equation (Eq. (5)). The initial values of V (s) are
given by an heuristic function h(s).

After the termination condition is met, a coverage path is
built by following the greedy policy from the starting state
to a goal state. In this final phase, we never enter a dead-end
state; whenever the robot visits a threat point, the outcome
that represents its survival of the threat is chosen determin-
istically. This way we guarantee that a complete coverage
path is created, i.e., a path that covers all the cells in the
target area. In contrast, RTDP trials may be terminated
before the entire area is covered. This helps the algorithm
focus on updating states which the robot has more chance
to reach.

From [1], it is known that under conditions S1-S8 for SSPs,
if the initial value function is admissible, i.e., h(s) ≤ V ∗(s)
for every state s, then repeated RTDP trials eventually yield
optimal values V (s) = V ∗(s) over all relevant states (states
that can be reached by at least one optimal policy). In our
experiments we have used the admissible heuristic function
h ≡ 0.

6. FRONTIER-BASED RTDP
A good heuristic can lead to faster convergence of RTDP.

However, choosing a good admissible heuristic function is
often a non-trivial task. Moreover, in a huge state space
such as we have here, finding a good heuristic function may
not be enough. Initial results from our empirical evaluation
have indicated that one of the main reasons for the slow
convergence of RTDP is that its trials a waste considerable
amount of time moving back and forth between already vis-
ited states. For example, let us examine states s1 and s2
from the search subgraph depicted in Figure 1. Since both
cells (1, 1) and (1, 2) are safe, an RTDP trial would travel
back and forth between states s1 and s2 until the estimated
cost of the repeated transition between them becomes higher
than the cost of moving to one of the dangerous cells (2, 1)
or (2, 2). Clearly, these repeated transitions cannot be part
of the trajectory followed by the optimal policy (they only
increase the cost of the path to the goal), and thus should
be eliminated from the search.

Frontier-Based RTDP (algorithm 2) avoids such fruitless
cyclic returns in the search graph, by maintaining a list of
frontier states, defined as states that separate the covered
regions of the search space from those uncovered. Each time
a new state is encountered by an RTDP trial, it goes over
all its possible successors, and adds to the frontier list all
the unvisited successors that are not already in this list. A
state is taken out of the frontier list once it is visited by the
trial.

At each step of the trial, FBRTDP examines all the possi-
ble paths from the current state to one of the frontier states,
and chooses the path with the minimum expected cost ac-
cording to the current value function. To allow a transition
from any given state to a frontier state, we extend the set of
actions A in the MDP model with the following definition.

865

Algorithm 1 Real Time Dynamic Programming

Input: a grid G, a starting cell c0, a termination criterion ǫ
Output: a coverage path P that covers all reachable cells in G
from c0
1: function RTDP(s0) // s0 is the initial state
2: while maxs∈visited Residual(s) > ǫ do

3: RTDPTrial(s0)

4: return BuildCoveragePath(s0)

1: function RTDPTrial(s) // Execute one trial of RTDP
2: while not Goal(s) and s 6= sd do
3: // Pick best action and update hash
4: a← GreedyAction(s)
5: Update(s, a)
6: // Stochastically simulate next state
7: s← ChooseNextState(a)

1: function Goal(s)
2: return if all reachable cells from c0 are covered in s

1: function InitState(s) // Implicitly called the first time each
state s is touched

2: s.V ← h(s)

1: function GreedyAction(s)
2: return argmina∈A(s) QValue(s, a)

1: function QValue(s, a)
2: return

∑

s′∈S

P (s′|s, a)
[

Ca(s, s′) + s′.V
]

1: function Update(s, a)
2: s.V ← QValue(s, a)

1: function ChooseNextState(s, a)
2: Choose s′ with probability P (s′|s, a)
3: return s′

1: function Residual(s)
2: a← GreedyAction(s)
3: return |s.V −QValue(s, a)|

1: function BuildCoveragePath(s)
2: Create a new coverage path P
3: Add starting cell c0 to P
4: while not Goal(s) do

5: a← GreedyAction(s)
6: Make the robot move according to action a
7: Add the cell c where the robot is located to P
8: // Deterministically simulate next state
9: s← s with cell cmarked as visited and robot’s location

is at c
10: return P

Definition 1. Composite action â is an action that con-
sists of a sequence of actions (a1, ..., an) from A.

The possible outcomes of a composite action consist of all
the states that could be reached by an RTDP trial following
the sequence (a1, ..., an).

In the adversarial coverage case, any composite action has
only two possible outcomes: reaching the destination cell of
the final action in the sequence (a1, ..., an) or entering the
dead state. The probabilities of these outcomes depend on
the threat probabilities of the cells (c1, ..., cn) encountered
along the path taken by the robot following the actions in
(a1, ..., an). More specifically, the probability of the first
outcome, in which the robot is able to visit all the cells
(c1, ..., cn) without being hit by a threat, is:

P (s′|s, â) =
n
∏

i=1

(1− pi) (15)

whereas the probability of the second outcome, in which the
robot is stopped by a threat along the path, is complemen-
tary to the probability of the first outcome, i.e.,

P (sd|s, â) = 1− P (s′|s, â) (16)

More generally, to compute the probability P (s′|s, â) of
each outcome of a composite action â, we need to add up
the probabilities of all the possible paths from the current
state s to the destination state s′ of that outcome.

We now define the cost of a composite action Câ(s, s
′) as

the sum of the costs of all its primitive actions (a1, ..., an).
If we denote by (s0, ..., sn) the set of states visited by the
RTDP trial following the actions (a1, ..., an), starting from
the current state s0, then the cost of â is:

Câ(s0, sn) =
n
∑

i=1

Cai
(si−1, si) (17)

By linearity of expectation, the expected cost of a composite
action â is the sum of the expected costs of all its primitive
actions, i.e.,

E
[

Câ(s0, sn)
]

=

n
∑

i=1

E
[

Cai
(si−1, si)

]

(18)

In order to find a path with minimal expected cost from the
current state to a frontier state, at each step of the trial
we build a subgraph of the search space that consists of the
visited states so far and the frontier states. Then, we execute
Dijkstra’s shortest paths algorithm on this subgraph, where
the weight wij of the edge connecting states si and sj is
defined as the expected cost of the action leading from state
si to sj , i.e., wij = E

[

Ca(si, sj)
]

.
Dijkstra’s algorithm finds paths with minimum expected

costs between the current state s0 and all the frontier states
in this subgraph. The next action chosen by FBRTDP is the
composite action that leads from the current state s0 to the
frontier state with minimum expected cost path from s0.

Additionally, one can exploit domain-specific knowledge
to narrow down the set of frontier states and thus prune
more irrelevant states from the search. Specifically, in the
adversarial coverage case, we consider only states in which
the robot reaches an unvisited cell in the map as frontier
states. For instance, let us examine state s2 from Figure 1.
Although this state has not been encountered in the search
before, we can treat it as a non-frontier state, since in this
state the robot returns to an already visited cell (1, 1). Thus,
the possible successor frontier states of s1 that should be
considered are the states in which the robot reaches one of
the unexplored cells (2, 1) or (2, 2).

We now prove that FBRTDP has the same optimal con-
vergence guarantees as RTDP.

Theorem 2. Under conditions S1-S8, if the initial value
function is admissible, repeated FBRTDP trials eventually
yield optimal values V (s) = V ∗(s) along every optimal path
from the initial state to a goal state.

Proof. The main idea of the proof is to show that it is enough
to consider the paths to frontier states from any given state
in order to reach the optimal value function.

The first observation is that FBRTDP preserves the non-
overestimating property of h when visiting a state and up-
dating its value. Let us denote by F (s) the set of frontier

866

Algorithm 2 Frontier Based RTDP

Data structures: frontier - set of frontier states
visited - set of states already visited by the current trial

1: function FBRTDP(s0) // s0 is the initial state
2: while maxs∈visited Residual(s) > ǫ do
3: visited← {s0}
4: frontier ← all successors of s0
5: FBRTDPTrial(s0)

1: function FBRTDPTrial(s) // Execute one trial
2: while not Goal(s) and s 6= sd do

3: // Pick best composite action and update hash
4: â← GreedyCompositeAction(s)
5: Update(s, â)
6: // Stochastically simulate next state
7: s← ChooseNextState(â)
8: if s /∈ visited then

9: Add s to visited
10: UpdateFrontier(s)

1: function GreedyCompositeAction(s)
2: Build a graph G that consists of the states in visited ∪

frontier and its edge weights defined as the expected costs
of the state transitions

3: Run Dijkstra on the graph G starting from s
4: Find a frontier f with minimum cost path from s
5: Let â = (a1, ..., an) be the sequence of actions leading

from s to f on the minimum cost path
6: return â

1: function QValue(s, â)
2: return

∑

s′∈S

P (s′|s, â)
[

Câ(s, s
′) + s′.V

]

1: function Update(s, â)
2: s.V ← QValue(s, â)

1: function ChooseNextState(s, â)
2: Choose s′ with probability P (s′|s, â)
3: return s′

1: function UpdateFrontier(s)
2: Remove s from frontier
3: for every successor state s′ of s do

4: if s′ /∈ visited and s′ /∈ frontier then
5: Add s′ to frontier

states that can be reached from a given state s. Assuming
that the h values of F (s) do not overestimate the expected
cost to reach the goal, then after adding paths with min-
imum expected cost from s to each of these frontiers, the
minimum of the resulting values cannot overestimate the
expected cost to the goal from the given state.

We now define the value V (s) of a state s to be consis-
tent with the frontier states that can be reached from it, if
V (s) = mins′∈F (s)

[

E[C(s, s′)]+V (s′)
]

, where E[C(s, s′)] is
the expected cost of the optimal path from s to s′.

Now, assume the converse of the theorem, that after an
infinite number of trials, there exists a state along an op-
timal path from the initial state to a goal whose value is
not optimal. Assuming that h of all goal states is zero, if
the value of any state along any path to a goal state is not
optimal, then some frontier state along the same path must
be inconsistent. This follows formally by induction on the
distance from the goal.

If there exists a frontier state whose value is inconsistent,
then there must exist at least one such state in an arbitrary
ordering of the states. Call such a state x. By assump-
tion, x lies along an optimal path from the initial state s
to a goal state. In addition, since all the h values are non-

overestimating and this property is preserved by FBRTDP,
the values of all the states along the optimal path from s
to x, are less than or equal to their optimal values. This
ensures that state x will eventually be visited by FBRTDP.
When it is, its value will become consistent with the fron-
tier states that can be reached from it, thus violating the
assumption that it is the least inconsistent frontier state in
some ordering. Therefore, the value of every state along
an optimal path from the initial state to a goal state must
eventually reach its optimal value.

7. EMPIRICAL EVALUATION
In this section we evaluate FBRTDP in relation to RTDP

and three other algorithms: VI, the standard dynamic pro-
gramming algorithm, LRTDP (Labeled RTDP) [4], and GAC
(Greedy Adversarial Coverage), the state-of-the-art solution
to the adversarial coverage problem as described in [16]. We
use a specific map to illustrate the operation of the algo-
rithms and we also report on the statistical analysis of their
behavior based on multiple randomly generated maps with
varying parameters.

Figure 2 shows an example for the optimal safest cover-
age path found by VI on a map of size 7 × 7. The map
contains 25% threat points with 5 different threat probabil-
ities between 0.006 and 0.03, and 30% obstacles. Obstacles
are represented by black cells, safe cells are colored white
and dangerous cells are represented by 5 different shades of
purple. Darker shades represent higher values of pi (more
dangerous areas). The number of visits to each cell along the
coverage path is indicated within that cell. The termination
criterion was set to ǫ = 0.1.

Figure 2: An optimal coverage path generated from

a Value Iteration run.

As can be seen, the coverage path revisits only a single
threat point, which has the lowest threat probability. The
other five revisits are to safe cells. This coverage path is
optimal, since any coverage path of this map must revisit
at least one threat point (there is a threat point located
next to the two lower corners and the robot must get in and
out of at least one of these corners in order to complete the
coverage). The probability to complete the coverage path
generated by VI was 49.5%, and its total length was 40.
Running GAC on the same map generated a coverage path
with 44.71% probability to complete (containing 4 revisits
to threat points) and total length of 72. RTDP, LRTDP
and FBRTDP converged to the same optimal solution as
VI on this map, albeit in a much shorter time. The curves
in Figure 3 display the evolution of the expected cost to

867

the goal as a function of time for the different algorithms.
FBRTDP shows the best profile, converging to the optimal
policy in only 0.429 seconds, while RTDP, LRTDP and VI
converge to the optimal policy in 541, 530, and 803 seconds,
respectively.

10
−1

10
0

10
1

10
2

10
3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Elapsed Time (sec)

E
x
p

e
c
te

d
 C

o
s
t

FBRTDP

RTDP

LRTDP

VI

Figure 3: Expected cost to the goal vs. time for

VI, RTDP, LRTDP and FBRTDP. The time axis is

plotted on a logarithmic scale.

For map sizes larger than 7 × 7, the MDP’s state space
exceeded the available memory, thus VI could not be exe-
cuted for such maps. Moreover, in such maps, RTDP’s and
LRTDP’s convergence was very slow (it took a few hours for
them to converge on maps of size 8× 8).

Therefore, for large-sized maps we have analyzed the per-
formance of only FBRTDP and GAC. Figure 4 shows the
completion probability and the path length obtained by both
algorithms for varying α/β ratios between 0.001 and 1000.
The results are averaged on 30 random maps. In all ex-
periments we have used map sizes of 20 × 20, the ratio of
obstacles was 30%, the ratio of threats was 30% and the
number of threat levels was 5. The locations of the threat
points and the obstacles were randomly chosen. Note that
for maps of this size, FBRTDP did not converge (i.e., the
residual didn’t get below ǫ) in a reasonable amount of time,
thus we halted it after 1000 trials.

As can be seen, the coverage path length increases as the
risk factor α become more dominant in both algorithms.
The probability to complete increases until the ratio α/β is
around 5 and then it starts to decrease. This is due to the
fact that when α is too high, the algorithms try to avoid vis-
iting higher-level threats as much as possible, which makes
them revisit lower-level threats more times, thus the cover-
age path gets longer and riskier.

In all experiments, FBRTDP consistently outperforms the
greedy algorithm in terms of both the completion probability
and the path length. On average, FBRTDP achieves about
1% increase in the robot’s survivability and 5% decrease in
the path length compared to GAC (which is statistically sig-
nificant; one-tailed t-test p = 7.43 · 10−16). As can be seen
from the graph, changing the ratio between the risk and
the time factors (α/β) from 0 to ∞, under the given map
settings, can change the survivability probability by only
1.5% in both algorithms. Thus, a 1% increase in the robot’s

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

34.5

35

35.5

36

36.5

37

37.5

P
ro

b
.
T

o
 C

o
m

p
le

te
 %

FBRTDP

GAC

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

400

450

500

550

600

650

700

T
o

ta
l
P

a
th

 L
e

n
g

th

α/β

Figure 4: Probability to complete the coverage and

total path length for different risk and time levels.

x axis is plotted on a logarithmic scale.

survivability is quite dramatic. The absolute difference be-
tween the algorithms’ results depends upon map settings.
For example, when the threats ratio was decreased to 25%,
FBRTDP attained a robot’s survivability probability which
was 3% higher than GAC.

On the down-side, FBRTDP’s average running time was
significantly higher than GAC’s (179 seconds in FBRTDP,
0.154 seconds in GAC). This difference is caused by the
high number of FBRTDP trials that was needed in order
to reach convergence. However, FBRTDP typically outper-
forms GAC after a small number of trials (an FBRTDP trial
follows a greedy policy which resembles the greedy behavior
of GAC).

8. CONCLUSIONS AND FUTURE WORK
We have described how to model the robotic adversarial

coverage problem as an MDP. We have shown how the model
can be used to find an optimal solution to the problem on
small-sized maps, and obtain significant improvement over
the state-of-the-art solution for larger maps. To the best of
our knowledge, this is the first time that MDPs have been
used to represent problems in the robotic coverage field.

We have also introduced FBRTDP, a new improvement to
RTDP, which maintains a list of frontier states and extends
the set of actions that can be used by the model. FBRTDP
provides significant speedup, allows RTDP to solve the ad-
versarial coverage problem on much larger maps, and has
the same optimal convergence guarantees as RTDP.

In the future we plan to use the MDP model to handle
other variants of the adversarial coverage problem, such as
a variant in which threats may cause time delays instead
of completely stopping the robot. We also intend to evalu-
ate FBRTDP on other planning problems and compare its
performance to other heuristic algorithms for solving MDPs.

868

9. REFERENCES
[1] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning

to act using real-time dynamic programming.
Artificial Intelligence, 72(1):81–138, 1995.

[2] R. Bellman. Dynamic programming. Princeton
University Press, 1957.

[3] D. P. Bertsekas. Dynamic programming and optimal
control, volume 1 and 2. Athena Scientific, 1995.

[4] B. Bonet and H. Geffner. Labeled RTDP: Improving
the convergence of real-time dynamic programming. In
Proc. of ICAPS, volume 3, pages 12–21, 2003.

[5] J. Colegrave and A. Branch. A case study of
autonomous household vacuum cleaner. AIAA/NASA
CIRFFSS, page 107, 1994.

[6] Y. Gabriely and E. Rimon. Competitive on-line
coverage of grid environments by a mobile robot.
Computational Geometry, 24(3):197–224, 2003.

[7] E. Galceran and M. Carreras. A survey on coverage
path planning for robotics. Robotics and Autonomous
Systems, 61(12):1258–1276, 2013.

[8] A. Kolobov, Mausam, and D. Weld. A theory of
goal-oriented mdps with dead ends. In Proc. of the
Conference on Uncertainty in Artificial Intelligence
(UAI-12), pages 438–447, 2012.

[9] I. Little and S. Thiebaux. Probabilistic planning vs.
replanning. In ICAPS Workshop on IPC: Past,
Present and Future, 2007.

[10] C. Luo, S. X. Yang, D. A. Stacey, and J. C. Jofriet. A
solution to vicinity problem of obstacles in complete
coverage path planning. In Proc. IEEE International
Conference on Robotics and Automation (ICRA-02),
volume 1, pages 612–617, 2002.

[11] J. D. Nicoud and M. K. Habib. The pemex-b
autonomous demining robot: perception and
navigation strategies. In Proc. IEEE/RSJ
International Conference on Intelligent Robots and
Systems, ’Human Robot Interaction and Cooperative
Robots’, volume 1, pages 419–424, 1995.

[12] E. Nikolova and D. R. Karger. Route planning under
uncertainty: The canadian traveller problem. In Proc.
of the Twenty-Third Conference on Artificial
Intelligence (AAAI-08), pages 969–974, 2008.

[13] T. Nishizeki, T. Asano, and T. Watanabe. An
approximation algorithm for the hamiltonian walk
problem on maximal planar graphs. Discrete applied
mathematics, 5(2):211–222, 1983.

[14] C. H. Papadimitriou and M. Yannakakis. Shortest
paths without a map. In Automata, Languages and
Programming, pages 610–620. Springer, 1989.

[15] R. Yehoshua, N. Agmon, and G. A. Kaminka. Robotic
adversarial coverage: Introduction and preliminary
results. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS-13), pages
6000–6005, 2013.

[16] R. Yehoshua, N. Agmon, and G. A. Kaminka. Safest
path adversarial coverage. In IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS-14), pages 3027–3032, 2014.

869

