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ABSTRACT
We consider the classic problem of envy-free division of a
heterogeneous good (aka the cake) among multiple agents.
It is well known that if each agent must receive a contiguous
piece then there is no finite protocol for the problem, when-
ever there are 3 or more agents. This impossibility result,
however, assumes that the entire cake must be allocated.
In this paper we study the problem in a setting where the
protocol may leave some of the cake un-allocated, as long as
each agent obtains at least some positive value (according
to its valuation). We prove that this version of the problem
is solvable in a bounded time. For the case of 3 agents we
provide a finite and bounded-time protocol that guarantees
each agent a share with value at least 1/3, which is the most
that can be guaranteed.

Categories and Subject Descriptors
F.2.2 [ANALYSIS OF ALGORITHMS AND PROB-
LEM COMPLEXITY]: Computations on discrete struc-
tures

General Terms
Algorithms, Economics

Keywords
Cake-cutting, fair division, envy-free, finite algorithm

1. INTRODUCTION
Fair cake-cutting is an active field of research with appli-

cations in mathematics, economics, and recently also in AI.
The basic setting considers a heterogeneous good, usually
described as a one-dimensional interval, that must be di-
vided among several agents. The different agents may have
different preferences over the possible pieces of the good, and
the goal is to divide the good among the agents in a way that
is deemed “fair”. Fairness can be defined in several ways, of
which proportionality and envy-freeness are the most com-
monly used. Proportionality means that each agent gets at
least its “fair-share” of the good, i.e. with n agents, the piece
allotted to each agent is worth at least 1/n of the value of
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the entire good - according to agent’s subjective valuations.
Envy-freeness means that no agent would prefer getting a
piece allotted to another agent.

Proportional division is a relatively easy task, and a poly-
nomial time protocol for n agents was already provided in
the initial work of Steinhaus [?]. Envy-free division, on the
other hand, turns out to be a much harder task. Assuming
each agent needs to get a connected piece, the only protocol
for envy-free division is an infinite one; that is, it may require
an infinite number of queries to reach an envy-free division
[?]. Indeed, Stromquist [?] proved that this is necessarily
so; any algorithm for computing an envy-free division with
connected pieces must require an infinite number of queries
on some inputs. This is true even when there are only 3
agents!

This impossibility result seems to rule out any hope of
finding a useful algorithm for computing envy-free divisions.
However, a closer examination of the result reveals that it
critically relies on the assumption that the entire cake must
be divided. In many practical situations, it may be possi-
ble to leave some parts of the cake undivided, a possibility
termed free disposal. If, for example, your children spend
too much time quarrelling over the single cherry on top of
the cake, one practical solution is to throw away that cherry
and divide only the rest of the cake. As another example,
when dividing land it is usually possible (and sometimes
even preferable) to leave some parts of the land unallocated,
so that they can be used freely by the public.

1.1 Results
The question of interest in this paper is thus:

If free disposal is allowed, can an envy-free allo-
cation be computed in bounded time?

This question, however, turns out to have a trivial, but un-
interesting, answer; It is always possible to give nothing to
all agents, which is an envy-free allocation. Thus, the real
question is whether it is possible to devise a bounded time
algorithm that computes an envy-free allocation in which
each agent gets a strictly positive value. Our first result is
an affirmative answer to this question.

Theorem 1. If free disposal is allowed, there is a bounded
time protocol that for any number of agents computes an
envy-free allocation giving each agent a connected piece with
a positive value. The number of queries required by the pro-
tocol is only a function of the number of agents.

Having established that bounded-time protocols indeed
exists, we next consider the quality of the solution they offer.
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The above mentioned protocol produces an allocation that
is indeed positive for all agents, but may, in worst case, give
some players only a 1/2n−1 value (where n is the number of
agents). An envy-free allocation of the entire cake, on the
other hand, gives each agent a value of at least 1/n.

1

Theorem 2. For the case of three agents, there is a pro-
tocol with a bounded number of queries that computes an
envy-free allocation giving each agent a connected piece worth
at least 1/3, assuming free disposal.

This, in general, is the best possible, as there are instances
in which no division can give all agents more than 1/3.

Theorem 3. For the case of four agents, there is a proto-
col with a bounded number of queries that computes an envy-
free allocation giving each agent a connected piece worth at
least 1/7, assuming free disposal.

This is better than the 1/8 bound provided by Theorem 1,
but less than 1/4 of the (non-computable) envy-free division
of the entire cake. Finding better protocols for four or more
agents is an interesting open question.

1.2 Related research
The cake-cutting problem comes in two variants: the harder

variant requires that every agent receives a single connected
piece, while the easier variant allows giving each agent a
collection of disconnected pieces.

Proportional division, both for connected and disconnected
pieces, is well understood from a computational perspective.
The protocol of Steinhaus [?] requires O(n2) queries, and
an improved protocol by Even and Paz [?] requires only
O(n logn) queries. Later results proved that this runtime is
asymptotically optimal, whether the pieces are connected or
disconnected [?, ?].

Envy-free division is a much harder task, even when only
3 agents are involved. The first envy-free division proto-
col for 3 agents with connected pieces was published by
Stromquist [?]. This protocol is not discrete - it requires the
agents to simultaneously hold knives over the cake and move
them in a continuous manner. This means that this protocol
cannot be accurately executed by a computer in finite time.
A discrete and finite protocol for envy-free division for 3
agents was constructed in the same year by Selfridge and
Conway [?], but it generates partitions with disconnected
pieces.

The existence of envy-free divisions for n agents (with
connected pieces) was established only by Stromquist [?].
This latter proof is existential in nature. The construc-
tion of a protocol for envy-free division among four or more
agents was a long-standing open problem, resolved only in
1995 with the publication of the Brams-Taylor protocol [?].
A different protocol was later published by Robertson and
Webb [?]. Both these protocols might generate partitions
with disconnected pieces. Additionally, while these proto-
cols are guaranteed to terminate in finite time, their run-
time is not a bounded function of n. Su [?] presented a

1By the pigeonhole principle, the maximum value in a set
is at least as large as the mean value of the set. When the
entire cake is divided to n pieces, the mean value is 1/n.
In an envy-free division, each agent receives a piece whose
value is (weakly) maximal, hence at least 1/n.

protocol, attributed to Forest Simmons, for envy-free divi-
sion with connected pieces, but it is not finite - it converges
to an envy-free division after a possibly infinite number of
queries.

Stromquist [?] proved that an envy-free division with
connected pieces cannot be found by any finite protocol,
whether bounded or unbounded. This proved that the prob-
lem of connected envy-free division is more difficult than the
problem of disconnected envy-free division. Shortly after-
ward, Procaccia [?] proved an Ω(n2) lower bound on the
query complexity of any envy-free division protocol, even
with disconnected pieces. This proved that the problem of
envy-free division is computationally more difficult than the
problem of proportional division.

One way to make the envy-free division problem more
manageable is to restrict the value function of the agents.
Kurokawa et al [?] proved that if the value functions are
piecewise-linear, then an envy-free division can be found
in time polynomial in the size of the representation of the
value functions. Their protocol might generate disconnected
pieces. In contrast, our protocols always generate connected
pieces, they apply to arbitrary value functions and the run-
time guarantee is a function of only the number of agents,
as in the classic formulation of the cake-cutting problem.

The free disposal assumption was also studied by Arzi et
al [?]. They proved that discarding some parts of the cake
may allow us to achieve an envy-free division with an im-
proved social welfare (i.e. the sum of the utilities of the
agents is larger than in the no-free-disposal case). They call
this phoenomenon the dumping paradox. Our paper demon-
strate a different kind of a dumping paradox - we show that
dumping some parts of the cake can be beneficial not only
from an economic perspective but also from a computational
perspective. There is some related work concerning alloca-
tion of indivisible goods where the same idea of not allocat-
ing all the objects is used to get better fairness results [?,
?].2

Partial proportionality was introduced by Edmonds and
Pruhs [?, ?], who used it, like us, to reduce the query com-
plexity. They presented a protocol for finding a partially-
proportional division with a query complexity of O(n), which
is better than the optimum of O(n logn) required for finding
a fully-proportional division.

1.3 Paper structure
We proceed by formally describing our model in Section

??. Then we present a general protocol for n agents (Section
??) and improved protocols for 3 agents (Section ??) and 4
agents (Section ??).

2. THE MODEL
We assume the common 1-dimensional model in which the

cake is the unit interval [0, 1]. The cake has to be divided
among a group of n agents, giving each agent i a connected
interval Pi such that the intervals given to any two different
agents are disjoint.

Every agent i has a subjective value measure Vi, which is
absolutely continuous with respect to length. This means
that all singular points have a value of 0 to all agents, i.e.
there are no valuable ”atoms” which cannot be divided. The

2We thank an anonymous reviewer for referring us to these
papers.
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value measures are normalized such that Vi([0, 1]) = 1.
An envy-free partition is a partition in which the value of

an agent from his allocated interval is at least as large as his
utility from every other allocated interval:

∀i, j ∈ {1, ..., n} : Vi(Pi) ≥ Vi(Pj)

In addition to envy-freeness, every partition can be charac-
terized by its level of proportionality, which is the value of
the least fortunate agent (also known as egalitarian social
welfare):

Prop({Vi}ni=1, {Pi}ni=1) = min
i∈{1,..,n}

Vi(Pi)

An allocation with a proportionality of 1/n is usually
called a proportional allocation.

3. PROTOCOL FOR n AGENTS
Our first protocol is an adaptation of the Selfridge–Conway

discrete protocol for 3 agents [?]. We describe it for 3 agents
first. Start by imposing an arbitrary order on the three
agents and calling them A, B and C.

• A cuts the cake to 3 pieces that he considers to be of
equal value. Call these pieces A1, A2 and A3.

• B orders the pieces according to their value according
to his subjective value measure. W.l.o.g, suppose the
order is: A3 ≥ A2 ≥ A1.

• B cuts A3, which is his best piece, such that there are
now two pieces which he considers to be of equal value
and larger than the other two. This can be done in one
of two ways: (1) If VB(A3) ≥ 2VB(A2), then B cuts A3

to two pieces of equal value, which is VB(A3)/2. (2)
Otherwise, B cuts A3 to two unequal pieces - one hav-
ing a value of VB(A2) and the other having a smaller
value of VB(A3)− VB(A2).3

• The agents pick their pieces in reverse order: C then
B then A. Agent B is required to pick the piece that
he cut, if it is available.

We now prove that the protocol generates an envy-free
division with a proportionality of 1/4. The proof is based
on a more general lemma, which we call the EFP (Envy-
Free-Proportionality) lemma:

Lemma 1. (EFP Lemma) If a cake is partitioned to a set
of M ≥ n pieces, and each agent receives a single piece that
he considers to be at least as good as any other piece in that
set, then the division is envy-free and its proportionality is
at least 1/M .

Proof. Envy-freeness is obvious since each agent receives
one of his best pieces. Proportionality is a result of the fact
that the value functions of the agents are measures, so they
are additive. The sum of the values of all pieces is the value

3If VB(A3) = VB(A2), then no cutting is needed since agent
B already has two pieces of equal value and better than the
third piece. Here and in the rest of the paper, we ignore such
fortunate coincidences because they only make the problem
easier. We focus on the more difficult situation in which all
pieces untouched by an agent have a different value for that
agent.

of the entire cake, which is normalized to 1. Hence, by the
pigeonhole principle, the value of any best piece is at least
1/M .

Going back to our cake-cutting protocol, we see that the
protocol partitions the cake to M = 4 pieces: 3 pieces are
generated by the initial division of agent A and an additional
piece is generated by the cut made by agent B. Of these 4
pieces, each agent receives a piece which is at least as good
as any other:

• For agent C this is obvious as he is the first to choose.

• Agent B made sure that there are 2 best pieces with
equal value. When his turn arrives, at least one of
those pieces is still available and he can choose it.

• Agent A made sure that there are 3 equal pieces. One
of them was possibly destroyed by B and one possibly
taken by C, but at least one piece is necessarily still
available.

Hence, by the EFP lemma, our protocol produces an envy-
free division with a proportionality of at least 1/4.

We now generalize this protocol to n agents 4. Our main
tool is the query: Equalize(k). When an agent is asked
to Equalize(k), he has to cut zero or more pieces such that
there are a total of k pieces which he considers to be of equal
value, which is at least as good as all the other pieces.

The protocol presented above for 3 agents used two such
actions: agent A was asked to Equalize(3), which he did
by just cutting the entire cake to 3 equal pieces; agent B
was asked to Equalize(2), which he did by cutting his best
piece, either to two equal pieces or to a smaller piece which
is equal to his 2nd-best piece.

For larger values of k, Equalize(k) becomes more com-
plicated because there are more options. For example, for
k = 4, the agent should either trim his 3 best pieces in a
way that makes them equal to his 4th-best piece, or cut his
best piece to 3 equal pieces (if each of these pieces will be at
least as valuable as the 2nd-best piece), or cut his best piece
to 2 equal pieces and then trim each of these pieces and his
2nd-best piece to be equal to the 3rd-best piece, etc.

Fortunately, Equalize(k) can be solved efficiently. In fact,
it is equivalent to the following envy-free stick division prob-
lem: given m sticks of different lengths, make a minimal
number of cuts such that there are at least k pieces with
equal lengths and no other piece is longer. Reitzig and Wild
[?] devise an algorithm that solves the envy-free stick divi-
sion problem in time O(m + min (k,m) log min (k,m)). For
our purposes, it is sufficient that Equalize(k) can be done
in bounded time.

We now return to our cake-cutting protocol. The protocol
uses an integer function P (i), which will be specified later.
The general scheme of the protocol is as follows.

• For i = 1 to n− 1:

– Ask agent i to Equalize(P (n− i)).

• For i = n to 1:

4A reviewer has turned our attention to the fact that our
generalized protocol is similar to a protocol mentioned by
Brams and Taylor [?] (chapter 7, page 135) as a sub-routine
of their unbounded protocol for envy-free cake-cutting with
disconnected pieces
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– Ask agent i to select one of the pieces that he
trimmed, if any of them is still not taken. Other-
wise, he may select any piece.

We now calculate P (k). The meaning of P (k) is “the
number of best pieces I must have, if there are k agents
cutting after me and choosing before me”. We know that:

• P (1) = 2: Only one agent comes after me, he does not
need to cut any piece and will take only one piece, so
it is sufficient to have two best pieces.

• P (2) = 3, since the agent after me may have to destroy
one piece in order to have P (1) = 2 equal pieces, and
the last agent may take another piece (as explained
above).

To calculate P (3), note that the next agent may have to
cut P (2) − 1 pieces in order to have P (2) pieces that are
best according to his measure. The first agent should have
additional P (2) pieces. Hence: P (3) = [P (2)− 1] + P (2) =
2 + 3 = 5.

We can now present a protocol for 4 agents: the first agent
cuts the cake to 5 equal pieces, the second equalizes 3 pieces
(by cutting at most 2 pieces) and the third equalizes 2 pieces
(by cutting at most 1 piece). In total we have 8 pieces.
By the EFP Lemma, by letting the agents choose pieces
in reverse order, each agent receives a connected envy-free
share with a value of at least 1/8.

To calculate P (k), note that the next agent is going to
need P (k − 1) best pieces, and thus may have to cut up to
P (k−1)−1 pieces. The current agent should have P (k−1)
pieces which remain untouched by the next agent. Hence
P (k) is represented by the following recurrence relation:

P (k) = P (k − 1) + P (k − 1)− 1

whose solution is:

P (k) = 2k−1 + 1

When there are n agents, the first agent should cut the
cake to P (n− 1) pieces. The total number of pieces is:

P (n− 1) + Σn−2
i=1 [P (i)− 1] = 2P (n− 1)− 2 = 2n−1

By the EFP Lemma, each agent receives an envy-free
share with a value of at least:

1

2P (n− 1)− 2
=

1

2n−1

4. PROTOCOL FOR 3 AGENTS
The protocol of Section ?? started with an equal partition

made by an arbitrary agent. In this section we achieve a
better (and optimal) result for 3 agents by carefully selecting
the agent which makes the initial equal partition.

Initially, each of the 3 agents is required to suggest an
equal partition by marking two parallel lines that divide the
cake to three subjectively equal pieces. Mark the agents: A,
B and C; mark the equal pieces of agent X by: X1, X2 and
X3. Normalize the value functions of the agents such that
the value of the entire cake is 3; hence the value of Xi to
agent X is exactly 1.

Assume w.l.o.g. that the order of the first lines is A-B-C.5

There are 3! = 6 options for the order of the second lines,
and each of these cases deserves a special treatment. The
general scheme of each of these cases is as follows.

(1) Select one of the three agents (according to the case)
whose initial partition will be used as the basis for the al-
location. This agent will be called the “base agent” and the
other agents will be called the “runners”. For example, if the
base agent is B then the division is based on the partition
{B1, B2, B3}. This means that agent B will get one of his
equal pieces, and each of the runners (A and C) will get one
of the other two pieces or a subset of it. Thus the base agent
necessarily feels no envy and has a value of exactly 1. The
challenge now is to make sure that the two runners also feel
no envy and get a value of at least 1.

(2) Ask the two runners which of the 3 pieces they prefer.
There are several cases:

Easy case: The two answers are different. Then give
each runner his preferred piece and give the third piece to
the base agent. Obviously there is no envy and the value
per agent is at least 1, since the entire cake is divided.

If the two answers are identical, then ask the runners to
evaluate their 2nd-best piece. There are two sub-cases:

Medium case: For every runner, the value of his 2nd-
best piece is at least 1. Then ask each runner to Equalize(2),
i.e. say where the best piece should be trimmed to make it
equal to his 2nd-best piece. Select the trimming in which
the remaining piece is larger; say it was suggested by A. Give
the trimmed piece to C and let A have his 2nd-best piece.
Now both runners feel no envy and have a value of at least
1.

Hard case: For one or two runners, the value of their
2nd-best piece is less than 1. Then, a special treatment is
needed to guarantee that both runners receive at least 1. We
describe this special treatment in the following subsections.

For each of the 6 possible orderings of the second lines,
we now specify which agent is selected as the base agent
and how the division proceeds in order to guarantee that all
runners receive at least 1. Recall that we assume that the
order of the first lines is A-B-C, hence: A1 ⊆ B1 ⊆ C1.

4.1 C-B-A
The base agent is C. Both A and B have marked no line

inside C2. This means that both runners evaluate C2 as
less than 1. Hence it cannot be their best piece; their best
piece can be either C1 or C3. Both of the runners value
both these pieces as more than 1, because A1 ⊆ B1 ⊆ C1

and A3 ⊆ B3 ⊆ C3. Hence, both runners have a 2nd-best
piece with a value of more than 1, and the hard case never
happens.

4.2 C-A-B
The analysis of the case C-B-A applies as is to this case.

4.3 A-B-C
The base agent is B. A3 ⊇ B3 ⊇ C3, hence A prefers

either B1 or B2 and agent C prefers either B2 or B3. Hence,
if both of them prefer the same piece, it must be B2. In this
case, the 2nd-best piece of A is B1 which contains A1 so A
values it more than 1; similarly, the 2nd-best piece of C if

5Again we ignore the case in which two or more agents make
a mark in the exact same spot. This case can be handled by
assuming an arbitrary order between these agents.
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B3 which contains C3 so C values it more than 1. Hence
again the hard case never happens.

4.4 B-A-C
The base agent is B. B3 ⊇ A3 ⊇ C3 and B2 ⊆ A2, hence

agent A prefers either B1 or B3 and agent C prefers either
B2 or B3. Hence, if both of them prefer the same piece, it
must be B3. The 2nd-best piece for agent A is B1 which
containsA1, so its value for A is more than 1. However,
for agent C it is possible that its 2nd-best piece, B2, has a
value of less than 1 (the hard case). In this case, allocate
each agent one of his equal pieces (having a value of exactly
1), in the following way:

• A1 to agent A. By the containment A1 ⊆ B1 ⊆ C1, its
value for the other agents is less than 1 so they feel no
envy.

• C3 to agent C. By the containment B3 ⊇ A3 ⊇ C3, its
value for the other agents is less than 1 so they feel no
envy.

• B2 to agent B. By the containment B2 ⊆ A2, A values
this piece as less than 1; by the assumption of the hard
case, C also values this piece as less than 1, so both
feel no envy.

4.5 A-C-B
The previous case, A-B-C-B-A-C, is symmetric to A-B-

C-A-C-B. This can be seen by renaming the agents from
A-B-C to B-C-A and reversing the order of lines.

4.6 B-C-A
This last sub-case is the most complicated. First, ask

agent A which of the two pieces he prefers: B1 (which con-
tains A1) or C3 (which contains A3). Note that A values
both these pieces as more than 1. Proceed according to the
answer:
If agent A prefers B1, then find a division based on B’s
partition, similarly to the case B-A-C. The only change re-
quired is in the handling of the hard case. In this case, make
the following allocation:

• B1 to agent A. By the containment A1 ⊆ B1 ⊆ C1, its
value for the other agents is at most 1 so they feel no
envy.

• C3 to agent C. By the containment B3 ⊇ C3, its value
for B is less than 1 so B feels no envy; by A’s initial
choice, A also feels no envy.

• B2 to agent B. By the containment B2 ⊆ A2, A values
this piece as less than 1; by the assumption of the hard
case, C also values this piece as less than 1, so both
feel no envy.

If agent A prefers C3, then find a division based on C’s
partition, using a symmetric protocol. In the hard case,
make the following allocation:

• C3 to agent A; by the containment B3 ⊇ C3 ⊇ A3, its
value for the other agents is at most 1 so they feel no
envy.

• B1 to agent B; by the containment B1 ⊆ C1, C feels
no envy; by A’s initial choice, A also feels no envy.

• C2 to agent C. By the containment C2 ⊆ A2, A values
this piece as less than 1; by the assumption of the hard
case, B also values this piece as less than 1, so both
feel no envy.

5. PROTOCOL FOR 4 AGENTS
Encouraged by the performance of the protocol of Sec-

tion ??, we would like to extend it to produce an envy-free
and proportional allocation for n agents. Unfortunately, the
number of different cases becomes prohibitively large even
for n = 4 agents. The equal partition of each agent is made
by 3 parallel marks, so if we name the agents according to
their 1st mark, the number of options for the following two
marks is (4!)2 = 576, and in general (n!)n−2. The protocol
for each specific case may be short, but writing down all the
different cases takes too long to be practical.

This section presents a different technique and uses it to
develop an envy-free allocation protocol for 4 agents with a
proportionality of 1/7, which is better than the 1/8 guar-
anteed by the protocol of Section ??. We believe that this
technique may be used for achieving better results in future
work.

The technique involves the preference graph - a bi-partite
graph in which the nodes in one partition represent the n
agents and nodes in the other partition represent the cur-
rently available (m) pieces of the cake. There is an edge
from an agent X to a piece i if agent X prefers piece i,
i.e., ∀j ∈ {1, ...,m} : VX(i) ≥ VX(j). Note that an agent
can ”prefer” two or more pieces. This means that the agent
is indifferent between these pieces but values any of them
more than any other piece. Here are two possible preference
graphs for 3 agents:

A B C

1 2 3

A B C

1 2 3

Both graphs may be the result of agent A cutting the cake
to 3 equal pieces. In the left graph, B and C each prefer a
different piece; in the right graph, they prefer the same piece
(3).

A matching in the preference graph represents an alloca-
tion of pieces to agents. We call a matching saturated if all
agent nodes are matched (note that we do not require the
matching to be perfect since we do not require that all piece
nodes be matched).

By the EFP lemma, if a matching covers all n agents then
the corresponding allocation is envy-free and has a propor-
tionality of at least 1/m. So the problem of finding an envy-
free allocation reduces to finding a saturated matching in a
preference graph.

A well-known tool for proving the existence of saturated
matchings in bi-partite graphs is Hall’s marriage theorem.
This theorem, applied to our setting, implies that an envy-
free division exists iff every group of k agents joinly prefers
at least k pieces. In the left graph above, Hall’s condition
is satisfied, which means means that there is an envy-free
division with a proportionality of 1/3.

In the right graph above, Hall’s condition is violated by
the group {B,C}. This means that an envy-free division
using the existing pieces is impossible. In this case, the
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graph should be transformed in order to create a graph that
meets Hall’s condition. We apply transformations based on
the Equalize action.

We use a variant of Equalize which simultaneously asks
several agents to suggest an equalizing cut of a given piece.
For example, a possible action is: ”ask agents {B,C} to

Equalize(2, î)”. The first argument, 2, is the number of
equal-value pieces resulting from the action. The second in-
put, î, is a certain piece of the cake - a certain node in the
graph (for clarity we write piece numbers below a hat). Such

a query makes sense only if B and C currently prefer piece î.
The query requires an agent to indicate where piece î should
be cut so that the agent will prefer 2 pieces. The agent has
to suggest either a trimming that will make î equal to his
2nd best piece, or a halving that will divide î into two equal-
value pieces (in case the current value of î is more than twice
the value of the 2nd-best piece).

The protocol always implements the mildest cut - the cut
which leaves the largest reminder. Suppose the mildest cut-
ter is agent X. The effect of the action on the graph is as
follows:

• A new piece node is added (i.e. m grows by 1).

• A new edge is added from agent X to another piece.
In case of a trimming, the new edge is to an existing
piece which previously was X’s 2nd-best piece. In case
of a halving, the new edge is to the new piece.

• All edges from other agents to piece î are removed,
since the piece has now changed.

• For every agent Y that has no outgoing edges, a new
edge is added to Y’s new best piece. If Y is in the group
of agents that were asked to Equalize (the group {B,C}
in our example), then this new edge must be to piece

î. This is because the mildest cut was implemented, so
the remaining piece î contains a piece which is equal
to their 2nd-best piece.

Going back to the right preference graph above, in which
both B and C prefer piece 3, we now ask {B,C} to Equalize

(2, 3̂). This action has the following outcomes: (*) It adds a

new piece 4̂. (*) It creates an edge from the mildest cutter
(which can be either B or C; w.l.o.g. we assume it is B) to

his 2nd-best piece (which again w.l.o.g. we assume to be 2̂).

(*) It removes the edge A-3̂. The edge C-3̂ is kept because
C is in the group that was asked to Equalize.

Now Hall’s condition is met and we have an envy-free di-
vision with a proportionality of 1/4:

A B C

1 2 3 4

In order to reduce the number of cases to handle, we make
two assumptions:

(a) We assume that B and C have only a single outgoing
edge. In general, we assume that an agent can prefer two
pieces (i.e. assign the same maximal value to two pieces),
only if that agent made specific cuts guaranteeing that these
pieces have the same value. So when agent A cuts the cake

to 4 equal pieces, we assume that every other agent assigns
different values to the resulting pieces and thus prefers only
a single piece. This assumption does not lose generality,
because it only decreases the number of edges, and thus
makes it more difficult to find a saturated matching. In
other words, if agent B happens to prefer more than one
piece from A’s cut, we arbitrarily remove all but a single
edge, since every saturated matching in the reduced graph
is also a saturated matching in the original graph.

(b) We assume that the new piece 4 is not liked by any-
one. This assumption is also justified because, from Hall’s
perspective, it only makes our task more difficult.

In the following analysis we always make these assump-
tions and also omit the new pieces in the graphs, keeping
in mind the total number of pieces for the proportionality
calculations.

In the protocol for 4 agents we use both Equalize(2, î) and

Equalize(3, î). The latter query can be sent to agents for

whom piece î is currently the best or the 2nd-best piece. It
has the following meaning: each agent is asked where piece
î (and one additional piece) should be cut so that the agent
will prefer 3 pieces.

The protocol selects the mildest cut - the cut that leaves
the largest remainder of piece î. Suppose that the mildest
cutter of piece î is X and that X chose to also cut piece ĵ
(which was his 2nd-best piece). The protocol cuts both î and

ĵ as suggested by X. The effect on the graph is as follows:

• Two new piece nodes are added.

• Two new edges are added from agent X to other pieces.
Each edge can be either to an existing piece (which

previously was X’s 2nd-best piece ĵ or X’s 3rd-best
piece) or to a new piece.

• All edges from other agents to pieces î and ĵ are re-
moved, since these pieces are smaller now.

• For every agent Y that has no outgoing edges, a new
edge is added to Y’s new best piece. If Y is in the group
of agents asked to Equalize, we can be sure that the
piece î is now better than Y’s 3rd-best piece (since the

mildest cut of piece î was selected). So there are two

possibilities: (a) Piece î is Y’s best piece; (b) Piece

î is Y’s 2nd best piece; in that case, another piece,
which was previously Y’s 2nd-best piece, is now Y’s
best piece.

The division protocol begins with an arbitrary agent (A)
cutting the cake to 4 equal pieces. We proceed according
to the number of neighbours of the agents {B,C,D}. Re-
call that we assume that each of these agents has a single
neighbour. Hence there are three cases: either they have
in common 3 neighbours (left), 2 neighbours (middle) or 1
neighbour (right):

A B C D

1 2 3 4

A B C D

1 2 3 4

A B C D

1 2 3 4
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5.1 3 neighbours
Hall’s condition is met with 4 pieces. Therefore there is

a saturated matching which represents an envy-free division
with proportionality 1/4.

5.2 2 neighbours
Hall’s condition is violated for {C,D}. We would like to

correct this by asking {C,D} to Equalize(2, 4̂), but this may
create a conflict with B, so some preparation is needed.

Begin by checking what is the 2nd-best piece of B. By
”2nd best” we mean the 2nd piece that will be preferred by
B if B does Equalize(2, 1̂). This can be either an existing

piece (2̂, 3̂ or 4̂, in case B decides to trim 1̂) or a new piece

(5̂, in case B decides to half 1̂). We proceed according to
the following cases:

Easy case: the 2nd-best piece of B is 2̂ or 3̂ or 5̂ (i.e., dif-

ferent than the best piece of C and D). Ask B to Equalize(2, 1̂)
and get a graph like the one at the left (we assumed w.l.o.g.

that B’s 2nd-best piece is 2̂; note the edge A-1̂ was re-
moved and an edge B-2̂ was added). Next, ask {C,D} to

Equalize(2, 4̂) and get a graph like the one at the right (we
assumed w.l.o.g. that the mildest cutter was C; we also as-
sumed that his 2nd-best piece was also 2̂, which is the worst
case). Now Hall’s condition is met with 6 pieces:

A B C D

1 2 3 4

A B C D

1 2 3 4

Hard case: the 2nd-best piece of B is 4̂. This means that
for all three agents B, C and D, piece 4̂ is more valuable than
their 3rd-best piece, so we can ask {B,C,D} to Equalize(34̂).
There are now two sub-cases.

– Subcase 1 : the mildest cutter of 4̂ is B, so there are
edges from B to 1̂ and 4̂ and another piece (say, 2̂). We also

know that for C and D, 4̂ is now either their best or their
2nd-best piece, since it is better than their 3rd-best piece.
If exactly one of {C,D} prefers 4̂, then Hall’s condition is
met with the existing 6 pieces (left). If both of C and D

prefer 4̂, then ask them to Equalize(2, 4̂) and Hall’s condi-
tion is satisfied (middle); If both C and D prefer another

piece (say, 2̂), then ask them to Equalize(2, 2̂). This will

make one of them prefer 4̂ and again Hall’s condition will
be satisfied (right; both graphs illustrate the case that the
mildest cutter is D):

A B C D

1 2 3 4

A B C D

1 2 3 4

A B C D

1 2 3 4

– Subcase 2 : the mildest cutter of 4̂ is C (or equivalently

D). This means that piece 4̂ and one additional piece were

trimmed by C. If that additional piece is 2̂, 3̂ or a new piece,

then the new graph satisfies Hall’s condition regardless of
which piece was C’s 3rd-best (left, assuming the additional

trimmed piece is 3̂). The harder case is that C’s 2nd-best

piece is 1̂, and C trims it so much that it is no longer pre-
ferred by B (middle). So now B prefers piece 4̂ and Hall’s

condition is violated by {B,D}. Ask {B,D} to Equalize(2, 4̂)
and the graph will satisfy Hall’s condition with 7 pieces
(right):

A B C D

1 2 3 4

A B C D

1 2 3 4

A B C D

1 2 3 4

5.3 1 neighbour
This means that B, C and D all prefer the same piece (say,

4̂). There are three cases.
Easy case: each player has a different 2nd-best piece,

say, the 2nd-best piece of B is 1̂, of C is 2̂ and of D is 3̂
(left; dashed line indicates 2nd-best piece). Send two Equal-

ize queries on 4̂, e.g. ask {B,C,D} to Equalize(2, 4̂) and
then (assuming the mildest cutter was B) ask {C,D} to

Equalize(2, 4̂) again. This leads to a graph similar to the
one at the right (assuming the mildest cutter in the sec-
ond trimming was C), which satisfies Hall’s condition with
6 pieces:

A B C D

1 2 3 4

A B C D

1 2 3 4

Medium case: all players have the same 2nd-best piece,
say, 3̂ (left). The case in which the 2nd-best piece is one

of the new pieces, i.e. 5̂ or 6̂, is similar. Ask {B,C,D} to

Equalize(3, 4̂). Suppose w.l.o.g. that the mildest trimmer is

D and that his 3rd best piece is 2̂. For each agent in {B,C}
there are two possibilities: either his best piece is still 4̂, or
his best piece is 3̂ and his 2nd-best piece is 4̂. If the best
pieces are different, then Hall’s condition is satisfied with the
existing 6 pieces (middle). If the new best piece of {B,C} is

the same, say, 3̂ (right), then ask {B,C} to Equalize(2, 3̂).

This will make one of them prefer 4̂ and satisfy Hall’s con-
dition with 7 pieces:

A B C D

1 2 3 4

A B C D

1 2 3 4

A B C D

1 2 3 4

Hard case: two players have the same 2nd-best piece,
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say, the 2nd-best piece of B and C is 2̂ and of D is 3̂ (left).

Ask {B,C,D} to Equalize(3, 4̂). If the mildest cutter is D
then the situation is identical to the medium case. If the
mildest cutter is C (or equivalently B), then the situation is

similar, since D prefers either 4̂ or 3̂ and B prefers either 4̂ or
2̂. If their best pieces are different, then Hall’s condition is
satisfied with the existing 6 pieces (middle); if both of them

prefer 4̂ (right), then ask {B,D} to Equalize(2, 4̂) and Hall’s
condition will be satisfied with 7 pieces:

A B C D

1 2 3 4

A B C D

1 2 3 4

A B C D

1 2 3 4

To summarize this section, we have shown that it is possible
to achieve a graph satisfying Hall’s condition with at most
7 pieces. This means that it is possible to have an envy-free
division to 4 agents with a proportionality of at least 1/7.

6. CONCLUSION AND FUTURE WORK
We proved that the problem of envy-free division with

connected pieces can be solved in finite, bounded time if we
allow to leave some parts of the cake unallocated. For the
case of 3 agents, this does not require a reduction in the
guaranteed minimal value per agent, since it is possible to
guarantee that each agent receieves at least his fair share of
1/3 the total value.

A challenging task for future work is to improve the pro-
portionality bounds for n ≥ 4 agents. The protocol of Sec-
tion ??, which uses a small number of actions with a finite
number of possible outcomes for each action, suggests that it
may be possible to utilize AI planning tools for constructing
division protocols when the number of agents is sufficiently
small.

Our protocols assume that each agent must receive a single
connected piece. If this requirement is relaxed and each
agent may get several disconnected pieces, it may be possible
to attain better proportionality bounds.

It is an interesting open question whether an envy-free
and proportional division is attainable in bounded time for
4 or more agents.
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