
Inverse Reinforcement Learning from Failure

Kyriacos Shiarlis
Informatics Institute

University of Amsterdam
Science Park 904

Amsterdam, Netherlands
k.c.shiarlis@uva.nl

Joao Messias
Informatics Institute

University of Amsterdam
Science Park 904

Amsterdam, Netherlands
j.messias@uva.nl

Shimon Whiteson
Dept. of Computer Science

University of Oxford
Wolfson Building, Parks Rd

Oxford, United Kingdom
shimon.whiteson@cs.ox.ac.uk

ABSTRACT
Inverse reinforcement learning (IRL) allows autonomous a-
gents to learn to solve complex tasks from successful demon-
strations. However, in many settings, e.g., when a human
learns the task by trial and error, failed demonstrations are
also readily available. In addition, in some tasks, purposely
generating failed demonstrations may be easier than gen-
erating successful ones. Since existing IRL methods cannot
make use of failed demonstrations, in this paper we propose
inverse reinforcement learning from failure (IRLF) which
exploits both successful and failed demonstrations. Start-
ing from the state-of-the-art maximum causal entropy IRL
method, we propose a new constrained optimisation for-
mulation that accommodates both types of demonstrations
while remaining convex. We then derive update rules for
learning reward functions and policies. Experiments on both
simulated and real-robot data demonstrate that IRLF con-
verges faster and generalises better than maximum causal
entropy IRL, especially when few successful demonstrations
are available.

Keywords
Inverse reinforcement learning, learning from demonstration,
social navigation, robotics, machine learning.

1. INTRODUCTION
In inverse reinforcement learning (IRL) [10], an appren-

tice aims to learn a policy for acting in an environment,
typically modelled as a Markov decision process (MDP), for
which the reward function is not available, but successful
demonstrations provided by an expert performing the task
are given instead. An IRL algorithm tries to find a reward
function that leads the apprentice to behave similarly to the
expert while generalising well to situations for which expert
data is not available.

Numerous IRL methods have been proposed. In [14] a
structured prediction formulation using maximum margin is
developed and applied to mobile robotics. In [12], a Bayesian
formulation is proposed along with approximations neces-
sary for computational tractability. Other work considers
nonlinear representations of the reward function using Gaus-

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

sian processes [8] or decision trees [13]. IRL has also been
applied to a wide range of applications, from autonomous
driving [1, 7] to socially appropriate navigation [6, 18] and
training parsers for natural language processing [9].

Existing IRL algorithms learn only from successful demon-
strations, i.e., from data gathered by an expert performing
the task well. This is consistent with the main motivation of
IRL since it allows learning in tasks where the reward cannot
be trivially hard-coded. For example, the reward function
that allows an agent to perform complicated manoeuvres
while flying a helicopter cannot be trivially determined, but
example demonstrations are easy to obtain from an expert.

In many realistic scenarios, failed demonstrations are also
readily available. Consider for example tasks such as driving
a car. Since humans also learn this task by trial and error,
demonstrations of both successful and failed behaviour are
available. Although hand-coding a reward function for this
task would be infeasible, labelling each trial as successful
or failed is straightforward. In addition, in many tasks, it
may be easier to demonstrate failure than success. If expert
demonstrations are scarce but a safe simulator is available,
a non-expert can often easily demonstrate multiple failure
modes, yielding data that complements the scarce successful
demonstrations. This idea is explored in [16], where a robot
learns to avoid people using simulations of failed avoidance.
Finally, failed demonstrations may be used to explore the
state-action space, an idea previously leveraged in learning
from demonstration [5].

In existing IRL methods, failed demonstrations have been
treated as noise [19] and filtered out in order to improve
robustness. However, such methods do not actually use such
demonstrations for learning.

In this paper, we introduce inverse reinforcement learn-
ing from failure (IRLF), which is to our knowledge the first
IRL algorithm that can learn from both successful and failed
demonstrations. In doing so, we address a key difficulty in
IRL: the problem is typically under-constrained since many
reward functions are consistent with the expert’s behaviour.
By exploiting failed demonstrations, our method reduces
this ambiguity, resulting in faster and better learning.

To derive IRLF, we start from the state-of-the-art max-
imum causal entropy IRL [22, 20] method, which is also
related to [2]. We propose a new constrained optimisation
formulation that accommodates both successful and failed
demonstrations while remaining convex. We then derive up-
date rules for learning policies and reward functions.

We evaluate our algorithm on the task of social naviga-
tion for a mobile robot, using both simulated and real-robot

1060

data, as well as the Factory problem, a well known deci-
sion making benchmark. On the simulated scenarios, our
results demonstrate that IRLF generalises better than max-
imum causal entropy IRL when successful demonstrations
are scarce, with little additional computational cost. On the
real-robot data, IRLF also outperforms this baseline.

2. BACKGROUND
Most IRL methods formalise the underlying decision-mak-

ing problem as a Markov decision process (MDP), a model
of a discrete-time process wherein an agent’s actions may
stochastically influence its environment. In an MDP, at step
t, the system (which includes the agent and its environment)
is known to be in a state st ∈ S; the agent selects an action
at ∈ A and is awarded a real-valued reward ; and the system
jumps to state st+1 with probability P (st+1|st, at). Formally,
an MDP is a tuple 〈S,A, T,R〉, where S and A are sets of
discrete states and actions respectively, T : S×A×S → [0, 1]
is a transition function such that T (s, a, s′) = P (s′|s, a), and
R : S × A → R is the reward function. Optimally solving
an MDP involves finding a policy π : S × A → [0, 1] with
π(s, a) = P (a | s), that maximises the expected sum of re-
wards over a fixed number of decisions h. This expectation
can be expressed as the value of policy π:

V π(s) := E{
h∑
t=1

R(st, at) | s1 = s}. (1)

Given data obtained from interacting with an MDP, RL
methods seek a policy that maximises this expectation for
a given reward function. By contrast, given data obtained
from expert interactions with an MDP, IRL seeks the reward
function that the expert was maximising. IRL is useful in the
many situations in which the expert cannot easily formalize
her objectives as a reward function. Instead, the learner, an
autonomous agent, can learn the reward function from the
expert’s behaviour and use it to imitate her.

IRL is formalised as an ‘incomplete’ MDP 〈S,A, T 〉, also
known as an MDP/R. Though initially unknown, the reward
function is parametrised by K feature functions, φk(s, a):

R(s, a) =

K∑
k=1

wkφk(s, a), (2)

where w = [w1 w2 . . . wk]T is the weight vector that IRL
aims to learn.

Since w is independent of states and actions, (1) and (2)
imply a parametric form of the value function:

V π(s) =

K∑
k=1

wk

(
E{

h∑
t=1

φk(st, at) | s1 = s}

)
(3)

=:
K∑
k=1

wkµ
π,1:h
k |s1=s, (4)

where µπ,1:hk |s1=s, the feature expectation, is the expected
accumulation of instances of feature φk between steps 1 and
h under policy π given that s1 = s. The step indices are
omitted for simplicity when this expectation is over the full
horizon {1, . . . , h}.

The learner learns from a dataset of N trajectories, D ={
τ1, τ2, ...τN

}
. Each trajectory τi = 〈(sτi1 , a

τi
1), (sτi2 , a

τi
2),

. . . , (sτih , a
τi
h)〉 is a state-action sequence of length h gener-

ated by the expert. Given D, the learner can compute the
empirical feature expectation, the average accumulated in-
stances of each feature in D:

µ̃Dk :=
1

N

∑
τ∈D

h∑
t=1

φk(sτt , a
τ
t). (5)

Note that µ̃Dk is state independent and implicitly estimates
an expectation across the expert’s initial state. To fairly
compare the feature expectation of some policy π to µ̃Dk ,
we obtain an analogously state-independent measure of π’s
feature expectation by marginalising out s1:

µπk |D :=
∑
s∈S

PD(s1 = s)µπk |s1=s, (6)

where PD(s1 = s) = N1(s)/N is the maximum likelihood
estimate of the expert’s initial state distribution, given that
N1(s) is the number of trajectories with s1 = s.

The learner aims to find w such that the distance between
the vectors µ̃D = [µ̃D1 . . . µ̃Dk]T and µπ|D = [µπ1 |D . . . µπk |D]
is minimised according to some metric, while also generalis-
ing well to unseen initial conditions.

IRL methods are typically iterative. An initial guess for
w is fed to a planner that produces a policy π that is op-
timal given w. Using π, trajectories are generated from the
same initial states as in D to compute µπ|D, which is then
compared to µ̃D. Finally, w is updated to reduce to distance
between the two expectations, and the process repeats.

The task of finding w can be formulated as an optimisa-
tion problem that requires the expert trajectories to have
maximal value [1] or that do so by some margin [14]. Al-
ternatievely one may employ Bayesian inference [12, 4] to
compute a posterior distribution over the weights. In this
paper, we concentrate on methods that learn maximum-
entropy policies [22, 20]. A maximum-entropy approach is
attractive because it is probabilistic and thus robust to noise
and randomness in the actions of the expert, and results in
convex optimisation problems. The methods work by solving
the following constrained optimisation problem:

find: max
π

H(Ah||Sh) (7)

subject to: µ̃Dk = µπk |D ∀k (8)

and:
∑
a∈A

π(s, a) = 1 ∀s ∈ S (9)

and: π(s, a) ≥ 0 ∀s ∈ S, a ∈ A, (10)

where H(Ah||Sh), the causal entropy, is the conditional en-
tropy of the action sequence Ah, causally conditioned on the
state sequence Sh:

H(Ah||Sh) = −
h∑
t=1

∑
s1:t∈St
a1:t∈At

P (a1:t, s1:t) log(P (at|st)), (11)

where:

P (a1:t, s1:t) = P (s1:t−1, a1:t−1)P (st|st−1, at−1)P (at|st)
= P (s1:t−1, a1:t−1)T (st−1, at−1, st)π(st, at).

The constraints require that π consists of proper probability
distributions that match the empirical feature expectations.

1061

The optimisation problem is solved using the method of
Lagrange multipliers. First, the equality constraint (8) is
relaxed, yielding a Lagrangian:

L(π,w) := H(Ah||Sh) +

K∑
k=1

wk(µπk |D − µ̃Dk), (12)

and in turn a less constrained optimisation problem:

find: min
w

{
max
π

(L(π,w))
}

(13)

subject to:
∑
a∈A

π(s, a) = 1 ∀s ∈ S (14)

and: π(s, a) ≥ 0 ∀s ∈ S, a ∈ A, (15)

Differentiating L(π,w) with respect to π at time t results
in [20, p. 186]:

∇π(st,at)L(π,w) = P (s1:t, a1:t−1)

(
− log(π(at, st))+

H(At+1:h||St+1:h) +

K∑
k=1

wkE

{
h∑
τ=1

φk(st, at)|s1:t, a1:t−1

})
.

(16)

Setting the gradient to zero and solving for π gives:

π(st, at) ∝ exp

(
H(At:h||St:h) +

K∑
k=1

wkµ
π,t:h
k |st,at

)
. (17)

Due to (4), the rightmost term in (17) is a measure of value
for a given state and action, parameterised by w. [20] showed
that solving (17) while satisfying (14) and (15) amounts to
solving a soft Bellman equation:

Qw(s, a)soft =

K∑
k=1

wkφk(s, a) +
∑
s′

T (s, a, s′)Vw(s′),

Vw(s)soft = log
∑
a

exp(Qw(s, a)),

π(s, a) = exp(Qw(s, a)− Vw(s)).

(18)

Once π is computed for a given w, w is updated via gradient
descent, by noting that:

∇wL(π,w) = µπ|D − µ̃D, (19)

where µπ|D is computed by rolling out policy π from the
initial state distribution PD(s1) over h steps, and taking
an expectation over the features accumulated at each step.
The optimisation process terminates once the weight vector
converges to the optimal solution.

3. METHOD
In this section, we propose inverse reinforcement learning

from failure (IRLF), a novel IRL algorithm that exploits
failed demonstrations. IRLF is applicable in settings where
the apprentice has access to a dataset F of failed demon-
strations, in addition to a dataset D of successful ones.

A critical challenge in developing such a method is de-
ciding how to interpret failed trajectories. While successful
trajectories may not be optimal, it is clear that the agent
should try to imitate them, which in our case means match-
ing feature expectations. By contrast, a failed trajectory is
more ambiguous because it is unclear what about it is wrong:

was the entire trajectory incorrect, or was it almost correct
but wrong with respect to one particular feature? A key
characteristic of the method we propose is that it works well
in both these cases.

The first step is to formulate a new constrained optimisa-
tion problem analogous to (7)–(10). In addition to requiring
that the feature expectations of the learned policy match the
empirical expectations of D, we now also want those feature
expectations to be dissimilar to the empirical expectations
of F . Although successful and failed demonstrations are se-
mantic opposites, incorporating the latter into IRL proves
to be nontrivial.

A straightforward approach is to add inequality constraints
to the optimisation problem:

|µ̃Fk − µπk |F | > αk ∀k, (20)

where µ̃Fk is the empirical expectation of feature k according
to F , computed analogously to (5), and αk is a variable to
be maximised as part of the optimisation objective, which
becomes:

max
π,α

H(Ah||Sh) +

K∑
k=1

αk. (21)

However, this formulation is problematic because (20) is not
a convex constraint. In fact, this approach is equivalent to
maximising the L1 norm of µ̃F − µπ|F , which is nonconvex.

A convex relaxation of the above approach can be formu-
lated by removing the extra constraint in (20) and instead
adding to the objective the inner product of a parameter
vector θ = [θ1 . . . θk]T and the difference in feature expec-
tations, yielding the following objective function:

max
π,θ

H(Ah||Sh) +

K∑
k=1

θk(µπk |F − µ̃Fk). (22)

However, this approach is also problematic because it com-
plicates the maximisation of the Lagrangian. We now need
to find a critical point with respect to both π and θ, which
is analytically involved and numerically expensive, since it
requires calculating µπ|F each time that π is updated via
the soft Bellman backup in (18).

To avoid these difficulties, we propose a different formu-
lation. The main idea is to create new equality constraints
of the form µπk |F − µ̃Fk = zk with zk ∈ R, and introduce
the zk variables as terms in the optimisation objective. The
complete constrained optimisation problem is thus:

max
π,θ,z

H(Ah||Sh) +

K∑
k=1

θkzk −
λ

2
||θ||2 (23)

subject to: µπk |D = µ̃Dk ∀k (24)

and: µπk |F − µ̃Fk = zk ∀k (25)

and:
∑
a∈A

π(s, a) = 1 ∀s ∈ S (26)

and: π(s, a) ≥ 0 ∀s ∈ S, a ∈ A, (27)

where λ is a constant. Intuitively, the first term in the objec-
tive seeks to maximise π’s causal entropy, while the second
term balances this against maximising dissimilarity between
π’s feature expectations and the empirical expectations in F ;
the third term regularises to discourage large values of θ.

The main advantage of this formulation is that π and θ
become decoupled for a given z, making maximisation of the

1062

Lagrangian feasible while preserving convexity. Specifically,
the new Lagrangian is:

L(π, θ, z, wD, wF) = H(Ah||Sh)− λ

2
||θ||2 +

K∑
k=1

θkzk+

K∑
k=1

wDk (µπk |D − µ̃Dk) +

K∑
k=1

wFk (µπk − µ̃Fk |F − zk).

(28)

The less constrained optimisation problem of (13)–(15) re-
mains unchanged except that maximisation of the Lagrangian
is now with respect to π, θ, and z. Next, we differentiate the
new Lagrangian with respect to the primal variables, begin-
ning with θ and z:

∇θkL(π, θ, z, wD, wF) = zk − λθk, (29)

∇zkL(π, θ, z, wD, wF) = θk − wFk . (30)

Setting both derivatives to zero yields:

zk = λwFk and θk = wFk . (31)

Plugging this back into the Lagrangian gives:

max
z,θ
L(π, θ, z, wD, wF) =: Lz,θ(π,wD, wF) =

H(Ah||Sh)− λ

2
||wF ||2+

K∑
k=1

wFk (µπk |F − µ̃Fk − λwFk) +

K∑
k=1

wDk (µπk |D − µ̃Dk).

(32)

Finally, we differentiate Lz,θ with respect to π:

∇π(st,at)Lz,θ(π,w
D, wF) =

P (s1:t, a1:t−1)
(
− log(π(at, st)) +H(At+1:h||St+1:h)

+
∑K

k=1
(wDk + wFk)E

{∑h

τ=1
φk(st, at)|s1:t, a1:t−1

})
(33)

π(st, at) ∝ exp

(
H(At:h||St:h) +

K∑
k=1

(wDk + wFk)µπ,t:hk |st,at

)
.

(34)

Intuitively, (34) implies that the value of π now depends on
both Lagrangian multipliers wD and wF . We can maximise
with respect to π using a soft backup method analogous to
(18) with the crucial difference that the reward function is

now
∑K
k=1(wDk +wFk)φk(s, a). Using the resulting policy π∗,

we can define the dual objective:

L∗(wD, wF) := max
π,θ,z

(
L(π, θ, z, wD, wF)

)
= Hπ∗(Ah||Sh)− λ

2
||wF ||2+

K∑
k=1

wDk (µπ
∗
k |D − µ̃Dk) +

K∑
k=1

wFk (µπ
∗
k |F − µ̃Fk − λwFk).

(35)

Finally, to solve the dual, i.e., minimise L∗, we differentiate
it with respect to wD and wF :

∇wD
k
L∗(wD, wF) = µπ

∗
k |D − µ̃Dk , (36)

∇wF
k
L∗(wD, wF) = µπ

∗
k |F − µ̃Fk − λwFk . (37)

Setting (37) to zero yields:

wFk =
µπ
∗
k |F − µ̃Fk

λ
. (38)

(36) implies that wDk can be updated using gradient descent,

since the value of µπ
∗
k |D will change in the next iteration.

The minimising solution for wFk is found analytically. (38)
shows how IRLF pushes the apprentice away from the failed
demonstrations. If µπ

∗
k |F − µ̃Fk is positive, then wFk will also

be positive. Since wF is part of the reward function, on the
next iteration, this will encourage a new π∗ that increases
µπ
∗
k |F−µ̃Fk further. The reverse occurs when wF is negative.
A key characteristic of IRLF is that it also handles cases

where the failed trajectories are only ‘partial’ failures, i.e.,
when the failed trajectories are similar to the successful ones
with respect to some features and dissimilar with respect to
others. For example, suppose there are only two features
and µ̃D1 is similar to µ̃F1 but µ̃D2 is dissimilar to µ̃F2 . It might
seem that the updates to wDk and wFk with respect to the
first feature would cancel each other out, thereby preventing
IRLF from successfully imitating the successful trajectories
with respect to that feature. However, that is not the case.

As IRLF iterates, the gradient descent update on wD1 will
bring the model and the data closer with respect to the first
feature. Due to the similarity between µ̃D1 and µ̃F1 , the ana-
lytical update on wF1 will be smaller. Therefore, the inluence
of the failed demonstrations with respect to that feature will
be small. The opposite will happen with respect to the sec-
ond feature. Since, µ̃D2 and µ̃F2 are disimilar, the update wF2
will have an increasingly greater influence on the overall re-
ward associated with that feature. Thus, with respect to the
second feature, IRLF will be pulled towards the successful
trajectories and pushed away from the failed ones. At the
same time, this will not prevent IRLF from being pulled
towards the successfull trajectories with respect to the first
feature. Our experiments in the next section empirically val-
idate this characteristic of IRLF.

Another convenient characteristic of IRLF is that it does
not require the feature sets for successful and failed demon-
strations that make up µπ

∗
|F and µπ

∗
|D to be the same.

A designer is therefore free to represent failed demonstra-
tions with a different feature set that is more informative
than the one used for succesful demonstrations. Exploiting
this property in practice is an interesting direction for future
work.

However, a potential problem with IRLF is that, because
(36) is updated incrementally while (38) is solved analyti-
cally, performance may oscillate, as small changes in wsk may
be accompanied by large changes in wfk . This is especially
true because the feature expectations of π are influenced
by the updates on both wD and wF . Fortunately, we can
make IRLF more stable by annealing λ across iterations.
Specifically, we start with a large value of λ, meaning that
failed demonstrations are essentially ignored, and decrease
it by a factor of αλ on each iteration until a user-specified
floor λmin is reached. Intuitively, IRLF begins by ignoring
the failed demonstrations and gradually takes them into ac-
count more and more.

Algorithm 1 describes IRLF procedurally. First, we com-
pute the empirical feature expectations (lines 1-2) for both
datasets D and F using (5). The initial state distributions
are also computed (lines 3-4) by taking the normalised counts
of the initial states in the two datasets. Then, we initialise

1063

the reward function (lines 5-8) used to find a policy (line
9). Using this policy, the model feature expectations are cal-
culated as described by [21]. Next, we perform the updates
following (36) and (38) (lines 12-13). Finally, we incremen-
tally reduce λ (lines 14-15) to improve stability.

Algorithm 1 IRLF(S,A, T, φ,D,F , α, αλ, λ, λmin)

1: µ̃D ← empiricalFE(D) {using (5)}
2: µ̃F ← empiricalFE(F)
3: P s1D ← initialStateDistribution(D)
4: P s1F ← initialStateDistribution(F)
5: wFk ← 0 ∀k ∈ {1, . . . ,K}
6: Initialize wD randomly
7: repeat
8: R(s, a)← (wD + wF)Tφ(s, a) ∀s ∈ S, a ∈ A
9: π ← softPlan(S,A, T,R) {using (18)}

10: µπ|D = calculateFE(π, T, P s1D)
11: µπ|F = calculateFE(π, T, P s1F)
12: wD ← wD − α(µπ|D − µ̃D)

13: wF ← (µπ|F−µ̃F)
λ

14: if λ > λmin then
15: λ← αλλ
16: end if
17: until convergence
18: return R, π

4. EXPERIMENTS
To evaluate IRLF, we consider three domains. Two of

these concern the task of navigating a mobile robot in a so-
cial environment, a key challenge problem in social robotics
[11]. Because social rules are difficult to quantify, IRL is
well suited to this task [6, 18]. We first consider learning in
a simulated navigation domain and then repeat the process
using data gathered from experiments on a real telepresence
robot.1

Our third domain is the Factory problem, a well known
decision-theoretic benchmark domain[3]. We compare IRLF
to the original maximum casual entropy IRL [22], which we
henceforth refer to simply as IRL.

4.1 Simulated Navigation Domain
First, we consider a simulated navigation domain, shown

in Figure 1, in which a robot (blue) navigates its environ-
ment to reach a target (red) while avoiding a moving obsta-
cle (green). The state space contains all possible combined
(x, y) positions of the obstacle and the robot as well as five
possible orientations for the obstacle, with one of them being
stopped. The action space isA = {up, down, left, right, stay}.
Binary state features are computed by discretising the dis-
placement between the (x, y) coordinates of the robot to
both the obstacle and the target into five possible values for
each of the four dimensions, yielding a complete feature vec-
tor φ(s) ∈ {0, 1}20 for any s ∈ S. The transition model for
this world is deterministic. The action chosen by the robot
results in the agent moving to that direction with probabil-
ity 1. The moving obstacle maintains its initial orientation
throughout the episode. When the obstacle moves beyond
the edge of the grid, it reappears on the opposite side, while

1Code to replicate the experiments in Sections 4.1 and 4.2
can be found at : https://github.com/KyriacosShiarli/
IRLF_aamas2016_Replicate.git.

Figure 1: Simulated social navigation task.

the robot remains in the same cell until a valid action is
chosen.

We first manually define two ground truth reward func-
tions, RD

∗
= wD

∗
φ(s, a), RF

∗
= wF

∗
φ(s, a), described

further below. Then, we sample initial test states from a
uniform distribution over the state space, over which we
define P s1test, for all experimental runs. These initial con-
ditions, along with the optimal maximum-entropy policies
for RD

∗
and RF

∗
, allow us to compute feature expectations

µ̃Dtest and µ̃Ftest respectively. For each experimental run,
we then sample a set of initial training states, over which we
define P s1train, and generate the respective feature expecta-
tions µ̃Dtrain , µ̃Ftrain . These feature expectations are used
to learn reward functions and their corresponding policies
using each algorithm under evaluation. Each learned pol-
icy π∗ is then executed from initial states sampled from
P s1test to determine µπ

∗
|test, the feature expectations for the

policy at those initial conditions. Finally, we compute the
values of each policy, at those initial conditions, with re-
spect to the two reward functions, V π

∗
D,test = (wD

∗
)Tµπ

∗
|test,

V π
∗
F,test = (wF

∗
)Tµπ

∗
|test. A good algorithm will yield a high

V π
∗
D,test and a low V π

∗
F,test.

Within this domain, we consider three scenarios that dif-
fer in how RD

∗
and RF

∗
are defined. In the contrasting sce-

nario, wD
∗

rewards reaching the target and avoiding the
obstacle, while wF

∗
rewards being in the same cell as the ob-

stacle. This scenario examines the value of completely failed
demonstrations when the successful demonstrations already
show the complete desired behaviour.

In the overlapping scenario, wD
∗

is as before but wF
∗

rewards not only colliding with the obstacle, but also reach-
ing the target. This scenario examines the value of failed
demonstrations when they are similar in some respects to
the successful demonstrations.

In the complementary scenario, wD
∗

rewards only reach-
ing the target, while wF

∗
only rewards hitting the obsta-

cle. This scenario examines the value of failed demonstra-
tions when the successful demonstrations do not fully dis-
ambiguate the desired behaviour.

Figures 2a and 2d compare the performance of IRLF, with
and without incremental updates to λ, to that of IRL in
the contrasting scenario. Both versions of IRLF successfully
utilise failed demonstrations to learn better and faster than
IRL in terms of V π

∗
D,test. They achieve similar performance

to IRL in terms of V π
∗
F,test.

Figures 2b and 2e show results for the overlapping sce-
nario. Even in this challenging setting, IRLF learns better
than IRL, demonstrating the resilience of our method to the
fact that some successful and failed trajectories might be
similar and showing that our method can exploit the addi-
tional data found in failed trajectories without negative side
effects.

1064

https://github.com/KyriacosShiarli/IRLF_aamas2016_Replicate.git
https://github.com/KyriacosShiarli/IRLF_aamas2016_Replicate.git

(a) Contrasting w.r.t. wD
∗

(b) Overlapping w.r.t. wD
∗

(c) Complementary w.r.t. wD
∗

(d) Contrasting w.r.t. wF
∗

(e) Overlapping w.r.t. wF
∗

(f) Complementary w.r.t. wF
∗

Figure 2: Value over 60 iterations, for 20 runs in contrasting, complementary and overlapping simulated domains w.r.t. wD
∗

and wF
∗
.

Finally, Figures 2c and 2f show similar results for the com-
plementary scenario. The IRLF methods again perform bet-
ter in terms of V π

∗
D,test but now also perform better in terms

of V π
∗
F,test. In fact, they outperform even the successful data

in terms of V π
∗
F,test, a consequence of the complementary na-

ture of the reward functions.
IRLF’s performance with respect to V π

∗
F,test (Figure 2 bot-

tom row) illustrates how the algorithm gives priority to suc-
cessful demonstrations when necessary. For the contrasting
scenario, the probability of approaching the obstacle is al-
ready low for wD

∗
; therefore, IRL and IRLF behave similarly

with respect to wF
∗
. In the ovelapping scenario, IRLF gives

priority to reaching the target quickly, since this matches
the behavior in the successful demonstrations (even though
it is discouraged from doing so by the failed demonstra-
tions). Doing so means accumulating more value in terms of

V π
∗
F,test. In the complementary scenario, since it is possible to

satisfy both objectives simultaneously (reaching the target
and avoiding obstacles), IRLF finds a reward function that
performs well with respect to the succesful demonstrations
while at the same time having a lower value with respect to
the failed demonstrations.

In all scenarios, IRLF is more stable with incremental
updates than without. In the contrasting and complemen-
tary scenarios, IRLF with incremental updates learns more
slowly, while in the overlapping scenario it learns faster ini-
tially but plateaus slightly lower.

In the experiments above, all methods received successful
and failed demonstrations from five initial states. Hence, the
results do not address how the number of succesful demon-
strations given to the two learners affects their performance
on the test set. In the complementary scenario, failed demon-
strations are obviously important regardless of how many
succesful demonstrations are available. In the other scenar-
ios, however, it is not clear whether failed demonstrations are
still useful even when successful demonstrations are abun-
dant.

Figure 3: Performance of all three methods in the constrast-
ing scenario for different numbers of initial states.

To test this, we repeated our experiments in the constrast-
ing scenario but with 5, 50, 200 and 2000 initial states for
successful demonstrations, while keeping the failed demon-
strations to 5. For each algorithm, we plot (wD

∗
)T µ̃Dtest -

V π
∗
D,test after 60 iterations of the algorithm. The smaller this

value, the closer the learner comes to replicating the expert
on the test set of initial states. The results, shown in Figure
3, demonstrate that IRLF maintains its superiority over IRL
even if the number of initial states for which demonstrations
are given rises significantly.

To shed more light on IRLF’s behaviour, Figure 4 plots
the original and learned reward functions for IRL and IRLF
for the contrasting scenario. In the original reward function
wD
∗

(Figure 4a), the obstacle is in cell [2,2] and the goal
in cell [4,4], which explains the dips and spikes in those lo-
cations. The reward function learned by IRL (Figure 4c) is
flat in the area of the obstacle. However, IRLF, by employing
wF
∗

(Figure 4b) learns a reward function (4d) that properly
assigns a low reward to the obstacle and its surroundings.
The reward function resulting from IRLF can therefore gen-
eralise better to unseen initial conditions and environments.

1065

(a) wD
∗

(b) wF
∗

(c) IRL (d) IRLF

Figure 4: The original reward and learned reward functions for the two algorithms. Obstacle is static at [2,2]

4.2 Simulated Factory Domain
Our second simulated domain is the Factory benchmark

problem proposed by Dearden & Boutilier [3]. In this do-
main, an autonomous agent is tasked with building an object
according to specifications, which involves some sequence of
shaping, painting, cleaning and assembly operations on its
parts. Each individual operation costs some time and may
have a probabilistic outcome, possibly resulting in unwanted
side effects on the condition of each of the parts. Further-
more, there are precedence conditions on some of these op-
erations – for instance, parts must be shaped before they
can be assembled. The goal of this domain is to produce the
object in the most cost-efficient way.

While this problem has been previously tackled from the
perspective of off-line decision-theoretic planning, it is a suit-
able domain to demonstrate the applicability of learning
from demonstration, and in particular of IRLF. In a real
manufacturing problem, human demonstrations on how to
properly execute the manufacturing task, as well as failed
demonstrations, in which the resulting object did not meet
the quality specifications, would be readily available. Fur-
thermore, consider a situation where the conditions in the
factory problem may be subject to changes (for example,
in the shapes or sizes of the parts) which may affect the
optimal manufacturing policy. Learning a reward function,
as opposed to learning a policy from demonstration, would
make it easier for an autonomous agent to adapt to these
changes.

(a) Value w.r.t. wD
∗

(b) Value w.r.t. wF
∗

Figure 5: Value over 30 iterations, for 15 runs of learning in
the Factory domain.

Our instantiation of the Factory problem follows Dearden
& Boutilier’s description [3] (c.f. Section A.2). It has 512
states, factored into 9 binary variables, and 10 actions. The
expert demonstrations were drawn from the optimal policy
for that domain according to its original additive rewards

Feature
Index i

Proposition wD
∗

i wF
∗

i

1 AClean 0.1 1
2 BClean 0.1 -0.1
3 APainted 0.2 0.4
4 BPainted 0.2 0
5 Joined 0.4 -2

Table 1: Reward functions for the Factory domain.

(wD
∗

i , Table 1), while the failed demonstrations were drawn

from a policy derived from a different reward function (wF
∗

i ,
Table 1). Note that we consider only 5 features, correspond-
ing to those state factors that have non-zero rewards. Each
demonstration starts from random initial conditions and the
evaluation proceeds in an identical manner to Section 4.1.

Figure 5 shows the results, which are consistent with our
previous observations. Figure 5a shows that the reward func-
tion learned using IRLF is capable of yielding a policy that
achieves a higher V π

∗
D,test than IRL, and very close to that of

the original policy. Furthermore, Figure 5b shows that IRLF
is capable of achieving lower V π

∗
F,test than IRL. These results

not only demonstrate the stability and reliability of IRLF,
but further confirm the usefulness of failed demonstrations
in inverse reinforcement learning.

4.3 Real Navigation Domain
We also evaluate the performance of IRLF on a social

navigation dataset gathered using is a commercially avail-
able telepresence robot that has been augmented with extra
sensors and processors. The collected dataset consists of 47
trajectories of an expert navigating the robot towards an in-
teraction target while avoiding a moving or standing person
in a socially appropriate way. The positions of the people
and the robot were accurately recorded using a motion cap-
ture system covering an area of 5m × 5m. A sample of the
collected trajectories are shown in Figure 6.

For safety reasons, the failed dataset F , which consists
of 59 trajectories, was collected by driving the robot in a
simulator in a way that intentionally violates social norms,
e.g., running into, following, or standing next to people.

To model this domain as an MDP, we define a state space
S consisting of discretised positions for both the obstacle
and the robot, as well as the discretised orientation of the
obstacle, yielding a total of 837, 808 states. The action space
consists of eight possible directions for robot movement, and
an action that stops the robot. Using D, we learned a fac-

1066

Figure 6: A sample of trajectories from the real navigation
domain data set. Darker dots occur later in time.

tored stochastic transition function T . Furthermore, we de-
fined a feature set φ(s, a) of 1401 binary features, encoding
the relative position of the robot from both the target and
the obstacle, as well as their relative orientations.

Applying IRL and IRLF to this domain is straightfor-
ward. However, measuring performance is not, because we
do not have access to the ground truth reward function
needed to compute a policy’s value. In previous work on
IRL, researchers have taken multiple approaches to evalua-
tion. Some have considered simulated domains [8, 17, 15] as
in our results above, where a ground truth reward function is
available. Others have considered real-world data but relied
on qualitative evaluation [14], domain-specific performance
measures [9] or ad-hoc performance measures [18].

Since none of these approaches is entirely satisfactory, we
adopt a different approach. First, we apply IRL to both D
and F and derive reward functions, RD and RF and their
respective weights wD

∗
and wF

∗
, which we thereafter treat

as ground truth. Because MDPs are generative models, we
can use these two separate reward functions to generate data
while preserving access to the ground-truth reward functions
that are so essential to evaluation. We are therefore able to
conduct an evaluation analogous to the done in the simu-
lated navigation domain, with the key difference that the
wD
∗

and wF
∗

are learned from real data.
Figure 7, which shows example trajectories generated by

these reward functions, confirms that wD
∗

produces human-
like trajectories, while wF

∗
generates inappropriate beha-

viour. These two reward functions can therefore be consid-
ered to be two separate agents whose demonstrations IRLF
uses in order to learn a single reward function in a principled
manner.

Figure 8 shows the results of our experiments on the real
data, averaged across 6 independent runs. These results de-
monstrate that both versions of IRLF substantially outper-
form IRL with respect to wD

∗
. The performance of all meth-

ods is similar with respect to wF
∗
, which suggests that, in

this domain, imitating good behaviour is sufficient to score
very low with respect to wF

∗
. IRLF without incremental

updates to λ clearly oscillates, as expected, but still con-
verges, while IRLF with incremental updates is stable and
achieves a higher value than IRL. Overall, the consistency
of these results with those of the simulated domain provides
further confirmation that failed demonstrations are useful
for IRL, allowing it to generalise better to new initial condi-

tions. Furthermore, IRLF is a useful method for exploiting
this data.

Figure 7: Sample trajectories from wD
∗

(top) and wF
∗

(bot-
tom). Darker dots occur later in time.

(a) Value w.r.t. wD
∗

(b) Value w.r.t. wF
∗

Figure 8: Value over 30 iterations, for 6 runs on real data.

5. CONCLUSIONS AND FUTURE WORK
This paper introduced IRLF, the first inverse reinforce-

ment learning algorithm that can learn from successful as
well as failed demonstrations simultaneously. Starting from
the maximum causal entropy IRL method, we proposed a
new constrained optimisation formulation that accommo-
dates both types of demonstrations while remaining convex
and derived update rules for learning reward functions and
policies. Our simulated navigation experiments investigated
the properties of IRLF in cases where the succesful and
failed demonstrations are either constrasting, overlapping,
or complementary. The results in the overlapping scenario
show that IRLF works even if the failed demonstrations are
similar to the successful ones. We also presented results on
a simulated factory domain as well as on real robot data
from a social navigation task. These results clearly suggest
that IRLF consistently learns faster and generalises better
than the original IRL algorithm in consideration. In future
work, we aim to investigate whether other IRL methods can
also be extended to exploit failed demonstrations. In addi-
tion, we plan to conduct more experiments with real robots,
including deploying an IRLF-learned policy on a robot.

6. ACKNOWLEDGEMENTS
This work is funded by the EC-FP7 under grant agree-

ment no. 611153 (TERESA). We would like to thank the
Social Robotics group of University Pablo Olavide (UPO)
for their help in collecting and processing the data used in
the experiments.

1067

REFERENCES
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via

inverse reinforcement learning. In Proceedings of the
twenty-first International Conference on Machine
Learning (ICML), page 1. ACM, 2004.

[2] M. Babes, V. Marivate, K. Subramanian, and M. L.
Littman. Apprenticeship learning about multiple
intentions. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages
897–904, 2011.

[3] R. Dearden and C. Boutilier. Abstraction and
approximate decision-theoretic planning. Artificial
Intelligence, 89(1):219–283, 1997.

[4] C. Dimitrakakis and C. A. Rothkopf. Bayesian
multitask inverse reinforcement learning. In Recent
Advances in Reinforcement Learning, pages 273–284.
Springer, 2012.

[5] D. H. Grollman and A. Billard. Donut as i do:
Learning from failed demonstrations. In Robotics and
Automation (ICRA), 2011 IEEE International
Conference on, pages 3804–3809. IEEE, 2011.

[6] P. Henry, C. Vollmer, B. Ferris, and D. Fox. Learning
to navigate through crowded environments. In
Proceedings of the IEEE International Conference on
Robotics & Automation (ICRA), pages 981–986.
IEEE, 2010.

[7] M. Kuderer, S. Gulati, and W. Burgard. Learning
driving styles for autonomous vehicles from
demonstration. In Proceedings of the IEEE
International Conference on Robotics & Automation
(ICRA), Seattle, USA, volume 134, 2015.

[8] S. Levine, Z. Popovic, and V. Koltun. Nonlinear
inverse reinforcement learning with gaussian processes.
In Advances in Neural Information Processing
Systems, pages 19–27, 2011.

[9] G. Neu and C. Szepesvári. Training parsers by inverse
reinforcement learning. Machine learning,
77(2-3):303–337, 2009.

[10] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse
reinforcement learning. In Proceedings of the
International Conference on Machine Learning
(ICML), pages 663–670, 2000.

[11] E. Pacchierotti, H. I. Christensen, and P. Jensfelt.
Embodied social interaction for service robots in
hallway environments. In Field and Service Robotics,
pages 293–304. Springer, 2006.

[12] D. Ramachandran and E. Amir. Bayesian inverse
reinforcement learning. Urbana, 51:61801, 2007.

[13] N. Ratliff, D. Bradley, J. A. Bagnell, and
J. Chestnutt. Boosting structured prediction for
imitation learning. Robotics Institute, page 54, 2007.

[14] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich.
Maximum margin planning. In Proceedings of the 23rd
international conference on Machine learning, pages
729–736. ACM, 2006.

[15] C. A. Rothkopf and C. Dimitrakakis. Preference
elicitation and inverse reinforcement learning. In
Machine Learning and Knowledge Discovery in
Databases, pages 34–48. Springer, 2011.

[16] C. Sungjoon, K. Eunwoo, L. Kyungjae, and
O. Songhwai. Leveraged non-stationary gaussian

process regression for autonomous robot navigation. In
Proceedings of the IEEE International Conference on
Robotics & Automation (ICRA), 2015.

[17] U. Syed and R. E. Schapire. A game-theoretic
approach to apprenticeship learning. In Advances in
neural information processing systems, pages
1449–1456, 2007.

[18] D. Vasquez, B. Okal, and K. O. Arras. Inverse
reinforcement learning algorithms and features for
robot navigation in crowds: An experimental
comparison. In Proceedings of Intelligent Robots and
Systems (IROS 2014), pages 1341–1346. IEEE, 2014.

[19] J. Zheng, S. Liu, and L. M.-S. Ni. Robust bayesian
inverse reinforcement learning with sparse behavior
noise. In Proceedings of the National Conference on
Artificial Intelligence, 28th AAAI Conference on
Artificial Intelligence, AAAI 2014, 26th Innovative
Applications of Artificial Intelligence Conference,
IAAI 2014 and the 5th Symposium on Educational
Advances in Artificial Intelligence, EAAI 2014,
Quebec City, Canada, page 2198, 2014.

[20] B. D. Ziebart. Modeling purposeful adaptive behavior
with the principle of maximum causal entropy. PhD
thesis, Carnegie Mellon University, 2010.

[21] B. D. Ziebart, J. A. Bagnell, and A. K. Dey. The
principle of maximum causal entropy for estimating
interacting processes. Information Theory, IEEE
Transactions on, 59(4):1966–1980, 2013.

[22] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K.
Dey. Maximum entropy inverse reinforcement
learning. In AAAI, pages 1433–1438, 2008.

1068

	Introduction
	Background
	Method
	Experiments
	Simulated Navigation Domain
	Simulated Factory Domain
	Real Navigation Domain

	Conclusions and Future Work
	Acknowledgements

