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ABSTRACT
This work tackles the problem of quadrotor formation con-
trol, using exclusively on-board resources. Local inter-robot
localization systems are typically characterized by limited
sensing capabilities, either in range or in the field of view.
Most of the existing literature on the subject uses inter-robot
communication to obtain the unavailable information, but
problems such as communication delays and packet loss can
seriously compromise the system stability, especially when
the system shows fast dynamics such as that of quadrotors.
This work focuses on the sensor field of view limitation: it
proposes a formation control algorithm that extends the ex-
isting methods to allow each quadrotor to control the occu-
pied area of its sensor field of view, while moving to the right
place in the formation. This decreases the situations when
necessary inter-robot information is unavailable through lo-
cal sensing, thus reducing the communication requirements.
The system is proven to be stable when this algorithm is
applied. Results, both using simulated and real quadrotors,
show the correct behavior of the algorithm without the use
of communications, even when each robot can only sense a
subset of the robots in the group.
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1. INTRODUCTION
The use of Unmanned Aerial Vehicles (UAVs) has been

substantially increasing because their design has been sim-
plified and their control techniques made more robust, ulti-
mately enabling for vehicles of smaller size. A Smaller ve-
hicle size allows for a more convenient exploration of multi-
UAV systems in confined spaces, and at close range. Quadro-
tors are typically chosen due to their high maneuverability
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in such confined spaces. Additionally, through vehicle coor-
dination, the geometry of these systems can be explored to
minimize the impact of each vehicle limitations. For exam-
ple, UAVs can organize to pick and transport heavier objects
with a specific shape, or to direct their limited on-board
cameras so that their combined images provide full 3D en-
vironment coverage. This coordination is achieved through
formation control algorithms.

Formation control is a widely studied topic, both in 2D
and 3D configurations, with an extensive literature. For-
mation control laws typically require that each robot knows
the relative positions between itself and its neighbors. In
most common approaches, the robots obtain this informa-
tion by sharing via a communication channel their absolute
positions with respect to an environment, computed using
Global Navigation Satellite Systems (GNSSs) [20] in outdoor
environments, Motion Capture Systems (MCS) [19, 1, 9] in
indoor environments, or even Montecarlo or SLAM methods
[16, 15], if the required on-board positioning sensors and en-
vironment conditions allow to do so.

Other approaches use the on-board sensors to directly ex-
tract the relative positions between robots, without the need
for communication or external systems. However, these sen-
sors have limited capabilities, either on accuracy or Field Of
View (FOV). This is especially true for the 3D case, because
of the challenging sensing design, either due to the fact that
the robot body represents an obstacle for the sensor itself, or
because there is a compromise between the sensing area that
needs to be covered, and the resolution of the sensor. For
example, in [18, 6], on-board cameras extract accurate rela-
tive bearing information, which is then used in a formation
control algorithm. However, since the cameras are charac-
terized by a limited FOV, the information required from the
neighbors that are not directly observed has to be provided
also through communication. In [17], the proposed frame-
work uses both range and bearing information collected by
each quadrotor to reduce the amount of required observed
neighbors per quadrotor. However, if the required neighbors
are not observed, communication is still needed to acquire
the missing information.

Since high control rates are necessary to stabilize the highly
dynamical system formed by these vehicles, all previous ap-
proaches become fragile to packet loss or latency in commu-
nication links. This is particularly important for short range
inter-robot interactions, requiring faster reaction times. To
keep communication to a minimum, the sensor constraints
must be directly addressed. This was done mostly for ground
vehicles, and for sensor range constraints, using potential
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field algorithms that include specialized terms to guarantee
that neighbor behavior will not compromise this type of con-
straint [8, 12]. FOV constraints have also been considered,
but just for leader-follower formations, where each follower
controls its FOV in a way to maximize the observation of
its leader [11, 10, 21]. However, since only one neighbor
is considered inside the sensor FOV, the multi-robot sys-
tem is bounded to a limited number of inter-robot connec-
tions, compromising the number of geometries achievable
for formation control. Additionally, less connections means
reduced system reactivity.

This work tackles these last issues. Sensor range limi-
tations are left aside, and for the experiments, it was made
sure that all the necessary inter-robot positions were smaller
than the sensor range limits. Also, sensor FOV constraints
are considered to be on the horizontal dimension, as typical
quadrotor formations simply lie on horizontal planes. With
the previous assumptions, the work proposes an algorithm,
applicable to quadrotors or any robot with similar dynam-
ics. In particular, we extend the algorithm presented in [5]
for a second order holonomic robot dynamics, where each
quadrotor uses an additional term to control the critical an-
gle formed between the two neighbors closest to sensor FOV
limits. This is performed by making the quadrotor moving
closer or further away from the neighbors, depending if the
angle needs to increase or decrease respectively. Addition-
ally, this angle is also centered in the FOV to optimize the
sensor safety margins.

The algorithm provides two contributions. Firstly, quadro-
tor trajectories become constrained to cope with the vehi-
cle’s sensor limitations when observing multiple neighbors.
Secondly, by also controlling angles, this algorithm is able
to tackle configurations not achievable by some of the pre-
vious algorithms (as the one in [5]) in presence of sensor
FOV constraints. This work shows that the terms added in
the algorithm do not compromise the system stability. Also,
although no discussion is provided about the system initial
conditions or disturbances for which the FOV constraints
are still maintained, results (simulated and real) show that
for typical situations, these constraints are effectively con-
trolled. Thus, the proposed algorithm allows for formation
control without the use of inter-robot communication.

This paper is organized as follows. Section 2 provides
basic definitions and assumptions about the quadrotor dy-
namics and its sensing capabilities. Based on those defini-
tions, Section 3 formally introduces the FOV constraints and
discusses how to built valid geometric formation configura-
tions. Section 4 presents the formation control algorithm,
along with its stability properties. In Section 5, a set of
simulation and real experiments are performed to show the
correct behavior of the algorithm, and some modifications
are designed to cope with real world disturbances. The work
concludes with some remarks in Section 6.

2. BASIC DEFINITIONS
This work considers a group of N quadrotors, forming at

any time a geometric configuration, defined by a full net-
work graph G := (V, E). In this graph, V is the set of N
nodes, each one representing a quadrotor, described in a 3D
environment by a position xi ∈ R3, a velocity, vi ∈ R3,
and an attitude, given by the roll φi, pitch θi, and yaw ψi,
angles. Each quadrotor is considered to have an on-board
auto-pilot and inertial sensors, which allows for the control

vertical
plane

horizontal
plane

flying and 
sensor
frames

inertial
frame

Figure 1: Description of the quadrotor flying frame
(xm, ym, zm), with respect to the inertial frame. The
quadrotor is placed horizontally for illustrative pur-
poses, but it can have non-zero roll and pitch. Note
the sensor horizontal (θh) and vertical (θv) FOV.

of the vehicle thrust together with the estimation and con-
trol of its attitude. This enables the quadrotor to move to
any desired 3D position, so it can be considered has an al-
most perfectly holonomic vehicle. Note that only roll and
pitch control together with the thrust control are needed to
move the vehicle on the three position axes, leaving the yaw
control free to be used for independent purposes (as it will be
discussed later). Therefore, we split the pose control of the
quadrotor into 3D position control, with a double integrator
model, and yaw control with a single integrator dynamics:

ẍi = ui, ψ̇i = uψi , (1)

where u = (uxi , u
y
i , u

z
i ) and uψi are the desired control inputs

for the quadrotor 3D position and yaw angle respectively.
The single integrator on the yaw angle is a feature commonly
provided by the on-board auto-pilots of quadrotors.

The set of all N(N − 1)/2 edges of G is represented by
E , where each edge represents relative kinematic informa-
tion between two quadrotors, namely relative position, xij =
xj − xi = (xij , yij , zij)

T and, as derived quantity, relative
velocity vij = vj − vi = (vxij , v

y
ij , v

z
ij)

T . To control G, the
quadrotors need to collect information represented by a sub-
set of the previous edges, using their on-board sensors. The
information that can be obtained at any time is described
by a sensing graph, defined by GS := (V, ES), with ES repre-
senting the set of edges of G, for which the relative positions
between the respective quadrotors can be measured using
the on-board sensors.

Each quadrotor i is considered to have an on-board sen-
sor, measuring the position xij and the velocity vij , in a
reference frame described in Fig. 1. The frame origin is the
same as the quadrotors, and the z-axis is aligned with the
inertial frame (vertical). In the remainder of this paper, we
will call this frame the flying frame; it has an attitude of
(φ, θ, ψ) = (0, 0, ψi) with respect to the inertial frame. The
sensor has its FOV center in the horizontal xy-plane, consid-
ered to be the sensor direction, rsi . The FOV is represented
by its horizontal, θh, and vertical, θv, components, defined
with respect to the previous described horizontal plane, and
a vertical plane formed by rsi and the z-axis of the flying
frame. This can be assumed as quadrotors usually move
using low roll and pitch values, and the distances between
the center of the robot and the sensor are small. In case the
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Figure 2: Inter-edge aperture between the edges
connecting nodes j and k, to node i, both within the
FOV of node i. Apertures formed by different node
pairs, for example using node l, are contained inside
it. Note the optimal sensor direction, rψi , equally di-
viding the occupied area on both sides of the FOV.

quadrotor and the sensors are tilted, the measures extracted
on the sensor frame can be transformed into the flying frame,
using the φi and θi values acquired from the inertial sensors.

Since the z-axis of the flying frame is the same for all
quadrotors, it is useful to decouple the formation control
into horizontal and vertical components (as explained later
in Section 4). For this reason, the previous relative kine-
matic information is divided into horizontal components,
xh
ij = (xij , yij)

T and vh
ij = (vxij , v

y
ij)

T , and vertical compo-
nents, zij and vzij . The horizontal position component can

be transformed into polar coordinates (ehij , r
h
ij)
T , where ehij

is the absolute distance between quadrotors i and j, and rhij
is a unitary vector defining the direction between i and j.
The next section formally introduces the FOV constraints
for each quadrotor, and discusses the type of geometric con-
figurations considered in this work.

3. FIELD OF VIEW CONSTRAINTS
The sensor FOV constraints can be mathematically de-

scribed through the concept of inter-edge aperture. Given
two nodes j and k connected to node i, the inter-edge aper-
ture of the respective connection edges, αjik, is defined by
the angle between the relative position vectors represented
by those edges, as shown in Fig. 2. This concept is divided
into horizontal and vertical components, by projecting the
edges in the respective planes defined in Fig. 1. Therefore,
the inter-edge aperture of every pair of edges belonging to
GS for a given quadrotor i must be smaller than θh in the
horizontal case, or θv in the vertical case. Only the biggest
aperture for each quadrotor needs to be considered, because
if this value is smaller than the FOV limit, all the others
apertures will be also smaller, as illustrated in Fig. 2. Our
algorithm operates on the FOV constraints by directly con-
trolling these apertures, as explained in the next section.

Note that if the FOV constraints are verified, there is
always a quadrotor yaw ψi, describing the sensor direction,
rsi , that allows all neighbors to be observed. In fact, it is
possible to define an optimal sensor direction rψi , illustrated
in Fig. 2, defined so that it equally distributes the sensing
area around the center of the largest inter-edge aperture,
optimizing the measurement safety margins.

A targeted geometric configuration is defined by a graph
G whose edges correspond to desired inter-robot positions
xdij = (xdij , y

d
ij , z

d
ij), and zero velocity. From this informa-

tion, all the desired apertures between sets of three nodes,
αdjik can be obtained. To control this configuration, a forma-

tion control graph GF := (V, EF ) is defined, where each edge
in EF corresponds to a controlled inter-robot distance. The
configuration is controllable if the following two conditions
are verified: GF is rigid, so that it has a unique solution
(the reader is referred to [14] for more details about graph
rigidity); GS must contain enough information to enable the
control of all edges in GF . This work assumes GS and GF
fixed and defined a priori. Note that, in order to achieve
the desired GS , the robots need to start the algorithm in
positions that are already respecting the FOV constraints.

Note that the previous section described the sensor di-
rection, rsi to be always directed and controlled horizon-
tally. Therefore, this work assumes geometric configurations
where all quadrotors have the same height, or smaller than
the vertical FOV, avoiding therefore vertical FOV violations.
Additionally, this work considers the edges in ES and EF
to be bi-directional. For ES edges, this concretely means
that the quadrotors forming any given edge can mutually
sense each other. For EF edges, this concretely means that
both quadrotors forming the edge actively participate on
the control of the mutual distance. These bi-directionality
assumptions are made to reduce the distance instability be-
tween quadrotors, caused by possible delays in the vehicle
perception-to-action loop.

The previous assumptions can limit the formation config-
urations that can be considered, as the number of robots
increases. This work focuses on the simplest type of forma-
tions, placing the robots on the convex hull of the target for-
mation shape. Robots can also be placed inside the convex
hull, at different heights to avoid sensor occlusion. Their
neighbors can be selected randomly as long as the largest
inter-neighbor aperture respects the sensor FOV constraints,
as explained above. However, should the previous edge bi-
directionality assumptions be kept, since robots inside the
convex hull observe a reduced neighbor set, the number of
inter-robot connections achievable by the other robots is also
reduced. Uni-directional edges can be used if the overall for-
mation rigidity is kept, but this case is left for future work.
The next section introduces the formation control algorithm,
and how it provides sufficient controllability to establish GF .

4. CONTROL ALGORITHM
The algorithm leverages two distinct components: the

control of the inter-robot distance and the maintenance of
FOV visibility. To control the inter-robot distances, each
distance is given a weight, describing how strongly the quadro-
tor controls it. The weighting information can be elegantly
represented using a Laplacian matrix, L, where the element
Lij defines the control weight for the distance between neigh-
bors i and j. This matrix is positive definite, the sum of the
elements of each line sum to zero, and Lii = −

∑
j 6=i Lij.

If Lij = 0, the distance between quadrotors i and j is not
directly controlled. In this work, L is constant, since GF is
assumed constant. Each quadrotor controls distances using
inter-robot position information measured by its on-board
sensors, in the flying frame. Since the z-axis of this frame is
the same for all quadrotors, and equal to the z-axis of the
inertial frame, this dimension is controlled with a simple
consensus equation, similarly to [3, 13], as follows:

uzi = kp

N∑
j=1

Lij

(
zdij − zij

)
+ kv

N∑
j=1

Lijv
z
ij , (2)
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where uzi is the desired vertical acceleration for quadrotor
i, kp and kv are gain parameters for the position and the
velocity components of the controller. To control the hori-
zontal dimension, the range and bearing controller proposed
in [5] is used, but extended for a double integrator case and
simplified to the case of holonomic vehicles:

uh
i = kp

N∑
j=1

rhijLij

(
ehij − edij

)
+ kv

N∑
j=1

Lijv
h
ij, (3)

where uh
i = (uxi , u

y
i )T is the desired horizontal input in

the flying frame for quadrotor i and edij is the desired hori-
zontal distance between quadrotors i and j, obtained from
||(xdij , ydij)||. In both the previous equations, the position
component aims at achieving the formation requirements,
while the velocity component stabilizes the second order dy-
namic system. Distances controlled in this way allow the
edges representing them to be added into GF . To control
these distances, the respective relative position information
is needed, which means these control edges must also belong
to ES .

The second component of the algorithm controls the FOV
constraints, which can happen as the formation rotates around
its z axis, or when quadrotors move to their desired po-
sitions. To solve this issue, two new terms are included,
allowing each quadrotor to additionally control the largest
observed inter-edge aperture, and the sensor direction, rsi ,
in the horizontal plane. A simple yaw controller is used to
derive rsi to the optimal direction defined in the previous
section, rψi . This is done by computing the angle between
the two vectors, δψ, illustrated in Fig. 2. Note that rsi is
always known, and rψi is computed by averaging rij and rik.
The obtained δψ is given as the control input of the yaw
controller and driven to zero:

uψi = −kψδψi, (4)

where uψi is the yaw control input defined in Eq. 1, and kψ is
a control gain. The biggest inter-edge aperture observed by
quadrotor i, αkij , is controlled by adding a term to Eq. 3,
as follows:

uh∗
i = uh

i + kα(αdkij − αkij)(Krci +K⊥rc⊥i ), (5)

where αdkij is the desired aperture between quadrotor i and
neighbors j and k currently defining the biggest aperture, kα
is a control gain, and K and K⊥ will be chosen according to
the stability analysis presented in Proposition 1. Vector rci ,
illustrated in Figs. 3 and 4, is a unitary vector defining the
direction between quadrotor i and the averaged formation
center, Ci. This center is defined for each quadrotor, and
its displacement from the robot is computed using the first
term of Eq. 3:

rci ei =

N∑
j=1

rhijLije
h
ij , (6)

where ei is the distance between quadrotor i and Ci. The
distance between a neighbor j and Ci is defined as eji . Note
that rci is always in between the neighbors closer to the FOV
edges. Therefore, if αkij is too large, robot i generates a
force pointing backwards, in a direction that will always de-
crease αkij . The contrary occurs when αkij is too small.
This corresponds to a direct control of the sensor FOV con-
straint during the algorithm’s operation.

Figure 3: Possible GF for a square formation and
an horizontal FOV of less than 90◦. Filled edges
correspond to direct distance control. Dashed edges
are included if aperture control is activated. Note
quadrotor i’s weighted formation center.

With the additional control terms, each quadrotor also in-
directly controls the distances between the neighbors them-
selves, without them knowing the respective relative position
information. Consider the example in Fig. 3, when the FOV
is less than 90◦. The most complete GS possible with these
constraints is the one shown in the figure (excluding the
dashed lines). So, with just direct distance control, no rigid
graph can be defined. However, if quadrotor i additionaly
controls αjik, one can see that ejk is fully expressed in terms
of the direct controlled quantities, eij , eik, and αjik. So, the
edge between neighbors j and k is automatically included
in EF , which does not need to belong to GS . Each quadro-
tor can control an additional edge in this way, allowing the
establishment of rigid, or even fully connected, formation
graphs that could not possibly be formed before.

The next proposition shows that the new proposed terms
do not compromise the system stability. The algorithm can
be easily extended to control more than one inter-edge aper-
ture for each quadrotor, but the presented stability proper-
ties are related to the largest. Additionally, it is not clear
that these properties hold if the neighbors forming the aper-
ture changes in time. Since the previous case is rare, in
this paper we focus on characterizing the algorithm behav-
ior when the inter-edge aperture remains the same during
operation, and leave the previous issue for future work.

Proposition 1. As long the necessary FOV constraints
are not violated, the multi-robot system, with each quadrotor
i described by the dynamics in Eq. (1) and applying the con-
troller presented in Eqs. (2), (3), (4), and (5), is stable, for
any chosen set of weights described in L, and any kp, kv, K
and K⊥ greater than zero.

Proof. Note that [13] already proved convergence prop-
erties for vertical controller components Eq. (2). Also,the
component in Eq. (4) is independent from the actual for-

mation control. Therefore, if the formation converges, rψi
converges as well, allowing the yaw controller to stabilize
δψi to zero, since it is a proportional control applied to a
single integrator system.

The proof for the horizontal controller components of uh∗
i

follows the reasoning of [5], which performs the analysis sep-
arately for each robot, and its neighbors are assumed to have
fixed positions, and then combines the results at the end. To
simplify the proof, the bias terms (αdkij and edij) are set to
zero, but the stability still holds for non-zero terms (such
terms would only change the equilibrium point).

Let us assume the case for quadrotor i, described in Fig. 4,
representative of the horizontal control components. Quadro-
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Figure 4: Horizontal formation control formulation.

tors j and k correspond to quadrotor i neighbors forming the
largest aperture in its FOV. The position of quadrotor i’s
formation center, Ci, can be expressed in the inertial frame
as xi + rci ei, where the second term comes from Eq. 6. This
expression does not depend on xi if

∑
j 6=i Lij = 1, which

means Ci doesn’t change with quadrotor i’s movements. If
the neighbors are assumed to have fixed positions, their dis-
tances to Ci, e

j
i and eki , are constant. The axes of quadrotor

i’s reference frame are changed to rci and rc⊥i , representing
respectively the radial and orthogonal axis with respect to
Ci. The velocity of Ci in this new frame is decomposed
on the radial, ėi and orthogonal, ė⊥i , axes. Note that this
velocity corresponds to the second term of Eq. 3, and that
ėi is the velocity of ei, representing the distance between
quadrotor i and Ci. From the previous definitions, a simple
Lyapunov function is chosen to analyze the stability of the
system for quadrotor i:

Vi(αkij , ei, ėi, ė
⊥
i ) =

1

2
(kαα

2
kij + kpe

2
i + (ėi)

2 + (ė⊥i )2),

which is greater than zero except in Vi(0, 0, 0, 0). The four
components were considered because they represent the states
that are being controlled (aperture, distance, and radial and
orthogonal velocity). The derivative of Vi with respect to
time can be expressed as:

V̇i = kααkijα̇kij + kpeiėi + ėiëi + ė⊥i ë
⊥
i ,

where ëi and ë⊥i can be expressed from the uh∗
i terms in

Eqs. 3 and 5, projected into the radial and orthogonal com-
ponents respectively:

ëi = Kkααkij − kpei − kv ėi,
ë⊥i = K⊥kααkij − kv ė⊥i .

Therefore, V̇i can be simplified, by removing the equal terms
in its expression, to:

V̇i = kααkijα̇kij +kααkij(ėiK+ ė⊥i K⊥)−kv(ėi)
2−kv(ė⊥i )2.

The last two terms are always negative, which leaves the
study of the first component. From Fig. 4, the aperture αkij
can be divided into βj +βk, where β(∗) = arctan(w(∗)/v(∗)),
and (∗) is either j or k. By differentiating β(∗), α̇kij can be
defined as:

α̇kij =
vjẇj − v̇jwj

e2ij
+
vkẇk − v̇kwk

e2ik
.

From the figure, on can define v(∗) = ei − e(∗)i cos(γ(∗)) and

w(∗) = e
(∗)
i sin(γ(∗)), where γ(∗) is the angle going from rc(∗)

to rci . Recalling that neighbors have fixed positions with
respect to Ci, γ(∗) only depends on ė⊥i , according to the

linear-to-angular velocity equation, ė⊥i = γ̇(∗)ei. Using the

previous result for γ̇(∗), and recalling that e
(∗)
i is constant,

the derivatives of the previous expressions for v(∗) and w(∗)
are as follows:

v̇(∗) = ėi + ė⊥i sin(γ(∗))
e
(∗)
i

ei
, ẇ(∗) = ė⊥i cos(γ(∗))

e
(∗)
i

ei
.

From the previous result, and noting that the alternative
definitions w(∗) = ei(∗) sin(β(∗)) and v(∗) = e(∗) cos(β(∗)), the
previous expression for α̇kij can be re-arranged, to isolate
the terms in ė⊥i and ėi, as follows:

α̇kij = ė⊥i

(
ej
ei

cos(γj+βj)

eij
+ ek

ei

cos(γk+βk)
eieik

)
−ėi

(
sin(βj)

eij
+ sin(βk)

eik

)
.

One can now choose K and K⊥ of the aperture controller
to eliminate the previous components, ending with the fol-
lowing result:

K =
(

sin(βj)

eij
+ sin(βk)

eik

)
K⊥ = −

(
ej
ei

cos(γj+βj)

eij
+ ek

ei

cos(γk+βk)
eik

)
V̇i = −kv(ėi)

2 − kv(ė⊥i )2.

Note that V̇i ≤ 0, and therefore using the Lyapunov theo-
rem, the system with the proposed controller is stable and
converges to a subset of the state-space defined by V̇i = 0.
This can be extended to all quadrotors, by setting V =
V1 + ... + VN , where Vi is the previous Lyapunov function
but for each quadrotor. V > 0 except in V (0) = 0, and

V̇ <= 0, and therefore, the system as a whole is also stable.
Finally, note that kp

∑
j 6=i Lij can always be transformed

into k∗p
∑
j 6=i L

∗
ij for each quadrotor, where

∑
j 6=i L

∗
ij = 1,

necessary to guarantee that Ci does not depend on robot i’s
movement. This allows the use of any Laplacian matrix in
this system, regardless of kp.

The system is stable, but it converges to the set described
as V̇ ≤ 0, which, from the previous proof, only guarantees
that the quadrotor velocities are zero. Deadlocks can oc-
cur, especially if the configuration is ill defined, i.e. the set
of desired ranges and apertures correspond to an impossi-
ble configuration. In this case, the system will converge to
a situation where the aperture controller will counter-act
the distance controller, creating the deadlock. The study of
deadlocks is considered to be future work. However, note
that those already existed in [5], referenced as local minima.

Finally, the gains K and K⊥ found for the aperture con-
troller are analyzed. The value of K is related to the con-
troller radial component. Its value is intuitive, saying that
it is always bigger than zero, as β(i) ≤ π, and it is bigger
as the angle increases to π/2, corresponding to the point
of maximum influence of the controller in the angle. Also,
as eij decreases, the gain increases since the influence on
the aperture also increases. The value of K⊥ is related to
the controller orthogonal component, and it is less intuitive.
However, note that it uses cosine instead of sine functions,
indicating that it is controlling an axis orthogonal to the
one K controls. For example, if all quadrotors are found in
a line, K = 0, since moving on the line does not control the
aperture, but K⊥ 6= 0, since moving orthogonally to the line
increases the aperture. For simplicity, and due to time con-
straints, this work considers K⊥ = 0, but the experiments
show that the system can converge without this component.
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(a)

(b)

Leader

Followers
Leader

Figure 5: Experimental setups. (a) Webots simu-
lator using a square formation - note that only two
quadrotors are visible from the simulated camera
sensor view (upper left corner). (b) Triangle forma-
tion in the flying arena endowed with a MCS, man-
ufactured by Motion Analysis Inc. and composed
of 20 Osprey cameras able to track the quadrotors
using a set of reflective markers in an useful volume
of 4x7x2.5 m. Note the static leader on the right.

Future work will include experiments done with a non-zero
value of K⊥ in the controller.

5. EXPERIMENTS
The algorithm was tested through a set of experiments

conducted using the platforms described in Fig. 5. Both sim-
ulation (Fig. 5 (a)) and real (Fig. 5 (b)) environments were
considered. In reality, Hummingbird quadrotors, manufac-
tured by Ascending Technologies1, were used. Each quadro-
tor was equipped with a set of active markers. An on-board
camera with a 320x240 pixel frame and an horizontal FOV of
90◦ was used to detect the active markers on the neighbors,
and extract their relative positions using an algorithm simi-
lar to the one presented in [4]. After calibration, the sensor
noise had a standard deviation of 13 cm at a 3 meter range.
The high-fidelity robotic simulator Webots2 was used as the
simulating environment, with a standard quadrotor model,
not tuned to match the real quadrotors. The markers were
simulated as colored blobs, and an ideal camera sensor was
simulated with the same FOV. Perturbations were added on
the simulated images to achieve the same noise levels mea-
sured in reality. Although in reality sensor noise decreases
at smaller distances, in simulation it was kept with the same
intensity at all distances. Finally, the actuation noise in real-
ity was not measured, and in simulation it was set to be zero.
A positioning ground truth is provided in reality through the
MCS presented in Fig. 5. Additional details about the real

1http://www.asctec.de/
2https://www.cyberbotics.com/
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Figure 6: Evolution of the quadrotor trajectories
performed in simulation using the formation con-
trol algorithm and the defined leader goal following
strategy. Each robot is represented by a black tri-
angle, and each color illustrates a trajectory of a
specific quadrotor. The triangle orientation is the
same as rsi . (1) and (2) represent snapshots, when
the formation is respectively stable and distorted.

setup and the system composed of the camera and active
markers can be found in [2].

The formation task was performed using four and three
quadrotors, in simulation and real environments, respec-
tively. Although not needed for the formation control, a
leader was selected with the objective of anchoring the for-
mation in the environment, and for the simulation experi-
ments, to move the formation. The simulation experiments
use a square formation configuration, depicted in Fig. 5 (a),
and also described in Fig. 3, to assess rigidity issues. The
square sides measured 1.2 m, and each quadrotor observed
other two quadrotors, controlling an aperture of 45◦ between
them. The formation leader was chosen at random. The real
experiments use a triangle formation configuration, depicted
in Fig. 5 (b), where the leader was static in the environment.
The desired distances were 1.5 m between the leader and the
followers, and 2.12 m between the followers. The desired
aperture for each follower was also 45◦. Both graphs, if the
aperture control is included, are fully connected and rigid.
The desired relative heights between the quadrotors in both
scenarios were set to zero.

To move the leader in simulation, an extra term is added
to the vertical and horizontal formation control laws in Eqs. (5)
and (2), as follows:

uhli = kfu
h∗
i + kgkv(vh

i − vd),
uzli = kfu

z
i + kgkv(vzi − vzdi ),

where kf and kg regulate the importance of formation cohe-
sion and goal following behaviors, both set to 0.5, indicating
equal importance. The values of kp, kv and kα were set to
1.6, 2.2 and 1.0 respectively. Therefore, the leader performs
both goal following and formation cohesion, similar to the
work presented in [7], and followers perform just the for-
mation cohesion. The Laplacian weights between the leader
and the followers were set to 1, as opposed to the weights be-
tween the followers, always chosen to be 1

Ni
, where Ni is the

number of neighbors of robot i. This is because, in contrast
to the leader, follower movements do not translate directly
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Figure 7: Controlled bearings (a) and aperture (b) values, observed from quadrotors n=2, and n=1. Desired
bearing and apertures depicted using horizontal lines, with respected values shown on the right. The neighbor
to which each bearing line corresponds, is indicated in text on the left. FOV limits shown with dashed lines.

the behavior that is desired for the robot, but rather a re-
sponse to other neighbor changes, that can either have lag,
noise, or be wrong. Therefore, these behaviors should be
averaged. The next sections describe separately the results
obtained in each environment.

5.1 Simulation Results
The formation stability, rigidity, and correct maintenance

of the sensor FOV constraint were tested by moving the
square formation through leader commands with a certain
velocity in the x and y dimensions separately, as shown in
Fig. 6 (the z velocity is set to zero). The used velocity value
was of 0.5 m/s. The initial quadrotor positions were set so
that all necessary FOV constraints were initially met. The
proposed algorithm was then activated, so that the quadro-
tors could converge to the desired configuration. For one
experimental run, Fig. 8 shows the progress of all the hori-
zontal distance errors between two pairs of quadrotors, and
Fig. 7 shows the neighbor bearings and apertures observed
by the leader n = 1 and the follower n = 2 (numbers de-
scribed in Fig. 6). The bearings are defined with respect to
the camera FOV center, rsi , illustrated in Fig. 5 (a).

Fig. 8 shows that the formation always converges to the
right configuration, even after the perturbation caused by
leader movements, showing its rigidity and stability. Note
that, when the leader moves, the configuration is distorted
(also observed in Fig. 6), and with higher intensity on the
y axis (observed by the higher distance errors). The dis-
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Figure 8: Horizontal distance errors between two
pairs of quadrotors, during the experiment run cor-
responding to Fig. 6. The two snapshots described
on that figure are highlighted here using circles.

tortions happen because only the leader has the knowledge
of the desired velocity and the followers simply follow the
leader. The distortion is bigger on the y axis, because that
is the direction where the leader is aligned with the follower
n = 4, that only relies on other followers for information.
This will generate a bigger movement delays between the
leader and that follower, creating a bigger distance and aper-
ture errors.

Fig. 7 shows similar perturbations on the bearing and
aperture values. However, Fig. 7 (a), shows the convergence
of neighbor bearings, in both leader and follower cases, to
symmetric values with respect to rsi , meaning that the yaw
controller described in Eq. (4) optimizes the sensor FOV.
Additionally, Fig. 7 (b) confirms, for the leader and follower
cases, the convergence of the aperture to the desired values,
which in combination with results presented in Fig. 8, shows
the correct behavior of the horizontal controller proposed in
Eqs. (2), (3), and (5), and the correct maintenance of the
FOV constraints. The aperture distortions are also higher
for movements on the y axis, for the same reasons as before.
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Figure 9: Real quadrotor trajectories tracked by the
MCS, during a run of the algorithm. Note that the
leader is static. Each color represents one quadro-
tor. Vector rsi is defined by the orientation of the
described triangles. (1), (2), and (3) represent three
snapshots of the formation, where (1) corresponds
to the initial follower positions.
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Figure 10: Neighbor bearings (a), aperture (b), and distances observed in the local frame of one of the
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both close to zero. The aperture is related to both neighbors. All values are tracked using the MCS, but on
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5.2 Real Experiments
Similar experiments were performed using the triangle for-

mation described above, using the real setup depicted in
Fig. 5 (b). The leader was placed in the environment, and
it remains static through all the experiment. The follow-
ers were teleoperated into their initial positions using the
MCS position feedback, in order to guarantee that their
on-board cameras FOV initially cover their neighborhood.
The algorithm was then activated, running exclusively on-
board, using the camera for sensor feedback, until a stop
and land command was broadcast. The resulting trajec-
tories for each quadrotor, from the start of the algorithm
to the end of one experiment, are shown in Fig. 9. The
neighbor bearing, aperture, and distance information was
tracked throughout the experiment for one of the followers,
and shown in Fig. 10. For the bearing and aperture, the
results show that, although the followers rotate around the
leader, their values remain close to the desired, as in the
simulated results, showing the correct behavior of the con-
troller. This allowed loss of sensor data to be kept to a
minimum, as shown in the figure. Note that, because of fol-
lower rotations, the leader had to be also rotated by hand,
so that the followers would keep observing the leader.

Follower rotations happen due to biases present on actua-
tion and on sensing. Fig. 10 (c) shows an example of a sensor
bias on the horizontal plane, observed by the differences be-
tween MCS and on-board estimations of the tracked relative
positions. These biases create unwanted forces competing
with the formation control algorithm. Since the algorithm
forces are tangent to the edge between quadrotors, the algo-
rithm becomes weak on the radial axis, allowing relatively
small forces to still be able to generate rotation movements.
The biases can be different for each quadrotor, it could hap-
pen that they generate rotations in different directions, that
would lead to a steady increase of the follower aperture ob-
served by the leader. In this case, the leader would perform
aperture control, going backwards to maintain the desired

value. If these biases are constant, the system would move
backwards until the end of the experiment. However, these
biases can be minimized using integrators, included on the
range control on each edge. Note that more than one edge is
needed to compensate the bias, as range control on an edge
is tangential to that edge. An integrator was also included
in the height controller. This can generate low frequency os-
cillations around the desired relative displacements, which is
possible to observe in Fig. 10, in both vertical, with a maxi-
mum of 40 cm, and horizontal components, with a maximum
of 30 cm. However, despite those oscillations, the algorithm
was still successfully maintaining the desired formation.

6. CONCLUSIONS
This work proposed a distributed formation control algo-

rithm for quadrotors, that actively controls the system to
satisfy the FOV constraints of the robot on-board sensors,
for multiple observed neighbors. This allows for more com-
plex and dynamic formation configurations with minimal or
no communication requirements. Results show that the sys-
tem is stable and that the FOV constraints are satisfied in
both simulation and reality.

As future work, the previously discussed deadlocks will
be investigated, together with the inclusion of goal follow-
ing control for formation guidance. These experiments are
to be performed with the orthogonal component of the aper-
ture control activated. Furthermore, the sensing and control
edge bi-directionality assumptions will be relaxed in order to
consider additional formation configurations, paying special
attention to how this might impact the formation stabil-
ity. The results reported in this paper also outline that it
is relevant to reproduce, in simulation, the real sensing and
actuation mismatches, to further study the bias effects. This
algorithm can be strengthened if the stability properties are
found for the control of multiple apertures, and if the initial
conditions that guarantee the FOV maintenance during the
system operation are investigated.
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