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ABSTRACT
We consider the problem of designing budget feasible mecha-
nisms for a dealer, who aims to maximize revenue by buying
items from a seller market and selling them to a buyer mar-
ket that consists of unit-demand buyers. Different from the
related literature, the dealer’s “value” for a set of items that
he purchased from the seller market is not directly given as
a number but it is defined to be the maximum revenue the
dealer can obtain from selling the items to the buyers.

We aim to design mechanisms that are dominant-strategy
truthful for the sellers to report their costs and envy-free
for the buyers to purchase their most preferred items (given
their prices) in the final outcome, such that the total pay-
ment to the sellers does not exceed the dealer’s budget and
the dealer’s revenue is (approximately) maximized.

First, to understand the structure of the optimal mecha-
nisms, we show that the maximum (envy-free) revenue ob-
tainable by the dealer as a function of the set of purchased
items is monotone and subadditive. Thus, existing results on
subadditive optimization problems are potentially applica-
ble in solving the mechanism design problem for the dealer.

However, a crucial assumption adopted by all previous
studies on subadditive functions is that the mechanism or
algorithm has access to the value oracle and/or the demand
oracle. In the dealer’s problem, instead, we show that (1)
the demand oracle can be efficiently simulated by the value
oracle and (2) both have efficient O(logn)-approximation
algorithms, where n is the number of buyers. This is partic-
ularly interesting given the literature, since, in general, the
demand oracle can always efficiently simulate the value ora-
cle, and there are cases where the demand oracle is strictly
more powerful. Our results show that, for the dealer’s prob-
lem, the two oracles are as powerful as each other.

Finally, we construct a polynomial-time budget feasible
mechanism for the dealer that doesn’t use any oracle and
provides an O((log2 n)(log2 m))-approximation of the opti-
mal revenue, where m is the number of sellers.
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1. INTRODUCTION
The goal of retailers or dealers is to sell products (or items)

to consumers to make as much revenue as possible. But first,
the dealers must obtain items from other sources such as
wholesalers and manufacturers. Given the obtained items,
the dealers then set the item prices so as to maximize the
revenue from selling the items to the consumers. It is clear
that the dealers often have some budget constraints limiting
the amount of money that they can spend in their procure-
ments. For instance, in ancient time, western merchants
sailed to Asia and Africa to buy spices to sell in their home
market. Their budgets, at that time, are the amount of
gold they brought with them to Asia and Africa. In modern
time, although electronic transactions have greatly sped up
the money flow, the dealer still has a finite amount of money
that he can spend at the time of the procurement, say the
credit limit of his credit card or other forms of loans he can
get. Thus, the dealer’s goal can be described more precisely
as to maximize his revenue subject to his budget constraint.

In hindsight, the dealers can perform the procurement
part and the pricing part independently. However, a dealer’s
revenue not only depends on the consumers’ demands/values
of all possible items that he could potentially obtain, but
also on the set of items that he can obtain under his budget.
Hence, in order to make optimal or nearly optimal revenue,
a dealer should decide simultaneously (1) what items to buy
from the suppliers (and how much to pay them) and (2) what
are the prices of the purchased items that will maximize
revenue from selling them to the consumers.

The literature of mechanism design mainly treats the buy-
ing part and the selling part separately, and a lot of progress
has been made in designing procurement mechanisms for
buying items and auctions for selling the items. In this pa-
per, we are interested in synthesizing these two parts and
designing mechanisms for dealers, which allow them to si-
multaneously decide how to buy and sell the items.

1.1 In a Nutshell: Our Setting and Our Goal
Consider a dealer with a budget B. There is a market of

m sellers and m items, where the dealer can purchase item j
from seller j. Each seller j has a cost cj for his item. There
is also a market of n unit-demand buyers where the dealer
can sell the (purchased) items. Each buyer i has a value vij
for each item j. Ideally, the dealer wants to buy a set of
items such that the total cost of the items is no more than
the budget, and set the item prices to maximize revenue by
selling them to the consumers, where his revenue is the sum
of the prices of the sold items.
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The sellers and the buyers are strategic, but in different
ways. Each seller’s cost is his private information, and the
dealer has to give the sellers incentives to truthfully reveal
their costs. On the other hand, the buyers’ values are known
to the dealer, but each buyer has “free choice” and only buys
the item that maximizes his utility (i.e., his value minus the
item price) from the dealer—that is, the buyers must be
envy-free [22] in the final outcome. Intuitively, the buyers
are from the “home market” of the dealer, which he knows
well, and the sellers are from some “alien market” that the
dealer just starts to explore.

Accordingly, a dealer mechanism asks each seller to report
a cost, and returns an outcome that specifies

(1) dealer’s set of items (i.e., the items he buys from the
sellers),

(2) dealer’s payment to each seller,

(3) dealer’s price for each of his items, and

(4) the allocation of dealer’s items to the buyers.

Indeed, this will be the input-output structure of our mech-
anism MD constructed in Section 5.

In terms of the desirable properties of our mechanisms,
we are interested in mechanisms that are

(a) computationally efficient,

(b) budget feasible (i.e., the total payment made by the
dealer does not exceed his budget),

(c) dominant strategy truthful (DST) for the sellers,

(d) producing an envy-free pricing and allocation for the
buyers, and

(e) producing an outcome that (approximately) maximizes
the dealer’s revenue.

When a mechanism is randomized, we require that it is a
convex combination of deterministic mechanisms that sat-
isfy the above requirements. Indeed, our mechanism, MD,
will be such a randomized mechanism, as will be shown by
Theorem 3 and Corollary 2.

Different Solution Concepts for Sellers and Buyers.
Notice that in our model, the dealer’s information about

the sellers and the buyers are asymmetric. Therefore, we
use different solution concepts to analyze the sellers’ and
the buyers’ incentives. Of course, one can consider a worse
scenario for the dealer, where both the sellers’ costs and the
buyers’ values are private information, and ask for mecha-
nisms that are truthful on both sides. However, it is well
known that DST mechanisms (e.g., VCG [14, 21, 32]) can-
not provide any meaningful revenue guarantee in multi-item
multi-buyer auctions. One can consider the Bayesian setting
and assume that the buyers’ values are drawn from some
joint distribution; yet, even in the simplest case of unit-
demand single-buyer setting (without the sellers), truthful
pricing schemes that approximate the optimal revenue is not
well understood (see, e.g., [12] and [8] for recent studies on
this topic). Given the literature, we consider the asymmet-
ric “home-alien” market model to be a better starting point
for the study of dealer mechanisms.

1.2 Main Contribution
Towards constructing approximately optimal mechanisms

for the dealer, we start by identifying important structures
of the problem, as shown in Theorems 1 and 2.

Our first result is a characterization of the dealer’s revenue
under the optimal envy-free pricing and allocation, which is
defined as a function of the purchased items.

Theorem 1 (restated) The dealer’s revenue function is
monotone and subadditive.

To the best of our knowledge, this is the first characteri-
zation on the structure of the dealer’s revenue function and
it places the dealer’s problem in the literature of mechanism
design and optimization based on subadditive functions. In
particular, [4, 7, 16] have designed budget feasible mech-
anisms for subadditive functions, and, assuming access to
value and demand oracles (as defined later), their results
immediately apply to the dealer’s problem.

Our second result is about a crucial assumption widely
adopted in mechanism design based on subadditive functions
—the existence of oracles. Indeed, since a general subaddi-
tive function needs exponentially many numbers to describe,
it can only be accessed via certain oracles. All budget fea-
sible mechanisms mentioned above rely on the value oracle
and/or the demand oracle, formally defined in Section 4.
However, since oracles in general do not have efficient real-
life implementations1, it is unclear how these mechanisms
can be implemented. It is important to understand when
one can design efficient mechanisms that do not rely on any
oracle. Our second theorem shows that the demand oracle
for the dealer can be approximated by the value oracle.

Theorem 2 (restated) Given any polynomial time algo-
rithm that is an α-approximation for the dealer’s value or-
acle, there is a polynomial time algorithm that is an α-
approximation for the dealer’s demand oracle.

This result has two important implications. First, follow-
ing [22], the dealer’s value oracle can be efficiently approxi-
mated within a logarithmic factor; thus we immediately have
that the dealer’s demand oracle can also be approximated
to the same degree. It eventually leads us to a mechanism
for the dealer that runs in polynomial time without access-
ing any oracle. Second, in the literature, it is well known
that the demand oracle is more powerful than the value or-
acle: following [29], a value oracle query can always be sim-
ulated by polynomially many demand oracle queries, but
there are cases where one needs exponentially many value
oracle queries to simulate a single demand oracle query. Our
theorem shows that, in the case of the dealer’s revenue func-
tion, the value oracle is as powerful as the demand oracle,
and any approximation algorithm for the former can be con-
verted to an approximation algorithm for the latter with the
same approximation ratio.

Finally, our third result exploits these structures of the
dealer’s revenue function and replaces oracle queries in bud-
get feasible mechanisms with approximation algorithms. It
is well known that many classic mechanisms (e.g., the VCG
mechanism) cease to be truthful when the required compu-
tation is only approximated. Accordingly, it is unclear up-
front whether existing budget feasible mechanisms are still
1In particular, following [22] the dealer’s revenue function
is APX-hard to compute, and thus both oracles are hard to
compute.
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truthful when the oracles are replaced by approximation
algorithms. We show that this is indeed the case for the
mechanism in [31]: it can be revised to use approximation
algorithms for the oracles such that the resulting mechanism
is still truthful. We emphasize that (1) this is a black-box
replacement of the oracles, although other parts of the mech-
anism need to be changed accordingly; and (2) the revised
mechanism works with any approximation algorithm, thus
in order to design mechanisms for the dealer, one can focus
on designing approximation algorithms for the value oracle.
More specifically, we have the following.

Theorem 3 (restated) Given any polynomial time algo-
rithm that is an α-approximation for the dealer’s value ora-
cle, there is a universally truthful, budget feasible, and poly-
nomial time dealer mechanism that gives an O((log2 m)α2)-
approximation to the optimal revenue.

Following [22], there is an O(logn)-approximation for the
dealer’s value oracle, thus we immediately have:

Corollary 2 (restated) There is a universally truthful, bud-
get feasible, and polynomial-time mechanism that gives an
O((log2 m)(log2 n))-approximation to the optimal revenue.

1.3 Open Problems
It is natural to generalize our model and consider the case

where each seller has multiple units of his item for sale (as
in [7]). It is easy to see that our results on the monotonicity
and subadditivity of the revenue function (Theorem 1) and
the approximability of the demand oracle (Theorem 2) hold
for the multiple-unit settings. However, we do not know
how to generalize our dealer mechanism to the multi-unit
settings, and this would be an interesting open problem for
future study.

In terms of approximating oracle queries, it is not hard
to see that the mechanisms in [4, 31] for single-unit budget
feasible procurement and those in [7] for multi-unit procure-
ment remain truthful if the demand oracle is replaced by an
ε-approximation where ε is a small constant. However, it is
unknown whether such an approximation algorithm exists
for the dealer’s revenue function. Also, it is unclear whether
these mechanisms are still truthful when the approximation
ratio increases (to, say, log n).

In most studies on mechanism design with budgets, the
budget is treated as a hard constraint. However, it is con-
ceivable that, in real life, obtaining additional liquidity may
be feasible, although at an increasing marginal cost. Mod-
eling and handling such a flexible liquidity will be a very
interesting problem for future study.

Moreover, currently we do not have a matching lower
bound for our mechanism’s approximation ratio. However,
even for budget feasible procurements with subadditive val-
uations, only poly-logarithmic approximations are known.
It would be interesting to show matching lower bounds for
both the dealer’s problem and the procurement problem.
Finally, generalizing our model to allow multiple dealers to
compete in a market is another important direction worth
investigating.

1.4 Additional Prior Work
There is a large amount of literature on the problem of

finding the optimal envy-free pricing and allocation that
maximizes revenue. The problem was first introduced and

considered by [22] where the authors showed that the prob-
lem is APX-hard and there is an O(logn)-approximation
algorithm for it. Since then, many works have studied dif-
ferent variants of the problem. For example, when there is
a single buyer whose values for the items are drawn from
independent distributions [8, 12, 15], when the buyers’ val-
ues have special structures [3, 9, 10], when the buyers have
budgets [5, 19, 24], and when the items can only be sold in
some special ways [6, 13, 17, 18, 20, 23]. In particular, [12]
showed that the pricing problem with a single buyer is NP-
complete even when the value distributions all have support
size 3. Moreover, [8] showed that when the buyer’s value
distributions are either discrete or continuous with bounded
supports (with proper oracle accesses), and when the distri-
butions satisfy the monotone hazard rate (MHR) condition,
there is an algorithm that is a constant approximation for
the problem and runs in polynomial time with respect to the
size of the largest support (when the distribution is discrete)
or the ratio between the upper bound and the lower bound
of the supports (when the distribution is continuous).

Budget feasible procurement mechanisms were first intro-
duced by [31]. [31] and [11] provide constant approximation
mechanisms for submodular functions, and [16] and [4] re-

spectively provide O(log2 m) and O( log2 m
log logm

) approximation
mechanisms for subadditive functions. All of them study the
setting where each seller has a single item. Recently, [7] gen-
eralizes the setting to where each seller has multiple units of
his item, and gives an O(logm) approximation for additive

functions and an O( log2 m
log logm

) approximation for subadditive

functions. In [1], the authors study budget feasible mecha-
nisms for additive functions, when each seller’s cost is much
smaller than the budget.

Another related line of research is double auctions [27,
28, 29]. In a double auction, buyers and sellers submit their
private values and costs, respectively, to an intermediary.
The goal of the latter is to construct mechanisms that are
individually rational and truthful. While a double auction
also deals with a two-sided market, the setting and goal are
different from ours. Indeed, the goal there is to maximize so-
cial welfare and clear the market, instead of maximizing the
intermediary’s revenue. Also, double auctions treat sellers
and buyers symmetrically, using the same solution concept;
while we consider an asymmetric setting. Moreover, the in-
termediary in double auctions has no budget constraint.

Finally, a recent work [30] considers a dealer who has no
budget constraint and wants to maximize his revenue minus
the total payment to the sellers. However, the settings they
consider are highly constrained compared with ours.

2. MODEL: DEFINITIONS AND NOTATIONS
Consider a dealer who is buying items from one market

and selling them to another market. The market where he
is buying is an “alien” market to him, that is, he does not
know the sellers’ true costs for the items that they sell on
that market. The market where he is selling is his “home”
market, that is, he knows the buyers’ values for the items in
that market. The dealer has a budget B > 0 specifying the
most amount of money he can spend in the alien market.

More specifically, we have the following model. There are
m sellers, indexed by j ∈ [m] = {1, 2, ...,m}. Each seller
j ∈ [m] has one unit of item j for sale, whose true cost is
cj > 0. The cost cj is the private information of seller j. If
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the dealer buys item j from seller j with a payment qj , then
the utility of seller j, usj , is qj − cj ; and usj is 0 if the dealer
does not buy his item and does not pay him.

There are n buyers, indexed by i ∈ [n] = {1, 2, ..., n}.
Each buyer i has a value vij for each item j ∈ [m]. Let V =
(vij)i∈[n],j∈[m] be the valuation matrix. The dealer knows
the buyers’ values. Let ⊥ denote a dummy item such that
vi⊥ = 0 for each i ∈ [n]. When the set of items bought by the
dealer is S ⊆ [m], an assignment for the buyers consists of a
pair (pS , AS) where pS = (pj)j∈S is the pricing vector and
AS : [n] → S ∪ {⊥} is the allocation, with each item j ∈ S
being allocated to at most one buyer (that is, |A−1

S (j)| ≤ 1
for each j ∈ S). The price of the dummy item is always
p⊥ = 0. The utility of buyer i, ubi , is viAS(i) − pAS(i).

An assignment (pS , AS) is envy-free if viAS(i) − pAS(i) ≥
vij − pj for each i ∈ [n] and j ∈ S ∪{⊥}. The revenue of an
assignment is Rev(pS , AS) =

∑n
i=1 pAS(i).

For each S ⊆ [m], the optimal assignment under S is an

envy-free assignment (p̂S , ÂS) such that (p̂S , ÂS) ∈
argmax(p′

S
,A′
S

) is envy-free Rev(p′S , A
′
S). The dealer’s revenue

from S is the maximum revenue that he can get from any
envy-free assignment under S, that is, R(S) = Rev(p̂S , ÂS).
The optimal procurement of the dealer is a subset of items S∗

such that S∗ ∈ argmaxS⊆[m],
∑
j∈S cj≤B

R(S). Notice that

R(S∗) = Rev(p̂S∗ , ÂS∗). Moreover, we will refer R to the
revenue function of the dealer.

Remark 1. We have two revenue functions: Rev is the
revenue of a particular assignment, and R is the maximum
revenue among all assignments for a given set of items.

The solution concept.
A dealer mechanism M asks each seller j to report a cost

c′j ≥ 0. Given the cost profile c′ = (c′1, ..., c
′
m), the mecha-

nism outputs a subset of items S ⊆ [m], a payment profile
q = (q1, ..., qm), and an envy-free assignment (pS , AS), such
that qj = 0 for all j ∈ [m]\S. That is M(c′) = (S, q, pS , AS).
The utility of each seller j under the strategy profile c′ is
usj(c

′) = qj − cj if j ∈ S, and usj(c
′) = 0 otherwise.

A deterministic mechanism M is truthful if for each seller
j, c′j , and c′−j , u

s
j(cj , c

′
−j) ≥ usj(c′j , c′−j). LetM(c) = (S, q, pS ,

AS). Mechanism M is individually rational if for each seller
j, usj(c) ≥ 0; and M is budget feasible if the dealer’s total
payment is no more than the budget, that is,

∑m
j=1 qj ≤ B.

A randomized mechanism is universally truthful (respec-
tively, individually rational and budget feasible) if it is a
convex combination of deterministic truthful mechanisms
(respectively, individually rational, and budget feasible).

Definition 1. Let f(n) > 0. A universally truthful dealer
mechanism M is an f(n)-approximation to the value of the
optimal procurement if the mechanism is individually ratio-
nal and budget feasible, and the revenue under the true cost

profile c, Rev(pS , AS), has expected value at least R(S∗)
f(n)

.

3. PROPERTIES OF THE DEALER’S REV-
ENUE FUNCTION

The structure of the dealer’s revenue function R has never
been studied. In this section, we show, for the first time, that
R is subadditive, that is, R(S ∪ T ) ≤ R(S) + R(T ) for any

subsets of items S and T . Thus, existing techniques on sub-
additive optimization could potentially be applied to com-
pute/approximate it. We first show the following lemma.

Lemma 1. The dealer’s revenue function R is monotone.
That is, for any two subsets S and T such that S ⊆ T ⊆ [m],
R(S) ≤ R(T ).

Proof. Let (p̂S , ÂS) be the optimal assignment under
the set S. We define an assignment (pT , AT ) for T as follows.
Let pj = p̂j for j ∈ S, pj = ∞ for j ∈ T \ S and AT = AS .
For any i ∈ [n] and j ∈ S ∪ {⊥}, we have ubi (pT , AT ) =

ubi (p̂S , ÂS) = viÂS(i) − p̂ÂS(i) ≥ vij − p̂j = vij − pj , where

the inequality is because of the envy-freeness of (p̂S , ÂS).
For any i ∈ [n] and j ∈ T \ S, ubi (pT , AT ) ≥ vij − pj as
pj = ∞. Thus the assignment (pT , AT ) is envy-free. More-

over, by definition, R(S) = Rev(p̂S , ÂS) =
∑n
i=1 p̂ÂS(i) =∑n

i=1 p̂AT (i) =
∑n
i=1 pAT (i) = Rev(pT , AT ). SinceRev(pT , AT )

≤ R(T ) by definition, we have R(S) ≤ R(T ).

We have the following theorem.

Theorem 1. The function R is subadditive.

Before proving Theorem 1, we recall the following nota-
tions, definitions, and results that we will use. Given a val-
uation matrix V , when the set of available items is S, we let
VS be the sub-matrix of V that contains only the items in S.
Given the set of available items S, and a vector r = (rj)j∈S
of non-negative real numbers, a Walrasian equilibrium with
reserve prices r [22] is an envy-free assignment (pS , AS) such
that (1) pj ≥ rj for all j ∈ S, (2) if item j is not assigned to
any buyer, then pj = rj , and (3) if item j is a most-preferred
item of buyer i and j is not assigned, then buyer i is assigned
an item. In [22], the authors constructed a polynomial time
algorithm, MaxWEQr, that computes a Walrasian equilib-
rium with reserve prices, see the following lemma.

Lemma 2. [22] Given any inputs S, VS, and r, the algo-
rithm MaxWEQr outputs a Walrasian equilibrium (pS , AS)
with reserve prices r in polynomial time.

Below we prove a key step in proving Theorem 1.

Lemma 3. For any set of items S ⊆ [m], any envy-free
assignment (pS , AS), and any subset T ⊆ S ∩ AS([n]), we
have

∑
j∈T pj ≤ R(T ).

Proof. Given (pS , AS), we construct an envy-free assign-
ment under T , whose revenue is at least

∑
j∈T pj . To do so,

we run the following algorithm AlgAssign with inputs S, VS ,
(pS , AS), and T .

Notice that for each j ∈ T , the price output by MaxWEQr

in step 1 is p̄j ≥ rj = pj , by Lemma 2. However, under
(p̄T , ĀT ), some items in T might not be assigned to any
buyer. Therefore, Rev(p̄T , ĀT ) may be strictly less than∑
j∈T p̄j . That is why we augment ĀT to A∗T which assigns

all items in T . More precisely, we have the following claim.

Claim 1. AlgAssign returns an envy-free assignment (p̄T ,
A∗T ) that assigns all items in T .

Proof. Notice that, when the algorithm terminates, A∗T
allocates all items in T . Thus, we need to show that the
algorithm will not loop forever in step 3. To see why this
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Algorithm 1: AlgAssign - An Algorithm to Produce
an Envy-Free Assignment where All Items Are Sold

Input : A set of items S, a valuation matrix VS ,
an envy-free assignment (pS , AS), and a
set T ⊆ S ∩AS([n]).

Output: An envy-free assignment (p̄T , A
∗
T )

1 Run MaxWEQr on inputs T , VT , and reserve prices

r = (pj)j∈T and denote the outcome by (p̄T , ĀT ).
2 Initialize A∗T = ĀT .
3 while there exists an unassigned item j in T

according to A∗T do
4 Let i ∈ [n] be such that AS(i) = j, and set

A∗T (i) = j.
5 end while
6 return (p̄T , A

∗
T )

is true, notice that for each buyer i ∈ [n], there is at most
one item j ∈ T such that AS(i) = j. Accordingly, buyer
i gets reassigned in A∗T at step 3 for at most once. Since
in each execution of step 3, one buyer gets reassigned, and
since there are only n buyers, step 3 is executed at most n
times and the algorithm will not loop forever.

Next, we show that after each execution of step 3, (1)
(p̄T , A

∗
T ) is envy-free and (2) for each item j that is not

assigned by the current A∗T , p̄j = pj . To see why this is
true, notice that the initial (p̄T , A

∗
T ) satisfies (1) and (2) by

the definition of Walrasian equilibrium with reserve prices.
Accordingly, if item j is not assigned and AS(i) = j, we
have viA∗

T
(i) − p̄A∗

T
(i) ≥ vij − p̄j = vij − pj and vij − pj ≥

viA∗
T

(i)−pA∗
T

(i), where the first inequality is because (1) and

(2), and the second is because (pS , AS) is envy-free. Since
p̄A∗

T
(i) ≥ rA∗

T
(i) ≥ pA∗

T
(i), we have vij − pj ≥ viA∗

T
(i) −

pA∗
T

(i) ≥ viA∗
T

(i)− p̄A∗
T

(i) ≥ vij− p̄j = vij−pj , which implies
vij−p̄j = vij−pj = viA∗

T
(i)−pA∗

T
(i) = viA∗

T
(i)−p̄A∗

T
(i). Thus,

item j maximizes i’s utility under p̄T and pA∗
T

(i) = p̄A∗
T

(i).
Notice that after the execution of step 3, buyer i is the

only buyer whose assigned item changes, and the original
item A∗T (i) is the only item that changed from assigned to
unassigned. Accordingly, the new assignment (p̄T , A

∗
T ) is

still envy-free and any unassigned item j′ ∈ T has price
p̄j′ = pj′ . That is, (p̄T , A

∗
T ) still satisfies (1) and (2) after

the first execution of step 3. By induction, (p̄T , A
∗
T ) satisfies

(1) and (2) after each execution of step 3, as desired.
In sum, the final assignment (p̄T , A

∗
T ) returned by AlgAssign

is envy-free and assigns all items in T , and Claim 1 holds.

By the construction of AlgAssign and Claim 1, Rev(p̄T , A
∗
T )

=
∑
j∈T p̄j ≥

∑
j∈T rj =

∑
j∈T pj , which implies

∑
j∈T pj ≤

R(T ). Thus, Lemma 3 holds.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. For any subsets of items S and
T , let (p̂S∪T , ÂS∪T ) be the optimal assignment under S ∪
T and let W = ÂS∪T ([n]) be the set of assigned items

under ÂS∪T . We have R(S ∪ T ) = Rev(p̂S∪T , ÂS∪T ) =∑n
i=1 p̂AS∪T (i) =

∑
j∈W p̂j ≤

∑
j∈S∩W p̂j +

∑
j∈T∩W p̂j ,

where the first two equalities are by the definitions of func-
tions R and Rev; the third equality is because the total
revenue collected from the players is the same as the total
revenue obtained by selling the items; and the inequality is
because W \ {⊥} ⊆ (S ∩W ) ∪ (T ∩W ).

Since
∑
j∈S∩W p̂j ≤ R(S ∩W ) by Lemma 3 and R(S ∩

W ) ≤ R(S) by Lemma 1, we have
∑
j∈S∩W p̂j ≤ R(S).

Similarly,
∑
j∈T∩W p̂j ≤ R(T ). Therefore, we have R(S ∪

T ) ≤ R(S) +R(T ), and Theorem 1 holds.

Remark 2. A function f : 2[m] → R is submodular if
for any subsets of items S and T , f(S ∪ T ) + f(S ∩ T ) ≤
f(S)+f(T ). It is unknown whether R is submodular or not.

4. APPROXIMATING THE DEMAND OR-
ACLE FOR THE DEALER

Mechanism design for the dealer requires optimization
over his revenue function. In general, optimization over sub-
additive functions is NP-hard [25, 26] 2, and oracles of var-
ious forms are used to help solving the mechanism design
problem. In particular, two oracles have been widely con-
sidered — the value oracle and the demand oracle [4, 7, 11,
16, 29, 31]. In our setting, the value oracle takes as input
a subset S ⊆ [m] and returns R(S); and the demand ora-
cle takes as input a cost vector c̄ = (c̄1, ..., c̄m) and returns
S∗c̄ ∈ argmaxT⊆[m] R(T )−

∑
j∈T c̄j . For any subset T ⊆ [m],

the quantity R(T )−
∑
j∈T c̄j is referred to as the net revenue

of T given c̄, denoted by NR(T, c̄).
Given access to the value and demand oracles, the mech-

anism design problem for the dealer can be solved under
the framework of budget feasible mechanisms for subad-
ditive valuation functions [4, 7, 16]. However, how can a
polynomial-time dealer answer oracle queries? There is lit-
tle literature about oracle implementation, and most mech-
anisms over subadditive functions rely on oracle queries and
thus do not have polynomial-time implementations.

As part of our main contribution, we show that the de-
mand oracle for the dealer can be efficiently approximated.
Using this approximation, in Section 5, we provide a polyno-
mial time mechanism for the dealer without oracle assesses.

Our approximation algorithm of the demand oracle uses
an approximation algorithm of the value oracle. More specif-
ically, we say that an algorithm Algvalue is an α-approximation
of the value oracle with α ≥ 1 if it takes as inputs a set S and
a valuation matrix VS , and returns an envy-free assignment

(pS , AS) such that Rev(pS , AS) ≥ R(S)
α

. We say that an
algorithm Algdemand is an α-approximation of the demand
oracle with α ≥ 1 if it takes as inputs a cost profile c̄ and a
valuation matrix V , and returns a set Sc̄ and an envy-free
assignment (pSc̄ , ASc̄) such that Rev(pSc̄ , ASc̄)−

∑
j∈Sc̄ c̄j ≥

NR(S∗c̄ ,c̄)
α

. We have the following theorem.

Theorem 2. Given any polynomial time algorithm that
is an α-approximation for the value oracle, there is a poly-
nomial time algorithm that is an α-approximation for the
demand oracle.

As shown in [22], the value oracle is APX-hard to compute,
and there is a polynomial-time O(logn)-approximation for
it. Thus, we immediately have the following corollary.

Corollary 1. There exists a polynomial-time O(logn)-
approximation algorithm for the demand oracle.

2Since submodular functions belong in the class of subad-
ditive functions, and optimization over submodular is NP-
hard in general, we have that optimization over subadditive
functions is also NP-hard.
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Interestingly, the demand oracle is in general more pow-
erful and computationally harder than the value oracle. In
[29], the authors show that a value query can be simulated
by polynomially many demand queries, but an exponential
number of value queries may be required for simulating a
single demand query. Theorem 2 shows that this is not the
case for the mechanism design problem for the dealer: here,
the two oracles are as powerful as each other. The remaining
part of this section is devoted to proving Theorem 2.

Let Algvalue be an arbitrary polynomial time algorithm
that is an α-approximation of the value oracle, with α ≥ 1.
Our algorithm Algdemand is defined as follows.

Algorithm 2: Algdemand - An Algorithm to Approx-
imate the Demand Oracle

Input : A valuation matrix V and a cost profile c̄.
Output: A set S and an envy-free assignment

(p̄S , AS).

1 Let V ′ be a valuation matrix such that
v′ij = vij − c̄j for each i ∈ [n] and j ∈ [m].

2 Run Algvalue with inputs [m] and V ′, and let (p,A)
be the output.

3 Let S = A([n]) \ {⊥} and ÃS = A.
4 Let p̃S = (p̃j)j∈S where p̃j = pj + c̄j for j ∈ S.

5 return S and (p̃S , ÃS).

Below, we show that Algdemand is an α-approximation of
the demand oracle. Because we deal with two valuation ma-
trices V and V ′, we use f(·;V ′) to denote a function f evalu-
ated when the valuation matrix is V ′. If no valuation matrix
is specified, then the computation is always with respect to
V . Recall that S∗c̄ is the output of the demand oracle given
inputs V and c̄. Let (p̂S∗c̄ , ÂS∗c̄ ) be the envy-free assignment
that gives the highest net revenue with respect to S∗c̄ . We
want to show that (p̂S∗c̄ , ÂS∗c̄ ) is also an (not necessarily op-
timal) envy-free assignment for the buyers whose values for
the items are according to the valuation matrix V ′ when
the set of available items is [m]. We begin by showing some

properties of (p̂S∗c̄ , ÂS∗c̄ ).

Lemma 4. ÂS∗c̄ ([n]) = S∗c̄ or ÂS∗c̄ ([n]) = S∗c̄ ∪ {⊥}.

Proof. For ease of notations, let S = S∗c̄ , p̂S = p̂S∗c̄ , and

ÂS = ÂS∗c̄ . First notice that all of the available items are

in S. Since ÂS does not assign buyers to any item that is
not in S, ÂS([n]) ⊆ S ∪ {⊥}. Let U = S ∪ {⊥} − ÂS([n])
be the set of unassigned items in S. To prove the lemma,
it is suffice to show that U is either empty or contains only
⊥. For the sake of contradiction, suppose U contains some
item that is not ⊥. The net revenue of the set S is

NR(S, c̄) = R(S)−
∑
j∈S

c̄j =

n∑
i=1

p̂ÂS(i) −
∑
j∈S

c̄j

≥ NR(S̄, c̄), (1)

for any S̄ ⊆ [m]. Letting S̄ = S − U , p̄S̄ = (p̄i)i∈S̄ such

that p̄i = p̂i for i ∈ S̄, and ĀS̄ = ÂS . It is easy to see that
the assignment (p̄S̄ , ĀS̄) is envy-free when the set of avail-
able items is S̄, that is, viĀS̄(i)− pĀS̄(i) = viÂS(i)− p̂ÂS(i) ≥
vij − p̂j = vij − p̄j for all buyers i ∈ [n] and all items j ∈ S̄.
It follows that NR(S̄, c̄) = R(S̄)−

∑
j∈S̄ c̄j ≥ Rev(p̄S̄ , ĀS̄)−

∑
j∈S̄ c̄j =

∑n
i=1 p̄ĀS̄(i)−

∑
j∈S̄ c̄j =

∑n
i=1 p̂ÂS(i)−

∑
j∈S̄ c̄j >∑n

i=1 p̂ÂS(i)−
∑
j∈S̄∪U c̄j =

∑n
i=1 p̂ÂS(i)−

∑
j∈S c̄j = NR(S, c̄),

which is a contradiction to Equation 1.

The above proof relies on the fact that the costs of the
items are strictly greater than zero. If we allow the items’
costs to be zero and if ÂS∗c̄ has some unallocated items with
cost zero, then removing those items, we obtain another
envy-free assignment with the (same) optimal net revenue
that satisfies Lemma 4. Next, we show that the price of each
item in S∗c̄ is at least its cost.

Lemma 5. For any j ∈ S∗c̄ , p̂j − c̄j ≥ 0.

Proof. Again for ease of notations, let S = S∗c̄ , p̂S =
p̂S∗c̄ , and ÂS = ÂS∗c̄ . Let N = {j ∈ S|p̂j − c̄j < 0} be the
set of items with prices less than costs. Assume N 6= ∅ and
let S̄ = S −N . We show that NR(S̄, c̄) > NR(S, c̄), which
contradicts the optimality of S.

To do so, we run AlgAssign with inputs S, VS , (p̂S , ÂS),
and S̄ = S − N . Let (p̄S̄ , ĀS̄) be the output. We have
NR(S̄, c̄) = R(S̄) −

∑
j∈S̄ c̄j ≥ Rev(p̄S̄ , ĀS̄) −

∑
j∈S̄ c̄j =∑n

i=1 p̄ĀS̄(i) −
∑
j∈S̄ c̄j =

∑
j∈S̄ p̄j − c̄j >

∑
j∈S̄ p̄j − c̄j +∑

j∈N p̂j − c̄j ≥
∑
j∈S̄ p̂j − c̄j +

∑
j∈N p̂j − c̄j =

∑
j∈S p̂j −

c̄j =
∑n
i=1 p̂ÂS(i) −

∑
j∈S c̄j = NR(S, c̄), where the first

inequality is because R(S̄) ≥ Rev(p̄S̄ , ĀS̄), the third equality
is because all items in S̄ are sold according to ĀS̄ (Claim 1),
the second inequality is because p̂j−c̄j < 0 ∀j ∈ N , the third
inequality is because p̄j ≥ p̂j ∀j ∈ S̄ (by the construction of
AlgAssign), and the fifth equality is because all items in S

are sold according to ÂS (Lemma 4).

Next, we show that there is an assignment which is envy-
free with respect to the valuation matrix V ′ and has revenue
equals to NR(S∗c̄ , c̄). More precisely, let p̄ = (p̄j)j∈S∗c̄ be
such that p̄j = p̂j − c̄j for all j ∈ S∗c̄ and p̄j = ∞ for all

j ∈ [m] \ S∗c̄ , and let Ā = ÂS∗c̄ . By Lemma 5, p̄j ≥ 0 for
each j ∈ [m] and p̄ is a well-defined price profile. We have
the following two lemmas.

Lemma 6. Rev(p̄, Ā;V ′) = NR(S∗c̄ , c̄).

Proof. Rev(p̄, Ā;V ′) =
∑n
i=1 p̄Ā(i) =

∑n
i=1 p̂Ā(i)−c̄Ā(i) =∑n

i=1 p̂ÂS∗c̄ (i)−c̄ÂS∗c̄ (i) =
∑n
i=1 p̂ÂS∗c̄ (i)−

∑
j∈S∗c̄

c̄j = NR(S∗c̄ , c̄),

where the first, second, and last equalities are by definition,
the third is because Ā = ÂS∗c̄ , and the fourth is because all

items in S∗c̄ are sold according to ÂS∗c̄ (by Lemma 4).

Lemma 7. (p̄, Ā) is envy-free with respect to V ′.

Proof. Recall the value of buyer i for item j with respect
to V ′ is v′ij = vij − c̄j . First, notice that for each buyer i,

ubi (p̄, Ā;V ′) = (viĀ(i) − c̄Ā(i)) − p̄Ā(i) = (viĀ(i) − c̄Ā(i)) −
(p̂Ā(i) − c̄Ā(i)) = viĀ(i) − p̂Ā(i) = viÂS∗c̄ (i) − p̂ÂS∗c̄ (i) ≥ 0,

where the last inequality is because (p̂S∗c̄ , ÂS∗c̄ ) is envy-free
under valuation matrix V . (Surely, since p̄j ≥ 0 for each
j ∈ [m], we have viĀ(i) − c̄Ā(i) ≥ 0 for each buyer i ∈ [n].)

Moreover, for each buyer i ∈ [n] and each item j ∈ [m],
ubi (p̄, Ā;V ′) = viÂS∗c̄ (i) − p̂ÂS∗c̄ (i) ≥ vij − p̂j = (vij − c̄j) −
(p̂j − c̄i) = (vij − c̄j)− p̄j = v′ij − p̄j , where the inequality is

again because (p̂S∗c̄ , ÂS∗c̄ ) is envy-free under V .

In sum, (p̄, Ā) is envy-free with respect to V ′.
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Similarly, we have the following lemma for (p̃S , ÃS), the
assignment output by Algdemand. Recall that (p,A) is the
assignment output by Algvalue with inputs [m] and V ′.

Lemma 8. Rev(p̃S , ÃS) −
∑
j∈S c̄j = Rev(p,A;V ′), and

(p̃S , ÃS) is envy-free with respect to V .

Proof. First of all, Rev(p̃S , ÃS)−
∑
j∈S c̄j =

∑n
i=1 p̃ÃS(i)−∑

j∈S c̄j =
∑n
i=1(pÃS(i) + c̄ÃS(i))−

∑
j∈S c̄j =

∑n
i=1 pA(i) +∑n

i=1 c̄A(i) −
∑
j∈S c̄j =

∑n
i=1 pA(i) = Rev(p,A;V ′), where

the fourth equality is because S = A([n]) \ {⊥} and all the
others are by definition.

Second, to show (p̃S , ÃS) is envy-free, notice that for each

buyer i ∈ [n] and for each item j ∈ S, ubi (p̃S , ÃS) = viÃS(i)−
p̃ÃS(i) = viÃS(i) − (pÃS(i) + c̄ÃS(i)) = (viÃS(i) − c̄ÃS(i)) −
pÃS(i) = (viA(i) − c̄A(i)) − pA(i) ≥ (vij − c̄j) − pj = vij −
(pj + c̄j) = vij − p̃j , where the inequality is because (p,A)
is envy-free with respect to V ′.

We are now ready to prove the main theorem.

Proof of Theorem 2. Notice thatRev(p̃S , ÃS)−
∑
j∈S c̄j

= Rev(p,A;V ′) ≥ R([m];V ′)
α

≥ Rev(p̄,Ā;V ′)
α

=
NR(S∗c̄ ,c̄)

α
, where

the first equality is due to Lemma 8, the first inequality is be-
cause Algvalue is an α-approximation of the value oracle for
the dealer, the second inequality is due to Lemma 7, and the
second equality is due to Lemma 6. Therefore, Algdemand is
an α-approximation for the dealer and Theorem 2 holds.

5. BUDGET FEASIBLE MECHANISMS FOR
DEALERS

Recall that our main goal is to design individually ratio-
nal, truthful, and budget feasible mechanisms for a dealer.
Moreover, we want the mechanisms to return envy-free as-
signments that maximize the dealer’s revenue (i.e., R(S∗)).

As shown earlier, the dealer’s revenue function is subad-
ditive. Previous work on designing budget feasible mech-
anisms for subadditive functions have relied on value and
demand oracle queries. However, for envy-free revenue max-
imization, the existence of those oracles is questionable, as
the optimal revenue is hard to compute. Thus, we are inter-
ested in mechanisms that do not access any oracle.

Given an α-approximation algorithm, Algvalue, of the rev-
enue function R (i.e., the dealer’s value oracle) and our α-
approximation algorithm, Algdemand, of the optimal net rev-
enue (i.e., the demand oracle), we construct a truthful mech-
anism for the dealer, which is a variant of the one in [16].

For simplicity, letRα(S, VS) = Rev(Algvalue(S, VS)). When
the valuation matrix is clear from the context, we write
Rα(S) instead ofRα(S, VS). Let V al = {1, 2, ..., 2log(αRα([m]))}.
As in [16], we assume without loss of generality that the
smallest non-zero value of the revenue function R is 1, and
we start with an algorithm, Algt, for finding a set of items
of size t whose revenue is approximately optimal. Here, we
only need to run Algdemand a polynomial number of times.

Claim 2. Let S and (p̃S , ÃS) be the output of Algdemand
with inputs V and a cost vector c̄ such that c̄1 = c̄2 = · · · =
c̄m. For any S′ ⊆ S, we have Rev(p̄S′ , ĀS′) ≥ |S′|c̄1, where
(p̄S′ , ĀS′) is the envy-free assignment output by AlgAssign
given S, VS, (p̃S , ÃS), and S′.

Algorithm 3: Algt - Finding a Set of Items of
Size t with Approximately Optimal Revenue

Input : A positive integer t.
Output: A value v ∈ V al, a set Sv, and an

envy-free assignment (p̄Sv , ASv ).

1 Let S̄ = (Sv)v∈V al.
2 for v ∈ V al do
3 Let c̄ = (c̄j)

m
j=1 where c̄j = v

2t
for all j ∈ [m]

and run Algdemand with V and c̄ to obtain a
subset of items S ⊆ [m] and an envy-free

assignment (p̃S , ÃS).
4 Let Sv = ∅.
5 if Rev(p̃S , ÃS)− |S| v

2t
≥ v

2α
then

6 Let Sv = S.
7 if |S| > t then
8 Let Sv be some set of items of size t

such that Sv ⊆ S.
9 end if

10 end if

11 end for

12 Run AlgAssign with inputs S, VS , (p̃S , ÃS), and

Sv and let (p̄Sv , ĀSv ) be the output.
13 return (v, Sv, p̄Sv , ĀSv ) for the maximum

v ∈ V al such that Sv is not empty from S̄

Proof. We have Rev(p̄S′ , ĀS′) − |S′|c̄1 =
∑
j∈S′ p̄j −

|S′|c̄1 =
∑
j∈S′(p̄j − c̄1) ≥

∑
j∈S′(p̃j − c̄1) ≥ 0, where the

first equality is because all items in S′ are sold according
to AlgAssign, the first inequality is because p̄j ≥ p̃j for
all j ∈ S′ according to AlgAssign, and the second inequal-
ity is because p̃j ≥ c̄ for all i ∈ S by Algdemand. Thus,
Rev(p̄S′ , ĀS′) ≥ |S′|c̄ and Claim 2 holds.

Lemma 9. Let S∗ ∈ argmax|S|=tR(S). The algorithm

Algt finds a subset Sv such that Rev(p̄Sv , ĀSv ) ≥ R(S∗)
4α

.

Proof. From the definition of V al, the value v ∈ V al is
such that either v ≤ R(S∗) or v > R(S∗). We first consider
the case where v ≤ R(S∗). Given V and a cost c̄j = v

2t
for all

items j ∈ [m], Algdemand returns an item-set S and an envy-

free assignment (p̃S , ÃS). Recall that S∗c̄ is the output of the

dealer’s demand oracle. We have Rev(p̃S , ÃS) − |S|c̄1 ≥
NR(S∗c̄ ,c̄)

α
=

R(S∗c̄ )−|S∗c̄ |c̄1
α

≥ R(S∗)−|S∗|c̄1
α

=
R(S∗)−t v

2t
α

=

R(S∗)− v
2

α
≥ R(S∗)−R(S∗)

2
α

= R(S∗)
2α

≥ v
2α

, where the first in-
equality is by Theorem 2, the second inequality is because S∗c̄
is the output of the dealer’s demand oracle, and the third
and last inequalities are because v ≤ R(S∗). Therefore,

Sv 6= ∅ and Rev(p̃S , ÃS) ≥ R(S∗)
2α

.

If |S| ≤ t, then Sv = S andRev(p̄Sv , ĀSv ) ≥ Rev(p̃Sv , ÃSv );

thus Rev(p̄Sv , ĀSv ) ≥ R(S∗)
2α
≥ R(S∗)

4α
, as desired. If |S| > t,

then Rev(p̄Sv , ĀSv ) ≥ |Sv|c̄1 = t v
2t

= v
2

by Claim 2. Since v
is the maximal v ∈ V al such that v ≤ R(S∗), we have that

v ≥ R(S∗)
2

, therefore Rev(p̄Sv , ĀSv ) ≥ R(S∗)
4
≥ R(S∗)

4α
.

Now consider the case of v > R(S∗). When step b is
passed, if |S| ≤ t, then Sv = S and Rev(p̄Sv , ĀSv ) ≥
Rev(p̃Sv , ÃSv ) = Rev(p̃S , ÃS) ≥ v

2α
≥ R(S∗)

2α
≥ R(S∗)

4α
; if

|S| > t, by Claim 2, Rev(p̄Sv , ĀSv ) ≥ |Sv|c̄1 = t v
2t

= v
2
≥

R(S∗)
2
≥ R(S∗)

4α
. In sum, Lemma 9 holds.
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Using algorithm Algt, we construct a mechanism MD for
the dealer. Let β = 2dlogme and let j∗ ∈ [m] such that
j∗ ∈ argmaxj∈[m] R({j}). It is relatively easy to compute
j∗: look at the item that has the highest value among all
buyers and assign that item to the buyer with the highest
value and charge the buyer that value and set the price of
all other items to be sufficiently high so that nobody will
be assigned to any other item. Let (p∗j , A

∗
j ) be the optimal

envy-free assignment of {j∗}.

Mechanism 1: MD - A Randomized Budget
Feasible Mechanism for a Dealer

Input : Each seller j ∈ [m] reports a cost
cj > 0.

Output: (S, (qj)j∈S , p̄S , ĀS) or
(j∗, qj∗ , p

∗
j∗ , A

∗
j∗)

1 Let T = {1, 2, ..., 2dlogme}.
2 for t ∈ T in decreasing order do
3 Let N ′ be the set of items with cost at

most B/(βt) that are different from j∗.
4 Using the algorithm Algt with input t,

find (vt, St, p̄St , ĀSt) among items in N ′.
Let S = ∪tSt, and let (p̄S , ĀS) be the
output of Algvalue on S.

5 for j ∈ S do
6 let qj be the threshold for seller j:

that is, the highest cost j can
announce so that he is still selected,
given c−j .

7 end for

8 end for
9 Flip a fair coin.

10 if coin = heads then
11 The dealer buys items in S, pays qj to

each seller j ∈ S, pays 0 to each seller
j 6∈ S, and sells the items to the buyers
according to (p̄S , ĀS).

12 else
13 The dealer buys item j∗, pays B to seller

j∗, and sells the item according to
(p∗j∗ , A

∗
j∗).

14 end if

Theorem 3. The mechanism MD is universally truthful,
budget feasible, and is an O((log2 m)α2)-approximation to
the optimal procurement.

Proof. To show truthfulness of MD, we note that in
single-parameter settings, a mechanism is truthful if and
only if it satisfies monotonicity and threshold payment (see
[2] for the definition). Monotonicity comes from steps 2-3 of
MD and threshold payment is explicitly required in steps 5-
6. Finally, it can be shown that the total payment is budget
feasible in expectation. The analysis of the universal truth-
fulness and budget feasibility of MD follows from the same
reasoning as in [16] and thus is omitted. Below, we prove
the claimed approximation ratio.

Recall the optimal procurement of the dealer is a subset of
items S∗ such that S∗ ∈ argmaxS⊆[m],

∑
j∈S cj≤B

R(S). Let

(p̂S∗ , ÂS∗) be the optimal envy-free assignment such that

R(S∗) = Rev(p̂S∗ , ÂS∗). Let S̄∗ = {i|i ∈ S∗, ci > B
β
}, and

S∗ = S∗− S̄∗. By Theorem 1, R is subadditve and R(S∗) ≤
R(S̄∗) +R(S∗). Thus, R(S̄∗) ≥ R(S∗)

2
or R(S∗) ≥ R(S∗)

2
.

We first consider the case that R(S̄∗) ≥ R(S∗)
2

. Because

the costs of the items in S̄∗ is at least B
β

, the payment for

each of the items in S̄∗ is at least B
β

. Thus, B ≥ |S̄∗|B
β

and β ≥ |S̄∗|. By subaddtivity, we have
∑
j∈S̄∗ R({j}) ≥

R(S̄∗). Let j̄ ∈ argmaxj∈S̄∗ R({j}), we have R({j̄}) ≥
R(S̄∗)
β

. Moreover, R({j∗}) ≥ R({j̄}) ≥ R(S̄∗)
β

≥ R(S∗)
2β

.

Since Rev(p∗j , A
∗
j ) = R({j∗}), with probability 1/2, j∗ will

be selected and we have a O(logm)-approximation.

Now we consider the second case that R(S∗) ≥ R(S∗)
2

.

If R({j∗}) ≥ R(S∗)
2

≥ R(S∗)
4

, then with probability 1/2,

we have R({j∗}) ≥ R(S∗)
8

and we are done. Otherwise, let

S∗′ = S∗ \ {j∗}. It follows that, by subadditivity, R(S∗′) +
R({j∗}) ≥ R(S∗), that is, R(S∗′) ≥ R(S∗)−R({j∗}), which

implies R(S∗′) ≥ R(S∗)− R(S∗)
2
≥ R(S∗)

2
≥ R(S∗)

4
.

In what follows, we partition the items in S∗′ based on
their costs into O(logm) bins. Let Bin(i) = {j ∈ S∗′ |
B/(β2i+1) < cj ≤ B/(β2i)} for i ∈ {0, 1, ..., dlogme−1} and

Bin(dlogme) = {j ∈ S∗′ | 0 < cj ≤ B/(β2dlogme)}. By sub-
additivity, there is a bin k such that R(Bin(k)) ≥ R(Bin(i))

for all i ∈ {0, 1, ..., dlogme} and R(Bin(k)) ≥ R(S∗′)
O(logm)

=

R(S∗)
O(logm)

, that is, the optimal revenue of the items in Bin(k) is

at least O(logm)-fraction of R(S∗). By construction, Bin(k)
has at most β2k+1 items, it follows that the optimal solu-
tion of size β2k+1 of items with cost at most B/(β2k) has

revenue at least R(S∗)
O(logm)

. Consider the iteration at t = 2k,

algorithm Algt with t = 2k gives us a set St that is a 4α-
approximation to the optimal revenue of 2k items (Lemma
9). Notice that by subadditivity, the optimal revenue of
2k items is an 2β-approximation to the optimal revenue of
β2k+1 items. It follows that R(St) is an 8αβ-approximation
to the optimal solution of size β2k+1 with cost at most

B/(β2k). Thus, R(St) ≥ R(S∗)
O(αβ logm)

, and, by monotonic-

ity, R(∪tSt) ≥ R(St) ≥ R(S∗)
O(α log2 m)

≥ R(S∗)
O(α log2 m)

. However,

we do not know R(∪tSt), and we run Algvalue to get a α-
approximation of it. Therefore, with probability 1

2
, we have

the desired O((log2 m)α2)-approximation.

Remark 3. Notice that the dealer will buy all items in S,
but Algvalue may not sell all of them, thus the dealer’s rev-
enue may be less than his payment to the sellers. This has to
be the case because the requirement of truthfulness. Indeed, if
the dealer only buys items that are actually sold by Algvalue,
the mechanism is not monotone and thus is not truthful.
How to design truthful mechanisms where the dealer always
sells all his purchased items is an interesting open problem.

From Corollary 1, there is O(logn)-approximation for the
demand oracle. Thus, we have the following result.

Corollary 2. There is a mechanism that is universally
truthful, budget feasible, and is an O((log2 m) (log2 n))- ap-
proximation to the optimal procurement.
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