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ABSTRACT
We consider multi-agent decision making problems in which
agents need to communicate with other agents to make so-
cially optimal decisions but, at the same time, have some
private information that they do not want to share. Abstract
argumentation has been widely used in both single-agent and
multi-agent decision making problems, because of its ability
for reasoning with incomplete and conflicting information.
In this work, we propose an abstract argumentation-based
knowledge representation and communication protocol, such
that agents can find socially optimal strategies by only dis-
closing the ‘necessary’ and ‘disclosable’ information. We
prove that our protocol is sound, efficient, of perfect infor-
mation security and guaranteed to terminate.

Keywords
Abstract Argumentation; Distributed Constraints Satisfac-
tion; Privacy Preservation; Social Optimality

1. INTRODUCTION
In many cooperative multi-agent decision making prob-

lems, agents may have limited sensory capabilities and there
may exist some restrictions on actions (e.g. some actions
cannot be performed in certain states, and some actions
need to be performed by a certain number of agents simulta-
neously); therefore, agents need to communicate with each
other, so as to share some information and to coordinate
their actions to meet the constraints [27]. Even though these
agents are cooperative, they may have some private infor-
mation that they do not want to share with other agents.
This type of problem is interesting not only because many
real problems can be viewed as instances thereof, e.g. time
scheduling problems [22], freight scheduling problems [19]
and sensor networks [34], but also because it involves infor-
mation sharing, conflict resolution as well as privacy preser-
vation at the same time.

Abstract argumentation frameworks (AFs, c.f. [8, 4]) are
natural techniques to model and solve this type of problems
in a novel way. Since AFs can naturally represent and rea-
son with conflicting information, they have been widely used
to model functionalities in both single-agent (e.g. [3]) and
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multi-agent (e.g. [14]) decision making problems. Further-
more, because of the dialectic nature of AFs, argumentation
dialogue models [23, 9] have been proposed so that agents
can jointly resolve conflicts or make decisions by exchanging
only the necessary information (see, e.g., [12]). In this pa-
per, inspired by algorithms for solving distributed constraint
satisfaction problems (DisCSPs; see, e.g., [32]), we propose
an AF-based cooperation protocol, which not only uses AFs
to represent each agent’s beliefs and observations, but also
uses AF-based dialogues to regulate communication between
agents. We prove that, by using our protocol, after finitely
many rounds of communication, agents can find a strategy
profile efficiently, by exchanging only the necessary infor-
mation and limiting the disclosure of private information.
The resulting strategy profile is (i) ‘feasible’, i.e. all actions
in the strategy profile are ‘doable’ according to all agents’
observations and beliefs; (ii) ‘acceptable’, i.e. meeting all
constraints; and (iii) socially optimal, i.e. there does not
exist another strategy profile that satisfies requirements (i)
and (ii) and makes every agent ‘better off’.

Throughout, we use, for illustration, the following moti-
vating scenario, adapted from the Battle of the Sexes game
in [25] and the meeting scheduling problem in [28].

Example 1. Alice and Bob want to decide on an activity
for the day. Alice prefers going to a ballet to watching a
football game, while Bob’s preference is the opposite. Both
Alice and Bob want to go to the same place rather than
different ones. This is a simple DisCSP, but where both
agents have private concerns they would rather not disclose.

As for Alice, she worries about Bob’s ex-wife attending
the ballet (we denote this concern by Ex?), but she does
not want Bob to know about this concern. Caroline, Bob’s
and his ex-wife’s daughter, told Alice earlier that she went
hiking today with her mother (denoted by C:Hiking). Also,
Alice worries about the weather for the day (denoted by
Wea), but she found from a forecast that it will be sunny
(denoted by Sun). Alice does not mind disclosing these two
pieces of weather-related information. Alice’s beliefs and
observations can be modelled by the AF in Fig. 1(a), where
arrows represent attacks (e.g., Ex? attacks A:Ballet, since
Bob’s ex-wife attending the ballet is a reason against Alice
and Bob going, in Alice’s mind). Note that this AF does
not represent preferences (see Sect. 3.2 for more on this).

As for Bob, he worries about whether Alice likes watching
sports games (denoted by LikeSport?): Alice has told him
before, but he forgets and would rather Alice not be aware
of this! However, they went to a tennis match last week and
Alice enjoyed that (denoted by EnjoyTennis). Also, Bob
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A:Ballet Ex? C:Hiking

A:Football Wea Sun

(a) Alice’s internal AF

B:Ballet C:Facebook

B:Football LikeSport? EnjoyTennis

(b) Bob’s internal AF

Figure 1: AFs that represent (a) Alice’s and (b)
Bob’s beliefs and observations (respectively).

notices that his daughter Caroline has posted on Facebook
‘In the ballet hall now!’ (denoted by C:Facebook). Bob’s
beliefs and observations (but, again, not preferences) can be
modelled by the AF in Fig. 1(b).

Note that C:Facebook is in conflict with C:Hiking. How-
ever, since Alice and Bob do not know each other’s argu-
ments a priori, no attack from C:Facebook to C:Hiking is
present in Fig. 1. However, as soon as they share these
arguments, an attack will naturally emerge.

We present a protocol for agents equipped with AFs with
private and disclosable beliefs and observations, as in this ex-
ample, to communicate and coordinate so as to solve DisC-
SPs, such as the one in this example, so as to guarantee so-
cial optimality, taking all agents’ preferences into account,
while preserving privacy in some sense.

2. BACKGROUND
We summarise abstract argumentation frameworks, argu-

mentation dialogues and distributed constraints satisfaction
problems in Sect. 2.1, 2.2 and 2.3, respectively. Finally,
we give background on information security in Sect. 2.4.
This will be used to characterise our protocol as ‘privacy
preserving’.

2.1 Abstract Argumentation Frameworks
An Abstract argumentation Framework (AF) [8] is a pair

(Arg,Att) where Arg is a set of arguments and Att ⊆ Arg×
Arg is a binary relation representing the attacks between
arguments. An AF is typically visualised as a graph, as in
Fig 1. A set S ⊆ Arg attacks an argument b ∈ Arg when
some member of S attacks b. A set S ⊆ Arg is conflict-free
iff no member of S attacks a member of S.

Argumentation semantics are defined as criteria for se-
lecting sets of ‘winning’ arguments in AFs. The admissible
semantics is widely used: in F = (Arg,Att), S ⊆ Arg is ad-
missible iff S is conflict-free and attacks any argument in Arg
that attacks an argument in S. We say that an argument is
admissible (in F) iff it belongs to at least one admissible set.

Although the admissible (and other) semantics can iden-
tify sets of ‘winning’ arguments, it does not ‘explain’ why
an argument belongs to a ‘winning’ set. To tackle this,
the related-admissible semantics [13] has been proposed. In
(Arg,Att), S ⊆ Arg is related-admissible iff S is admissible
and ∃a ∈ S such that every argument in S defends a (such
a is a topic of S), where argument b defends a iff:
• b = a; or

• ∃c ∈ Arg s.t. c attacks a and b attacks c; or
• ∃c ∈ Arg s.t. c defends a and b defends c.

A related-admissible set S is a compact explanation of a iff
a is a topic of S and S is the smallest (wrt. ⊆) among all
related-admissible sets whose topics include a.

Example 2. Consider Bob’s AF in Fig. 1(b). The set
{LikeSport?,EnjoyTennis} is not admissible as it is not
conflict-free. The set {B :Football,EnjoyTennis,C:Facebook}
is admissible but not related-admissible since C:Facebook
does not defend B : Football or EnjoyTennis. {B : Football,
EnjoyTennis} is related-admissible and a compact explana-
tion of B :Football. Also, {B : Ballet} is a compact expla-
nation of B : Ballet.

Similarly, in Alice’s AF (Fig. 1(a)), there are two compact
explanations: {C:Hiking, A : Ballet} for argument A : Ballet,
and {Sun, A :Football} for argument A : Football.

2.2 Argument Games and Disputes
Argumentation semantics define the ‘winning’ sets of ar-

guments, but do not specify how to obtain them. Inspired
by the dialectic nature of argumentation, argument games
(also known as dialogues) are proposed as a proof theory for
argumentation semantics (see, e.g., [18, 20]). An argument
game involves two players1: a defender and a challenger.
The defender starts with an argument to be tested, after
which each player must attack the other player’s arguments.
This process is known as a dispute. The two parties im-
mediate response dispute (TPI-dispute) [30, 9] is a widely
used dialogue model. A player in a TPI-dispute is allowed
to present an argument (only in the first move) or present
an argument attacking one of the previous arguments of the
other player. An argument is said to be defended by a TPI-
dispute iff this argument is the first move in this TPI-dispute
and the defender wins this dispute (as for the definition of
‘win’, see [30]). An argument is admissible iff it can be de-
fended in every TPI-dispute. When there are finitely many
arguments, TPI-disputes are guaranteed to terminate.

2.3 DisCSPs
DisCSPs are problems where knowledge (i.e., domains,

variables and constraints) is distributed among communi-
cating agents and cannot be centralized for various reasons
(e.g. prohibitive costs of constraint translation or secu-
rity/privacy issues) [32]. Chronological synchronous back-
tracking (SBT) is one of the simplest while most fundamen-
tal algorithms for DisCSPs; many modern algorithms for
DisCSPs, e.g. asynchronous backtracking and its variants,
have their roots in SBT [32]. SBT requires a static ordering
of agents. Following this, agents try to extend a partial so-
lution into a total one by adding consistent assignments for
unassigned variables. Agents pass a token among them; the
agent who has the token can extend the partial solution and
then send the extended partial solution and the token to the
next agent. SBT terminates either because all variables are
included in the partial solution or because every value for
the variable of the first agent has been discarded. In the
former case, the partial solution constitutes a solution for
the problem, while in the latter case, the problem is unsat-
isfiable. SBT is guaranteed to terminate and is sound and
complete (i.e. it terminates only with correct answers, and
it terminates for all problems) [17].
1Later in Sect. 5 we will see that the players are different
from the agents in the problems we consider.
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2.4 Information Entropy and Security
The extent to which a certain secret can be preserved, or

the level of information security, has been rigorously studied
in information theory [26, 7]. Perfect security is the highest
privacy preserving level, in which the information disclosed
by an agent does not provide any ‘hints’ to other agents
about the private information of the agent, even when the
other agents have unlimited computational resources.

The (Shannon) entropy [26] is arguably the most widely
used measurement to quantitatively evaluate the informa-
tion loss and the level of security. Formally, the entropy of a
discrete random variable X with possible values {x1, · · · , xn}
and probability mass function P (X) is defined as

H(X) = −
∑
i

p(xi) · log2 p(xi)

where p(xi) is a shorthand for P (X = xi). Note that when
p(xi) = 0 for some i, the value of the corresponding sum-
mand is taken to be 0, i.e. 0 · log2(0) = 0. As an extension,
the conditional entropy of two events X and Y is defined as

H(X|Y ) =
∑
i,j

p(xi, yj) · log2[p(yj)/p(xi, yj)]

where p(xi, yj) is the probability that X = xi, Y = yj .
Perfect security can be defined using these notions of en-

tropy, as follows. Suppose Agent has a secret message M ,
and Agent discloses information C according to some com-
munication protocol Pr; Pr is of perfect security wrt. M
iff H(M) = H(M |C), i.e. the prior probability of M is the
same as its posteriori probability given the disclosure of C.

3. PROBLEM DEFINITION
We first give a formal definition of the type of DisCSPs

we consider in this paper (Sect. 3.1), and then introduce
the AFs we use to model each agent (Sect. 3.2). Finally, we
define the strategy profiles we are after (Sect. 3.3).

3.1 Problem Description
The problems we consider are tuples (Ag,Act, Con), where

Ag={Agent1,· · · ,AgentN} is the set of agents (N ∈N,N≥2),
Act = {a1, · · · , aM} is the set of available actions for each

agent (M ∈ N,M ≥ 1), and Con : Act → 2{0,··· ,N} is the
constraint function. Given an action a ∈ Act, Con(a) ⊆
{0, · · · , N} is the required number of agents to perform this
action.2 For example, if an action a can be performed by no
agents or by two agents simultaneously, Con(a) = {0, 2}. In
the reminder, unless stated otherwise, we let i and j range
over all agents and all actions, respectively. A strategy pro-
file S is a list 〈ac1, · · · , acN 〉, such that aci ∈ Act is the
action of Agenti.

We say that a strategy profile S is acceptable for a problem
if it satisfies all constraints in the problem. We say that a
problem is satisfiable if all its constraints can be satisfied
by some (acceptable) strategy profile(s). Formally, for a
strategy profile S and an action a, let N(S, a) be the number
of agents assigned to perform a in S. Then:

2We only consider constraints on the number of agents si-
multaneously performing an action. More complex con-
straints in DisCSPs (see, e.g., [6]) are left for future work.

Definition 1. A strategy profile S is acceptable for prob-
lem (Ag,Act, Con) iff ∀a ∈ Act, N(S, a) ∈ Con(a). A prob-
lem (Ag,Act, Con) is satisfiable if there exists an acceptable
strategy profile for it.

Example 3. In Example 1, N = 2 because there are two
agents (Caroline and her mother are not counted as agents as
they do not participate in the decision making). Also, M =
2 as there are two actions (‘go to the ballet’ and ‘watch foot-
ball’). Con(‘go to the ballet’) = Con(‘watch football’) =
{0, 2} because both agents want to attend these activities
together or not at all. This problem is satisfiable, as there
are two acceptable strategy profiles: both agents going to
the ballet and both agents watching football.

3.2 AFs for Knowledge Representation
We assume that each agent has a complete pre-order ex-

pressing a preference on all available actions, and we term
Agenti’s preference on actions the ideal preference of Agenti,
denoted by ≤i

Ideal. <i
Ideal is a total order derived from

≤i
Ideal, such that for ap, aq ∈ Act, ap <i

Ideal aq iff ap ≤i
Ideal

aq and aq 6≤i
Ideal ap. This derived total order is used later in

Sect. 3.3 when we define social optimality. Also, each agent
has information (including beliefs and observations) for or
against some actions or other information, represented by
internal AFs. Agents will share elements of their internal
AFs via our cooperation protocol. The perfect-view inter-
nal AF of an agent includes all arguments that other agents
may disclose during cooperation. In this subsection, we de-
fine these concepts formally.

Arguments in internal AFs.
In line with some widely used AF-based decision making

paradigms [3, 5], we distinguish two categories of arguments:
practical and epistemic arguments. Practical arguments rec-
ommend actions to agents. For simplicity, for each action
and agent, we allow for one and only one practical argument
to recommend this action to the agent. We let Aij denote the
(one and only) practical argument recommending action aj

to Agenti, and denote the set of all practical arguments be-
longing to Agenti by pPrai (p is short for ‘private’, and Pra
stands for ‘Practical’), i.e. pPrai = {Ai1, · · · , AiM}. Prac-
tical arguments are private since, in our protocol, agents di-
rectly inform other agents about their action choices (in line
with SBT, see later in Sect. 4) and, thus, they do not need
to additionally communicate the reasons for these choices
(expressed by the practical arguments).

As for the epistemic arguments, we distinguish two sub-
categories: disclosable and private arguments, which an agent
is willing and unwilling to disclose to other agents, respec-
tively. We denote Agenti’s disclosable and private epistemic
argument sets by dEpii (d is short for ‘disclosable’) and
pEpii, respectively.

We denote Agenti’s argument set by Argi = pPrai∪dEpii∪
pEpii. We impose that pPrai, dEpii and pEpii are mutually
disjoint and that Argi is finite. In Fig. 1, practical argu-
ments are underlined, private epistemic arguments are in
boldface and disclosable epistemic arguments are in italic.
How to build these arguments from beliefs and raw observa-
tions is not the focus of this paper; in principle, any struc-
tured argumentation technique, e.g. ABA [29] or ASPIC+
[21], can be used for this purpose.

Internal AFs.
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We first discuss attacks within an agent’s internal AF. In
line with [3], we impose that practical arguments do not
attack each other, so as to preserve all relevant information
in the decision process (see Sect. 2.3 in [1] for a thorough
explanation). Since a practical argument supports an agent
to perform an action, while an epistemic argument justifies
beliefs and observations on which practical arguments are
built, in line with [3], practical arguments are not allowed
to attack (private or disclosable) epistemic arguments.

As for attacks between epistemic arguments, since private
arguments usually represent agents’ private beliefs/concerns,
whereas disclosable arguments usually represent observa-
tions/facts (see Example 1), and we believe that the lat-
ter are ‘stronger’ than the former, we do not allow private
arguments to attack disclosable arguments; we leave the re-
laxation of this constraint for future work. Finally, each
private epistemic argument is attacked by some disclosable
(epistemic) arguments. This guarantees that, when negoti-
ating with other agents, other agents can ‘indirectly’ defend
or attack each private epistemic argument by (directly) at-
tacking or defending some disclosable arguments attacking
it. This will be further discussed in Sect. 5.

We now define the internal AF for each agent.

Definition 2. Agenti’s internal AF is AFi = (Argi, Atti),
such that Argi = pPrai ∪ dEpii ∪ pEpii and

1. ∀a, b ∈ pPrai, (a, b) 6∈ Atti;
2. ∀a ∈ pPrai, @b ∈ pEpii ∪ dEpii such that (a, b) ∈ Atti;
3. ∀a ∈ pEpii, @b ∈ dEpii such that (a, b) ∈ Atti; and
4. ∀a ∈ pEpii, ∃b ∈ dEpii such that (b, a) ∈ Atti.

In line with our earlier discussion: condition 1 gives that
the set of all practical arguments is conflict-free, condition
2 gives that practical arguments are not allowed to attack
epistemic arguments, condition 3 gives that private argu-
ments are not allowed to attack disclosable arguments, and
condition 4 gives that each private argument is ‘publicly de-
feasible’ during coordination, as discussed earlier.

Example 4. The AF in Fig. 1(a) is an internal AF, as
required by Def. 2. Indeed, there are no attacks between
practical arguments (condition 1), no attacks from practical
arguments to epistemic arguments (condition 2) and no at-
tacks from private arguments to disclosable arguments (con-
dition 3). Also, the only private epistemic argument, Ex?,
is attacked by the disclosable epistemic argument C:Hiking,
thus condition 4 holds too. Similarly, it is easy to check that
the AF in Fig. 1(b) also satisfies the requirements of Def. 2.

Attacks across internal AFs/Perfect-view internal AFs.
Now we discuss attacks between arguments of different

agents. Since an agent cannot know another agent’s private
arguments, we restrict attacks between agents’ arguments
only to their disclosable (epistemic) arguments, i.e. given a
practical or private epistemic argument of Agenti, this argu-
ment cannot attack or be attacked by another agent’s argu-
ments. In addition, we assume that agents have a consensus
on the attack relation between (disclosable) arguments (ir-
respective of the agents they belong to). This assumption is
in line, e.g., with [25]. Note that with this assumption we do
not mean that an agent knows another agent’s disclosable
epistemic arguments a priori; instead, we mean that if two
disclosable arguments are presented in front of an agent, this

Disclosable? Allowed to attack which arguments?
pPrai No ∅
dEpii Yes dEpi−i ∪Argi
pEpii No pPrai ∪ pEpii

Table 1: Properties of different kinds of arguments
(from Agenti’s perspective).

agent is able to decide the attack relation between them, and
this attack relation is agreed by all other agents. We denote
the attack relation between different agents’ arguments by
Att∗, such that Att∗ ⊆

⋃
i dEpii ×

⋃
i dEpii.

Let dEpi−i =
⋃

p6=i dEpip, for p ∈ {1, · · · , N}. Namely,
dEpi−i consists of all disclosable epistemic arguments be-
longing to agents other than Agenti. Properties of different
kinds of arguments are summarised in Table 1. We now
define the perfect-view internal AF for each agent.

Definition 3. Agenti’s perfect-view internal AF is AF∗i =
(Arg∗i ,Att∗i ), where Arg∗i =dEpi−i∪Argi and Att∗i =Atti∪Att∗.

Example 5. Alice’s perfect-view internal AF (Arg∗A,Att∗A)
has Arg∗A = ArgA ∪ {EnjoyTennis,C:Facebook} and Att∗A =
AttA ∪ {(C:Facebook,C:Hiking)}, where (ArgA,AttA) is the
AF in Fig. 1(a). Bob’s perfect-view internal AF can be
obtained similarly.

Note that an agent may not be able to know the full
contents of its perfect-view internal AF during cooperation.
Nevertheless, this notation allows to define desirable prop-
erties of the protocol.

3.3 Desirable Properties
We want for the strategy profiles obtained by our proto-

col to meet the following requirements: i) feasible, i.e. if a
strategy profile assigns action aj to Agenti, then aj should be
‘doable’ for Agenti; ii) acceptable, i.e. the strategy profiles
satisfy all constraints; and iii) socially optimal wrt. agents’
ideal preferences. We have already defined acceptability in
Def. 1. Let us now define the other requirements.

Definition 4. An action aj is locally feasible for Agenti iff
argument Aij (the practical argument that recommends aj

to Agenti) is admissible in Agenti’s internal AF.

If an action is not locally feasible for Agenti, it is not sup-
ported by the information held by Agenti and, thus, Agenti
has no incentive to propose it. We say that Agenti’s inter-
nal AF is feasible iff all actions in Act are locally feasible for
Agenti. For example, we can see that every practical argu-
ment in Fig. 1 is admissible in the internal AF it belongs to.
Thus, both Alice’s and Bob’s internal AFs are feasible. We
assume that all agents’ internal AFs are feasible; we leave
relaxing this restriction for future work.

Definition 5. An action aj is (globally) feasible for Agenti
iff argument Aij is admissible in (Arg∗i ,Att∗i ).

A strategy profile S = 〈ac1, · · · , acN 〉 is feasible iff, for
each i ∈ {1, · · · , N}, action aci is globally feasible for Agenti.

Now we define the notion of ‘social optimality’ as follows:

Definition 6. S = 〈ac1, · · · , acN 〉 is socially optimal iff:
• S is acceptable and feasible; and
• there is no S′=〈ac′1, · · · , ac′N 〉 s.t. S′ 6=S, S′ is acceptable

and feasible, and for any i aci<
i
Ideal ac

′
i.
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Example 6. As we mentioned in Example 3, there are two
acceptable strategy profiles: both agents ‘going to the ballet’
or ‘watching football’. We first check whether A : Ballet is
feasible, i.e. whether it is admissible in Alice’s perfect-view
internal AF (given in Example 5). Easily, we can see that
A : Ballet is not admissible, because it is attacked by Ex?,
which, in turn, is defended by C:Facebook. Thus, the strat-
egy profile wih both agents ‘going to the ballet’ is not feasible
and not a desirable profile we want to obtain. Instead, we
can easily verify that both agents ‘watching football’ is fea-
sible; since this is the only strategy profile that meets the
first two requirements, it is socially optimal by Def. 6.

Finally, we want to avoid agents’ ‘privacy leaks’ during
coordination. In this paper, this amounts to preventing that
agents’ private epistemic arguments are disclosed.3 Thus,
we require that (iv) our protocol is of perfect security wrt.
agents’ private epistemic arguments (as defined in Sect. 2.4).
Next, we propose a protocol that can obtain strategy profiles
with all desirable properties identified in this section.

4. THE COORDINATION PROTOCOL
The pseudo code of our protocol is presented in Alg. 1.

The overall structure of this protocol is similar to that of
SBT (see Sect. 2.3).4 Without loss of generality, we assume
that agents with smaller index numbers are higher in the
static agent ordering required by SBT.

Let us walk through this protocol. This is activated by
sending the token and a message ok?(S) to Agent1. Agent1
initialises S to an empty strategy profile (line 1). my act
stores Agenti’s action choice, and is initialised to null (line
2). When an agent receives the token (line 3), it iterates
over all actions that are equally or less preferred than its cur-
rent action my act by invoking function GetNextBestAct
(line 4). When the input action of GetNextBestAct is
null, it returns (one of) the agent’s most preferred action(s).
For the current action a, the agent checks whether it is con-
sistent5 with S and (globally) feasible using function Check
(line 5), which is detailed later in Alg. 2.

After obtaining a consistent and feasible action a, the
agent adds (Agenti, a) into S, updates my act (line 6), and
sends the updated S and the token to the next agent if the
agent is not the last (line 8) or returns the obtained full strat-
egy profile otherwise (line 10). If the action being checked
is not consistent and feasible, the agent checks the next.

However, if the agent fails to find any consistent and fea-
sible action (lines 14 to 18), it sends message ngd (short
for ‘not good’) and the token to the previous agent so as to
backtrack (line 15). In particular, if Agent1 cannot find a

3Preserving other kinds of information may also be of inter-
est in certain applications: for example, the agents may also
want to avoid directly informing other agents about their
proposed actions, or they may have private constraint func-
tions that they do not want to disclose. Privacy preservation
has been widely studied in DisCSPs (e.g. see [16, 6, 28, 31,
33]; more details are given in Sect. 7). We leave the study
of further notions of privacy preservation as future work.
4More advanced algorithms for DisCSPs can be used as the
basis for our protocol; we leave this for future work.
5Roughly speaking, assigning action aj to Agenti is consis-
tent with a partial strategy profile S if merging this assign-
ment into S does not violate any constraints. Details are
given later in this section when defining Check.

Algorithm 1 The protocol (Agenti’s perspective).

1: Initialise S to an empty strategy profile if i is 1
2: my act← null
3: if I have the token then
4: for a← GetNextBestAct(my act) do
5: if Check(a, S, i) == [consistent, feasible] then
6: update S and my act
7: if i < N then
8: send ok?(S) and token to Agenti+1

9: else
10: return S
11: end if
12: end if
13: end for
14: if i > 1 then
15: send ngd and the token to Agenti−1

16: else
17: return null
18: end if
19: end if

feasible and consistent action and needs to backtrack, the
protocol terminates and no strategy is obtained (line 17).

Example 7. We now use Alg. 1 to coordinate Alice and
Bob’s actions. Suppose Alice is ranked higher in the static
agent ordering; thus, she obtains the token first (line 3). Al-
ice checks whether her most preferred action — going to the
ballet — is consistent with S (note that S is empty at this
stage) and globally feasible, by invoking Check (line 5). We
omit the checking process here (see Examples 8 and 9), but
its result suggests that going to the ballet is not feasible;
Alice thus checks her next preferred action: watching foot-
ball. By invoking Check again, Alice finds that watching
football is consistent with S and is feasible. So she inserts
(Alice,‘watch football’) into S and lets my act be ‘watch
football’ (line 6). Then she sends ok?(S) and the token to
Bob (line 8).

Once Bob receives the token and Alice’s message (line 3),
he begins to propose his own action. Similarly, he starts
from his favourite action: watching football (line 4), and he
finds that this action is consistent with S (note that S now
includes Alice’s proposal) and is feasible by invoking Check
(line 5). Since Bob is the last agent, after he updates S and
my act (line 6), he returns the full strategy profile and the
whole protocol terminates (line 10).

Now we introduce the function Check (invoked in line 5
in Alg. 1), which checks an action’s consistency and (global)
feasibility. Its pseudo code is given in Alg. 2. It first checks
the consistency of assignment (Agenti, a) wrt. the input
partial strategy (line 2), as follows: it first counts the number
of agents action a has been assigned to in S (we denote
this number by N(S, a); see Sect. 3.1), and then compares
N(S, a) with maxCon(a), i.e. the maximal number of agents
required to perform a (see Sect. 3.1 for the definition of
Con(a)). When i 6= N (i.e. the current agent is not the last
agent), we say that assignment (Agenti, a) is consistent with
S iff N(S, a) ≤ maxCon(a); when i = N , the assignment is
consistent with S iff adding this assignment into S generates
an acceptable strategy profile (see Def. 1). The function
updates status accordingly (line 3).
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Algorithm 2 Check(action a, strategy S, agent Agenti)

1: status← [not consistent, not feasible]
2: if assignment (Agenti, a) is consistent with S then
3: let the first element in status be consistent
4: end if
5: Obtain all compact reasons E1, · · · , EK for a
6: for each Ek, k = 1, · · · ,K do
7: if Discussion suggests that Ek is successful then
8: let the second element in status be feasible
9: end if

10: end for
11: return status

Example 8. We illustrate how Alice checks the consistency
of her first proposed action: going to the ballet. Note that
the input strategy profile S is empty at this stage. Since
Con(go to the ballet) = {0, 2} (see Example 3), there can
be at most two agents performing this action. Because Al-
ice is not the last agent, she only needs to check whether
there still exists any allowance for her to perform this action,
i.e. she needs to check whether N(S, go to the ballet) ≤
maxCon(go to the ballet). Because N(S, go to the ballet) =
0, her proposed action is consistent with S.

To illustrate the last agent’s consistency check, we walk
through how Bob checks whether his proposed action ‘watch
football’ is consistent. Note that, in this case, the input par-
tial strategy profile S includes Alice’s proposal (watch foot-
ball). After Bob inserts his proposal into S, the new strategy
profile is S′ = 〈watch football,watch football〉, in which the
first and second action are Alice’s and Bob’s proposed ac-
tion, respectively. Thus, N(S′, go to the ballet) = 0 and
N(S′,watch football) = 2, both satisfying the constraints
(see Example 3); according to Def. 1, this strategy profile is
acceptable and Bob’s action proposal is thus consistent.

Function Check also checks the (global) feasibility of the
input action (line 5 to 10). The intuition of this part is as
follows: an agent obtains all ‘compact reasons’ for the input
action (line 5; here we suppose there are K ∈ N compact rea-
sons), and ‘discusses’ with other agents to see whether there
exists any ‘successful ’ compact reason (line 7); the action is
feasible if there exists (at least) one successful compact rea-
son (line 8). In the next section, we detail the concept of
‘compact reasons’, ‘discussion’ and ‘successful’, and prove
that the Check function is sound and it terminates.

5. EXPLAINING ACTION CHOICES WITH
PRIVACY PRESERVED

In this section, we analyse which arguments need to be
disclosed so as to check the feasibility of an action without
leaking the private arguments. An intuitive method to find
which arguments need to be disclosed is to compute the
‘reasons’ for an action; then the agent can ‘discuss’ these
reasons with other agents, so that other agents only need to
disclose their arguments ‘relating to’ these reasons. We use
the related-admissible semantics (see Sect.2.1) to compute
the reasons for actions. The next proposition shows that,
for each related-admissible set that includes one and only
one practical argument, the practical argument is the set’s
topic (see Sect. 2.1).

Proposition 1. Given Agenti’s internal AF (Argi,Atti),
if S ⊆ Argi is related-admissible and S∩pPrai = {Aij}, then
Aij is the topic of S.

Proof. We prove this by contradiction. Suppose the
topic of S is argument A, and A 6= Aij . Since Aij is the
only practical argument in S, A is an epistemic argument.
By condition 2 in Def. 2, practical arguments cannot attack
epistemic arguments; thus, Aij cannot defend A (for defend,
see Sect. 2.1); however, by assumption, A is the topic of S
and every element in S should defend S. Contradiction.

Given Agenti’s internal AF, if one of its related-admissible
sets S includes only one practical argument Aij , we say that
S recommends action aj to Agenti. If S recommends aj

to Agenti and is a compact explanation (see Sect. 2.1) of
Aij , we say that S \ {Aij} is an Agenti’s compact reason for
aj . In the next proposition, we prove that each non-empty
compact reason includes disclosable arguments.

Proposition 2. For Agenti’s internal AF (Argi,Atti), if
S ⊆ Argi, S is a compact reason for aj and S 6= ∅, then
S ∩ dEpii 6= ∅.

Proof. We prove this by contradiction. Suppose S ∩
dEpii = ∅; thus, all epistemic arguments in S are private.
However, ∀a ∈ S, ∃b ∈ dEpii s.t. (b, a) ∈ Atti (condition 4 in
Def. 2). As private arguments are not allowed to attack dis-
closable arguments (condition 3 in Def. 2), S cannot attack
b and S cannot be a compact reason. Contradiction.

We say that a compact reason E ⊆ Argi for action aj is
successful for Agenti (line 7 in Alg. 2) iff every disclosable
argument in E is contained in (at least) one admissible set
in Agenti’s perfect-view internal AF (Arg∗i ,Att∗i ) (see Sect.
3.2). In the next proposition, we show that an action is
feasible if it has (at least) one successful compact reason.

Proposition 3. Suppose E is an Agenti’s compact rea-
son for action aj and it consists of l (l ∈ N, l ≥ 1) disclosable
arguments d1, · · · , dl. If ∃S ⊆ Arg∗i such that {d1, · · · , dl} ⊆
S and S is admissible, then action aj is feasible, i.e. argu-
ment Aij is admissible in AF∗i = (Arg∗i ,Att∗i ).

Proof. We denote E∪{Aij} by E′. To prove this propo-
sition, we show that ∃S′ ⊆ Arg∗i s.t. E′ ⊆ S′ and S′ is
admissible in AF∗i . ∀a ∈ Arg∗i that attacks b ∈ E′:

• If a∈Argi, since E′ is related-admissible, E′ attacks a.

• Else, a ∈ Arg∗i \ Argi, i.e. a ∈ dEpi−i, then b must be
a discloable argument (i.e. b ∈ {d1, · · · , dl}) because
another agent’s arguments are not allowed to attack
Agenti’s private arguments (see Table 1). Because S
is admissible in AF∗i and b ∈ S, there exists c ∈ S such
that c attacks a. We prove that E′∪{c} is conflict-free.

– If c ∈ dEpii, suppose E′ ∪ {c} is not conflict-free.
Because E′ is related-admissible, ∃d ∈ {d1, · · · , dl}
such that d attacks c. Because both d and c are
in S, S is not conflict-free. Contradiction. Thus,
If c ∈ dEpii, E

′ ∪ {c} is conflict-free.

– Else, c ∈ Arg∗i \Argi, i.e. c ∈ dEpi−i. Because c is
in S, {d1, · · · , dl}∪ {c} is conflict-free; also, since
c is not allowed to be in an attack relation with
Agenti’s private arguments, {c} ∪ (E′ ∩ Pri), for
Pri the set of all Agenti’s private (epistemic and
practical) arguments, is conflict-free. Thus, when
c ∈ dEpi−i, {c} ∪ E′ is conflict-free.

1158



Thus, for every a that attacks b ∈ E′, there exists some ar-
gument c attacking a and E′∪{c} is conflict-free. Therefore,
Aij is admissible in AF∗i .

Proposition 3 explains lines 6 to 9 in Alg. 2: by check-
ing whether there exists a successful compact reason for
action aj , we can check the feasibility of aj . However, to
check whether a compact reason is successful, an agent needs
to obtain some necessary disclosable arguments from other
agents. We term this process Discussion (line 7 in Alg. 2).

We use a variant of the TPI-dispute (see Sect. 2.2) to im-
plement Discussion. There are two (opponent) players in the
dispute: a defender and a challenger. Note that these two
players are different from the agents; instead, they are only
used in the dispute to ask agents to provide some of their
disclosable arguments, so as to find whether a compact rea-
son is successful. Also, note that even inactive agents (i.e.
agents that do not have the token) can disclose their argu-
ments to the players, upon players’ requests. Our variant of
TPI-dispute, called compact-reason-oriented TPI-dispute, is
formally defined as follows.

Definition 7. Suppose E is an Agenti’s compact reason
for action aj , and E contains l (l ∈ N, l ≥ 1) disclosable
arguments d1, · · · , dl. An E-oriented TPI-dispute satisfies
the following requirements:

• In the first move, the defender puts forward arguments
d1, · · · , dl.
• After that, players take turns to ask all agents except

Agenti whether they have disclosable arguments at-
tacking one of the arguments presented earlier by the
opponent player; if they do, the asking player presents
one of these arguments (following the rules given be-
low); otherwise, we say that the player runs out of
moves.

• Both players are allowed to backtrack, i.e. present an
argument attacking some earlier argument of the other
player, called the backtracked argument.

• Both players are allowed to repeat arguments earlier
presented by the defender.

• The challenger is allowed to repeat arguments pre-
sented earlier by itself iff those repeated arguments
are in different dispute lines6 from their earlier uses.

• No other moves are allowed.

• The challenger wins the dispute iff it does an eo ipso
move (i.e. uses a previous non-backtracked argument
of the other player) or the defender runs out of moves.
The defender wins iff the challenger cannot win.

Example 9. We illustrate the discussion between Alice and
Bob (line 7 in Alg. 2) that checks the feasibility of Alice’s ac-
tions. Since Alice has two compact explanations (see Exam-
ple 2), we can easily obtain her compact reasons: {C:Hiking}
is the compact reason for A : Ballet, and {Sun} is the com-
pact reason for A : Football (since each action has one com-
pact reason, K = 1 in line 6, Alg. 2). We walk through the
{C:Hiking}-oriented TPI-dispute as follows (D1/C1 labels
the first step of the defender/challenger, respectively.):

6A dispute line is a dispute where each move replies to the
immediately preceding move.

• D1: The defender puts forward C:Hiking.

• C1: The challenger asks Bob whether he has argu-
ment(s) attacking C:Hiking, and Bob reports C:Facebook.
Thus, the challenger presents C:Facebook.

After step C1, since the defender runs out of moves, the
challenger wins the dispute and, thus, the compact reason
{C:Hiking} is not successful and A : Ballet is not feasible.

Instead, the compact reason for A : Football, i.e. {Sun},
is successful, as the challenger cannot make any moves after
the defender puts it forward. Thus, A : Football is feasible.

Proposition 4. If E is an Agenti’s compact reason for
action aj, E is successful iff the defender wins in every E-
oriented TPI-dispute.7

Proof. (Sketch) We first prove that if the defender wins
in every E-oriented TPI-dispute, E is successful. Because
the challenger cannot win, the arguments presented by the
defender are conflict-free (otherwise, the challenger can per-
form eo ipso) and can attack every arguments presented by
the challenger (otherwise, the defender runs out of moves).
Conversely, if E is successful, suppose S is an admissible
set and E ⊆ S; then the defender can win every dispute by
using arguments in S only.

Since all moves other than the first in our disputes are
the same as in standard TPI-disputes, and there are finitely
many arguments presented in the first move, we have:

Proposition 5. If E is an Agenti’s compact reason for
action aj, every E-oriented TPI-dispute terminates.

6. PROPERTIES OF THE PROTOCOL

Theorem 1. Alg. 1 is guaranteed to terminate.

Proof. (Sketch) Function Check employs compact-reason-
oriented TPI-disputes (Def. 7) to check whether compact
reasons are successful, and the disputes are guaranteed to
terminate (Proposition 5); thus, Check terminates. Also,
because the basic structure of Alg. 1 is the same as that
of SBT, and all functions in Alg. 1 terminate, Alg. 1 is
guaranteed to terminate.

Theorem 2. Alg. 1 is sound, i.e. the strategy profile
obtained by this protocol is socially optimal (see Def. 6).

Proof. (Sketch) The SBT structure of Alg. 1 ensures
that the obtained strategy profile is acceptable. Propositions
3 and 4 ensure that all obtained strategy profiles are feasible.
Since agents propose their actions according to their ideal
preferences (line 5 in Alg. 1), the obtained strategy is the
most preferred feasible and acceptable strategy wrt. agents’
ideal preferences. Thus, the strategy profile obtained by Alg.
1 is socially optimal.

However, note that our current protocol is not complete:
it may return no solutions when there exist some. For ex-
ample, consider a problem consisting of two agents and one
action a1. The constraint is that a1 should be performed by
both agents. For Agent1’s internal AF (Arg1,Att1), Arg1 =
{A11, d1, d2}, dEpi1 = {d1, d2}, pPra1 = {A11} and Att1 =

7Due to the space limit, we sketch or omit some proofs.
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{(d1, A11), (d2, d1)}8. For Agent2’s internal AF (Arg2,Att2),
Arg2 = {A21, d3, p1}, pPra2 = {A21}, dEpi2 = {d3}, pEpi2 =
{p1} and Att2 = {(p1, A21), (d3, p1)}. Also, we let d3 attacks
both d1 and d2. Thus, Agent1 and Agent2’s compact reason
for their practical arguments are {d2} and {d3}, respectively.
We can see that Agent1’s compact reason is not successful
(line 7 in Alg. 2) as d2 is attacked by d3, but A11 is actu-
ally admissible in Agent1’s perfect-view internal AF. Thus,
our protocol will return no strategy profile in this example,
while ‘both agents perform a1’ is actually a strategy profile
that meets all our requirements (see Sect. 3.3). We leave
improving completeness for future work.

Theorem 3. Alg. 1 is of perfect security wrt. agents’
private epistemic arguments.

Proof. For Agenti and Agenth, i, h ∈ {1, · · · , N}, i 6= h,
let Pi

h = {a|Agenth believes a may be in pEpii}. Because
Agenth has no information about the cardinality of pEpii
(denoted by |pEpii|), |Pi

h| is +∞. Similarly, we let Di
h =

{a|Agenth believes a may be in dEpii}; then |Di
h| = +∞.

Thus, for any a ∈ Pi
h, the probability that a is contained

in pEpii (denoted by ph(a ∈ pEpii)) is |pEpii|/|Pi
h|, because

each argument in Pi
h has the same probability to be included

in pEpii. Thus, ph(a ∈ pEpii) = 0. Although Agentj may
be aware of some argument b ∈ dEpii, since p(a ∈ pEpii, b ∈
dEpii) = 0 and p(b ∈ dEpii) = |dEpii|/|Di

h| = 0, by Eq.
(2.4), H(a ∈ pEpii) = H(a ∈ pEpii|b ∈ dEpii) = 0. The
protocol is thus perfect secure wrt. private arguments.

Since, in our compact-reason-oriented TPI-disputes, only
arguments attacking earlier-presented arguments can be pre-
sented, we can easily see that the communication between
agents is ‘efficient’, i.e. only arguments that defend (see
Sect. 2) the practical arguments are communicated.

Theorem 4. For Agenti to check the feasibility of action
aj using function Check, if an argument d ∈ dEpi−i is
presented by the defender in a compact-reason-oriented TPI-
dispute (Def. 7), d defends argument Aij in AF∗i .

7. RELATED WORK
Our work is related to the distributed constraint optimisa-

tion problems (DisCOPs) [10], in which variables and con-
straints are distributed among a set of agents who must
communicate to find an optimal assignment of values for
the variables. The acceptability and social optimality re-
quirements can be represented in DisCOPs, but the feasibil-
ity requirement cannot, because agents’ domain knowledge
(including beliefs and observations) about the feasibility of
actions is not considered in DisCOPs.

Some work has investigated the types of privacies and
methods to preserve private information in DisCSPs and
DisCOPs, e.g. [16, 6, 28, 31, 33]. Two types of privacies
are widely identified and studied: i) constraint privacy, i.e.
the constraints are partially known by each involved agent,
and ii) assignment privacy, i.e. each agent does not directly
let other agents know its own assignment. The privacy we
consider is not covered by either of these two types, because
we consider the agents’ private beliefs information (beliefs
and observations). Methods to preserve privacies fall into
two categories: i) privacy enforcement, i.e. only disclose the

8For a, b ∈ Argi, (a, b) ∈ Atti is read ‘a attacks b’.

necessary information so as to minimise privacy loss; and ii)
encrypted message, i.e. encrypt some messages so that only
certain agents can understand them. Our protocol falls into
the privacy enforcement category.

Grant et al. [15] consider a variant of Boolean games, in
which agents cannot observe some environment variables; a
human operator can disclose certain environment variables’
values and preserve the others, so as to influence agents’ de-
cisions, in the hope of obtaining (socially) optimal strategy
profiles. Their work is not as generic as ours, as they focus on
Boolean games and propositional logic-based knowledge rep-
resentation. Also, the privacy they considered is centralised
(pertaining only to the environment) while the privacy we
consider is distributed (pertaining to every agent).

Amgoud and Devred [2] represented AFs as DisCSPs, and
used solvers for DisCSPs to compute ‘winning’ sets of argu-
ments (wrt. some different semantics). Our work integrates
argumentation and DisCSPs in a different way: we use algo-
rithms from DisCSPs to guarantee the acceptability of the
strategy profiles, and use argumentation to represent agents’
domain knowledge on the feasibility of actions and to regu-
late communication between agents.

Some work has been devoted to efficient argumentation-
based negotiation. Fan and Toni [11] introduced a dialogue
protocol based in ABA [29], which does not require agents
to put forward all their domain knowledge. Pasquier et al.
[24] introduced interest-based negotiation, in which agents
not only communicate their requirements, but also the rea-
sons (i.e. interests) behind the requirements, so that agents
can cooperate to find better alternative solutions. However,
none of these works considers agents’ private information,
e.g. agents’ private arguments.

8. CONCLUSION AND FUTURE WORK
We consider a class of cooperative multi-agent decision

making problems, and propose an abstract argumentation
based knowledge representation and communication proto-
col that is sound, efficient, guaranteed to terminate and
privacy-preserving. Our work suggests that abstract argu-
mentation can be used to represent agents’ domain knowl-
edge that includes private information; upon this knowl-
edge representation, agents can communicate and coordi-
nate their actions ‘efficiently’ and ‘securely’ (without leak-
ing personal information) by using argumentation-based di-
alogues. Our work connects argumentation, distributed con-
straint satisfaction/optimisation and game theory in a novel
manner, suggesting that several multi-agent coordination
techniques can be used together to tackle complex problems.

We identify two major lines for extending this work: i)
stick to cooperative multi-agent decision-making problems,
and improve the current protocol, e.g. relax some restric-
tions, improve the completeness of the protocol, or use more
advanced DisCSPs algorithms as the basis of the protocol;
ii) consider more complex problems, and adjust the current
framework accordingly; for example, allowing agents to have
different action sets, or tuning the ’selfishness’ of each agent,
so that agents cooperate and compete simultaneously.
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