A Value Equivalence Approach for Solving Interactive
Dynamic Influence Diagrams

Ross Conroy’, Yifeng Zeng*, Marc Cavazza™, Jing Tang’, Yinghui Pan™
"Teesside University, Middlesbrough, UK
{ross.conroy, y.zeng, x9019186}@tees.ac.uk
“University of Kent, Kent, UK
m.o.cavazza@kent.ac.uk
“*Jiangxi University of Finance and Economics, China
panyinghui@jxufe.edu.cn

ABSTRACT

Interactive dynamic influence diagrams (I-DIDs) are recognized
graphical models for sequential multiagent decision making under
uncertainty. They represent the problem of how a subject agent acts
in a common setting shared with other agents who may act in so-
phisticated ways. The difficulty in solving I-DIDs is mainly due
to an exponentially growing space of candidate models ascribed to
other agents over time. in order to minimize the model space, the
previous I-DID techniques prune behaviorally equivalent models.
In this paper, we challenge the minimal set of models and propose
a value equivalence approach to further compress the model space.
The new method reduces the space by additionally pruning behav-
iorally distinct models that result in the same expected value of the
subject agent’s optimal policy. To achieve this, we propose to learn
the value from available data particularly in practical applications
of real-time strategy games. We demonstrate the performance of
the new technique in two problem domains.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms

Algorithms, Experimentation

Keywords

Influence Diagrams, Decision Making, Multiple Agents

INTRODUCTION

Interactive dynamic influence diagrams (I-DIDs) [7, 24] pro-
vide a general framework for solving sequential multiagent de-
cision making problems under uncertainty. Different from other
frameworks, like Dec-POMDPs [19] and multiagent influence dia-
grams (MAIDs) [10], I-DIDs solve the problem from the perspec-
tive of individual agents and do not make a common belief assump-
tion on modeling other agents. Hence I-DIDs become a more gen-
eral decision model and can be employed to solve both cooperative
and competitive multiagent decision problems. Recent research has
found some practical applications of I-DIDs [12, 11, 4].

1.

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016),

J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),

May 9-13, 2016, Singapore.

Copyright (©) 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1162

Algorithms for solving I-DIDs need to compute a large number
of candidate models of other agents that represent how the agents
optimize their decisions in an uncertain environment. In addition,
the I-DID solutions have to track the evolution of all the models as
other agents observe, act and update their beliefs over time. Conse-
quently, the computational complexity of solving I-DIDs is mainly
due to the exponential growth in the number of models are ascribed
to other agents.

Recognizing that only the predicted behavior of other agents
matters to the decisions of the subject agents, existing I-DID solu-
tions [24] reduce model space by retaining only those models that
exhibit different behavior of other agents. For example, the exact
algorithm, called discriminative model update (DMU) [6], clusters
models that are behaviorally equivalent (BE) - whose behavioral
predictions for the other agent are identical - and maintains one
representative model from every cluster. Exploiting BE models has
become a core technique for reducing the complexity of I-DID so-
lutions. Continuous effort has focused on identifying BE models
and resulted in a series of approximate [-DID algorithms [26]. Re-
cently, Chen et al. [3] develop an online algorithm that limits the
search in the model space by incrementally building the true mod-
els of other agents during the agents’ interactions. Conroy et al. [4]
learn behavior of other agents from interaction data and don’t need
to explicitly model decision making process for other agents. This
line of work improves the BE-based I-DID solutions and facilitates
the I-DID applications in practice. However, all the previous tech-
niques still rest on the BE principle for reducing the model space
of other agents. As a large amount of different behavior always
exists for agents, the existing I-DID algorithms are not sufficiently
capable to deal with complex decision making problems.

In this paper, we initiate a new approach on compressing model
space of other agents in I-DIDs. The behavioral equivalence fo-
cuses only on the difference of other agents’ behavior and postu-
lates that the difference leads to distinction of the subject agent’s
decisions. However, it is still safe to assume that the difference of
other agents’ behavior may only matter if it affects the expected
value of the subject agent’s optimal policy for their interactions.
In other words, what really matters to the subject agent is not the
difference of other agents’ behavior, but the difference of the re-
ceived rewards. Inspired by this observation, we redefine the equiv-
alence of other agents’ models in terms of their impact on the sub-
ject agent’s expected value. Models that generate the same ex-
pected value of the subject agent’s optimal policy are value equiv-
alence (VE) and can be grouped into one VE class. The new VE
measurement in comparison to BE will further reduce the model
space since distinct behavior of other agents may generate the same

expected values to the subject agent and will be clustered. In addi-
tion, VE has a direct link with the solution quality, which has been
lacking in the previous [-DID techniques.

Without building a complete I-DID, it is not easy to compute ex-
pected values of the subject agent. We resort to agents’ interaction
history and learn the expected values for determining VE of mod-
els ascribed to other agents over time. This is particularly useful for
applications where interaction data is widely available and will be
incrementally added to over time. As demonstrated in recent I-DID
applications in computer games [4], the continuously uploaded data
that records gaming activities of computer-and-human players fa-
cilitates the learning task in the new VE approach. In this context,
this paper makes the following contributions:

We propose a new approach for solving I-DIDs. The VE tech-
nique reduces the model space of other agents by considering
their behavioral impact on expected values of the subject agent.
This provides more reduction than the previous I-DID solutions.

We focus on learning expected values from agents’ interaction
data and develop approximate techniques for determining the
model equivalence.

We theoretically analyze computational savings of the new model
compression technique compared to BE. Additionally we demon-
strate the performance in a set of experiments and focus on prac-
tical applications of computer games.

We organize the paper as follows. We briefly review the I-DID
framework as well as the BE concept in Section 2. We formulate
the new approach of value equivalence and propose a learning tech-
nique for determining VE in Section 3. The computational savings
and solution quality are theoretically analyzed in Section 4. We em-
pirically analyze the method performance in a scalable UAV (un-
manned aerial vehicle reconnaissance problem) simulation testbed
and demonstrate applications in a real-time strategy game in Sec-
tion 5. We discuss related work in Section 6 and conclude this
paper with a discussion of the challenges and future work.

2. BACKGROUND: INTERACTIVE
DYNAMIC INFLUENCE DIAGRAM

We start with a brief review on the framework of interactive dy-
namic influence diagrams (I-DIDs) with elaboration in the well-
studied multiagent tiger problem [8]. Subsequently, we describe
the I-DID solutions based on behavioral equivalence (BE).

2.1 Representation

I-DIDs represent sequential decision making problems for a sub-
ject agent who interacts with other agents in an uncertain environ-
ment. As other agents act simultaneously, which is not fully ob-
servable to the subject agent, I-DID models their predicted behav-
ior by solving all possible models of other agents. Actions of both
the agents impact the common environmental states .S and rewards
R. Fig. 1 shows a level | I-DID for the subject agent ¢ who models
other agent j in level [— 1, where level refers to recursive reasoning
between agents and agents in level O do not model the others. In
addition to regular chance, decision and utility nodes in DID [20], a
new type of node called the model node, M;,;_1, models how other
agent j makes its decisions simultaneously at level [— 1. More
explicitly, it contains a set of j’s candidate models whose solutions
give the predicted behavior A;, which is represented by a policy
link (the dashed line) connecting M;;—1 and A;. Each candidate
model of agent j, m;,;—1, could be either a level [— 1 I-DID or a
DID at level 0.

The I-DID modeling complexity arises with update of the model
node (containing j’s models) over time, as represented by the model

1163

Figure 1: A generic two time-slice level [I-DID for agent ¢ who
optimises its decisions A; given observations O;.

update link (the dotted arrow from M, _; to M}7!, inFig. 1). As
agent j acts and receives observations over time, the models are
updated to reflect its changed beliefs. The updated models differ in
the beliefs of j’s actions and observations. Since agent ¢ needs
to track the update of j’s models, the number of models grows
in a new model node. The number of models in M ;’-}-11 is up to
|ME 1| A;1€;| where [M ;| is the number of models at time
step ¢, and | A;| and |Q2;| are the largest spaces of actions and ob-
servations respectively.

We may replace the model nodes and model update links with
regular chance nodes and dependency links in [-DID. Subsequently,
[-DID becomes a regular DID and any DID technique can be used
to solve the converted I-DID. Below we use a two-agent tiger prob-
lem to elaborate the I-DID framework.

Figure 2 shows a level 1 I-DID for agent ¢ who considers two
models of agent j, mz(l) and mjg , atlevel 0. The converted I-DID
is a regular DID in which the chance node M od[M; o] represents
agent j’s possible models. The models differ in j’s beliefs about the
tiger’s location and solving the models obtains optimal decisions
for agent j. As indicated by the conditional probability table (CPT)
in Fig. 4, agent j’s optimal decisions are OL and L respectively
when the two models are solved at level 0. The optimal decisions
are mapped into the predicted actions in the chance node A;.

Figure 2: A converted level 1 I-DID for agent ¢ in the tiger problem.

We show the update of mz(l) and m;’,ﬁ in Fig. 3. As agent j

may receive one of two observations (either GL or G R), four new
models are generated in the model node M]%1.

We show the CPT of Mod|[M ;31] in Fig. 4. For example, the

first row of the CPT shows that m;:é is updated into the model
mﬁ)l’l when agent j takes the action OL at time ¢ and observes
GL att + 1. As neither OR nor L is the optimal decision for

t,1 . : tra T £ P t,1
m; o, We assign a uniform distribution to indicate that m’, does

not transform into any of the new models for these actions.

Tiger
Location®

Location™!

Tiger
ocation™’

Figure 3: Details of the model update link where two models are
expanded into four models in M §".

Decisions(A))
Mod[M,;0] oL OR L OL: Open the left door
T OR: Open the right door
M0 ! 0 0 L: Listen
mJ,OLZ 0 0 1 Observations(Growl))
¢ GL: Growl from the left door
CPT of Aj GR: Growl from the right door
<A}, Growl"'> | Mod[M;] mj.0“1‘1 mJ,OM'Z mmm.a mi,OM'A
<OL, GL> mo"" 1 0 0 0
<OL, GR> mjo"”! 0 1 0 0
<L, GL> Mo 0 0 1 0
<L, GR> myo*? 0 0 0 1
<OR, *> * 1/4 1/4 1/4 1/4
<L, *> m;o""! 174 | 174 | 14 | 14
<oL, *> m;o" 174 174 | 1/4 1/4

CPT of Mod[M;o""]

Figure 4: The CPTs of the chance nodes A’ and M od[M ;El}

2.2 Solutions and Behavioral Equivalence

We present the exact I-DID algorithm in Fig. 5. We first trans-
form an I-DID into a regular DID by expanding j’s models at level
[— 1 (lines 2-15) and then solve the converted DID (lines 16-18).
Lines 4-5 solve j’s models to instantiate the policy link. Line 6
invokes techniques for compression of the model space based on
behavioral equivalence [18], PruneBehavioralEq (M ;_1), and
returns representative models of j. Lines 7-15 implement the model
update link in the I-DID. Finally, lines 17-18 solve the transformed
I-DID using standard DID algorithms.

Previous I-DID techniques focus on implementing BE in either
exact or approximate ways. Formally we define behavioral equiva-
lence of agent j’s models below.

DEFINITION 1 (BEHAVIORAL EQUIVALENCE). Two models,
my; and M, of agent j, are behaviorally equivalent if OPT (m;) =
OPT (115), where OPT (-) denotes the solution of the model.

A model solution is the agent’s policy and is generally represented
by a policy tree. A depth-T" policy tree contains a set of policy
paths, 7'JT=U h]T where the policy path, AT, is an action-observation
sequence over 1" planning horizons. We let h]-T = {a;-, 0;“ tT;(]l,
where OJT is null with no observations following the final action.
Notice that a policy tree can either be built by solving an agent’s
model or be learned from the available data that describes the agent’s
behavior [4].

Thus, BE models are those whose behavioral predictions for
agent j are identical. After compressing the BE models, the proce-
dure PruneBehavioralEq (M ;1) returns a set of representative
models that are behaviorally distinct. The set of behaviorally dis-
tinct models, denoted by M? lE_ 1, are considered as the minimal set
of agent j’s behavior [24]. In this paper, we aim to further compress
the model space by merging behaviorally distinct models.

1164

I-DID ExAcTt(level [> 1 I-DID or level 0 DID, horizon T)
Expansion Phase
1. For tfromOto 7T — 1 do
2. If [> 1 then
Populate M;J{i 1
3. For each m§ in M;‘,lfl do
4. Recursively call algorithm with the [— 1 I-DID
(or DID) that represents mé and horizon, T — t
5. Map the decision node of the solved I-DID (or DID),
OPT(mé), to the corresponding chance node A ;
6. ./\/157 o1 PruneBehavioralEq(/\/l;’ —1)
7. For each m! in Mt.’lfl do
8. For each a; in OPT(m}) do
9. For each o; in O; (part of mg) do
10. Update j’s belief, b§+1 «~ SE(bt,a;,05)
11. m;+1 + New I-DID (or DID) with b§+1
12. ML E
13. Add the model node, M;:}El, and the model update link
14. Add the chance, decision, and utility nodes for ¢t 4 1 time
slice and the dependency links between them
15. Establish the conditional probability tables (CPTs) for each
chance and utility node
Solution Phase
16. If I > 1 then
17. Represent the model nodes, policy links and the model
update links to obtain the DID
18. Apply the standard look-ahead and backup method to solve
the expanded DID

Figure 5: Algorithm for exactly solving a level I > 1 I-DID or level 0
DID expanded over 7" time steps.

3. VALUE EQUIVALENCE APPROACH
AND IMPLEMENTATION

Due to the uncertainty of agent j’s models, I-DID algorithms are
challenged by the exponential growth in the number of the mod-
els over time. BE literally compares solutions of j’s models and
maintains only the behaviorally distinct models that may become a
sufficient coverage of j’s behavior.

As different behavior of agent j may have the same impact on
the subject agent’s decisions, grouping behaviorally distinct models
may further reduce the model space without compromising the I-
DID solution quality. We utilize this insight toward developing a
new technique on examining the model equivalence in the I-DIDs.

3.1 Value Equivalence

We assume that models of agent j have identical frames and dif-
fer only in their beliefs in I-DID. Our aim is to identify models
that are value equivalence (VE) from the perspective of the subject
agent .

The expected value of level [agent ¢’s optimal policy given by
the I-DID for T time steps is computed in Eq. 1.

VT (mig) = plbis,ai) + > Pr(oilbis, al)V' ~ (m,

bii(s,myu—1) > Ri(s, a5, a;)

aj

) (D

where p(b; 1, a;)= >
S,Mj 1
X Pr(a;|m;,i—1). Here, b; 1(s,m;,1—1) is the agent i’s belief over
the physical states and possible models of j at level I — 1, aj is4’s
optimal action and m;7 ; 1s the updated model of agent ¢ containing
the updated belief at the next time step.

Letmj—1,Mj,1-1 € M1 be two candidate models of agent
j at level [— 1, and ./\711-,1_1 be the set of j’s candidate models

t=2
GL/ \GR \GR
-3 L il oL

(a) Agent j’s policy tree by solv- (b) Agent j’s policy tree by solv-

7
GI/ \GR GL/ \c;R

OR L L

L
GV X“:R

OR L

GI/

t: L t=3

ing m; ing m;
. I
Actions 4 ars, GRS,
OL: Open Left (',L(,L’ (',L(,L‘
: GLCR GLCR
OR: Open Right GRS LS
L | GLCR, GRCL, L

Observations O;

GRS: Growl Right

GRCL: Growl Right, Creek Left
GRCR: Growl Right, Creek Right
GLS: Growl Left

GLCL: Growl Left, Creek Left
GLCR: Growl Left, Creek Right

GRCR,
GLCL,
GRCL

L

GLS/
OR

Pr()

EV()

m} Pr(-)
- EV()

GRCR,
GLCR, e
GLOL GRS
L OL
i 7

J
0.1926

I
v

0.3026

my 0.2022510.30255

1.351 |-0.8682 |-0.8691 | 1.695

0.194550.30335 | 0.3032 | 0.1989

1.494 [-0.798 |-0.798 |1.469

(c) Agent 7’s policy given by the I-DID

Figure 6: Agent ¢ has the same expected value of the optimal pol-
icy (c) for different 5’s models: m{ (a) and mj (b).

excluding m;,;—1 and 1,

e.g. Mji—1 = M;_1/(mji—1,7;,-1). The two models are

value equivalence if enclosing either of them in the I-DID will re-

sult in the same expected value for agent i. Let V7' (m; ;|m;,—1) (or
VT (ma,1|;,1-1)) be i’s expected value when the model m;; ;1 (or
mj,1—1), together with other models M 4,1—1, are included in the I-

DID and are subsequently expanded over 7" time steps. Formally

we define the value equivalence (VE) of two models below.

DEFINITION 2 (VALUE EQUIVALENCE). Two models of agent
J, myj,1—1 and Wy 1, are value equivalence ifVT(ml-,l mji—1) =
VT(m“ |T7’Lj1171) y where VT (mi,l ij,l) and VT(m“ |T7’Lj1171)
are as defined above.

In other words, VE models are those that induce identical ex-
pected values for agent ¢ when the I-DID is expanded using any
of the models. Thus, the VE models do not enforce the behavioral
equivalence of the models. We elaborate it below.

EXAMPLE 1. Assume that three j’s models are expanded in an
I-DID of three time steps in the two-agent tiger problem. Fig. 6(a)
and (b) show the policy trees for two models with different ini-
tial beliefs. The models are not behaviorally equivalent since they
have different actions except those at t=1. As shown in the table,
agent j’s behaviors from different models induce different proba-
bilities (Pr(h;)) over agent i’s action-observation sequences every
one of which is a policy branch in the tree. However, each of which
generate the same expected value of agent i’s optimal policy given
by the I-DID, which is the sum of the expected values for all pol-
icy paths (EV (h;)). Thus, the two models are VE. For the case of
1I-DIDs with 5 planning horizons, using VE can reduce more than
half of behaviorally distinct models of agent j.

Given the set of agent j’s candidate models, M;;_1, we can
group the models that are confirmed to be VE, and then pick a rep-
resentative model while pruning others from the group. The repre-
sentative models from the different groups are value difference and
partition the entire model space of agent j. Immediately we may

1165

introduce an approximate version of VE in Definition 3. A larger
value of € groups more value difference models thereby resulting
in less model space of agent j.

DEFINITION 3 (e-VE). Two models of agent j, m; ;-1 and
-1, are e-VE if VT (myglmji—1) — VE(mag|iyi-1)] < e

Similarly to the BE approaches, the procedure PruneBehav-
ioralEq (M ;—1) can be replaced with the one using VE to prune
the models in the model node. Recall that agent ¢ assigns some
probability mass to each model in the model node (M od[M}]).
When the VE models are pruned, we transfer over from the prob-
ability mass over the pruned models to the representative models
that are retained in the model node. This avoids introducing errors
in the I-DID solution quality due to the loss of probability mass
over j’s candidate models.

3.2 Value Computation

To determine VE of agent j’s models, we need to compute the
expected value of agent i’s optimal policy given by the I-DID that
will be constructed with the expansion of all j’s models. This
seems to be a paradox since we need to first prune the VE mod-
els and then expand the I-DID accordingly. A potential method
that interleaves VE determination with a partial I-DID expansion
could be developed, which will be discussed in Section 7.

In this paper, we focus on learning VE from available domain
data. This is partially motivated by the I-DID practical applications
in a real-time strategy game (RTS) where game replay data is con-
tinuously supplied by the growing gamer community [4]. Without
explicitly building decision making models for agents, we can learn
their policies/behaviors from the data. We compute VE from input
data instead of candidate models, because computing VE from can-
didate models would require all such models to be solved as part
of the I-DID expansion. I-DID expansion can be time consuming
especially for larger time horizons, sometimes impossible due to
computational and memory limitations. Computing VE from data
avoids this computational complexity allowing for a reduced candi-
date set of models to be created without I-DID expansion. We will
present the VE learning technique in the computer game context,
which is also applicable in the setting where agents’ interaction
data is available.

3.2.1 Value of the Learned Policy

In the context of RTS games, we build an I-DID from the per-
spective of a non-player character (NPC, or one human-player, de-
noted by agent ¢) that models human-players (agent j) at a low
level. The NPC aims to optimize its policy upon predicting behav-
ior of human-players. Since it is rather difficult to explicitly model
the decision making process of human-players through specific de-
cision models, like IDs or DIDs, we learn their behavior from re-
play data. Each type of behavior is corresponding to one possible
model of human-players. By doing this, we don’t need to build the
descriptive models of human-players and then solve the models to
obtain their behavior. As different types of human-players exist in
the game community, the learned behaviors could be many and the
I-DID for the NPC cannot include all types of the behavior. We
will reduce the behavioral space directly through the VE approach.
In a popular RTS game, namely StarCraft ', we elaborate the com-
putation of the expected value of agent ¢ in the VE approach.

Table 1 shows a portion of replay data publicly available in Star-
Craft. The data records the game time-stamp, unit identifier and
type, units’ rewards in the current game state and so on. The units

"http://eu.blizzard.com/en-gb/games/sc/

Time UnitID Type Obs Action Util
1 216 Goliath 3 escape 0
1 212 Goliath 3 escape 0
5 216 Goliath ... 1 attack 1

Table 1: Sample of StarCraft replay data recording activities of
various units during the gameplay.

are controlled by either the NPC or human-players. As presented
in [4], the behavior of each unit over 7' time steps can be built as
a policy tree in which the probability of each policy path is cal-
culated accordingly. The probability is computed as the occurring
frequency of an action-observation sequence in the interaction ac-
tivities.

Let Pr(h]) be the probability of a policy path in the tree, and
U(hT) be the rewards that are gathered by the agent executing
the action-observation sequence. We can compute U (h]) by sum-
ming immediate rewards received by the agent over the entire plan-
ning horizon. Subsequently, we can calculate the expected value of
agent 4’s policy as follows.

VI(T) = > Pr(ki)URT)

nlTeT;

€]

Given sufficient interaction data, the learned behavior becomes
the optimal policy of agents. The expected value of the learned be-
havior can be counted as the expected value as it is computed by
solving its corresponding model, e.g., VL (m; ;) = VT (T;). With-
out differentiating whether the policy is obtained by either solving
the agent’s models or learning the behavior from the data, we de-
note the expected value as V7 (m;; ~ T;).

As shown in [4], we can still learn the agent’s policy from limited
data that is sufficiently good to be used in the I-DIDs. With the
increasing set of interaction data, the learned policy approaches the
optimal policy for agents. The quality of the I-DID solutions can be
bounded with a probabilistic guarantee, which may in turn ensure
the quality of the VE determination.

3.2.2 Implementation

We build a level [I-DID, m; ;, for an NPC (agent) where the
variables (including states, observations, actions and rewards) are
retrieved from the data and follow gaming knowledge. Since the
set of variables are obtained by following a unique type of unit,
we can learn the agent ¢’s policy, 7;, from the replay data. As the
policy is interleaving with various types of human-players (agent
7), we compute its expected value for each type of j’s behavior,
e.g., VI(m;1 ~ Ti|T;1-1). Consequently, we can obtain a set
of the expected values, {V" (miy ~ Ti|T;_1), -,V (mig ~
Ti|T;—1)}. each of which quantifies the impact of one type of
human-players’ behavior on the NPC’s policy. By comparing the
expected values, we can identify VE of human-players’ behavior
and prune the behavioral space. The reduced set of agent j’s behav-
ior is used to expand the I-DID m; ;, as developed in the expansion
phase of the I-DID algorithm in Fig. 5.

4. SAVINGS AND SOLUTION QUALITY

As with the previous I-DID techniques, the primary complexity
of solving I-DIDs is due to the exponentially growing number of 5’s
models over time. At time step ¢, there could be M, 1| (| 4;[€2;)"
many models of the other agent j, where |./\/19 1—1]| is the number

1166

of models considered initially. The previous BE methods have re-
duced the model set into the minimal set, Mf £ | that is much

smaller than M?, 1—1. Since VE further clusters behaviorally dis-

tinct models, it results in less model space. Let ./\;l;/lb: ;1 be the
largest set of value difference models. Then, the following propo-
sition holds.

PROPOSITION | (CARDINALITY). The set MY [, resulting
Jfrom the VE approach is not larger than the behaviorally distinct
set M f £ | from the BE approach.

PROOF. BE requires that models have the same optimal actions
given observations for each time step. As indicated in the value
computation in Eq. 2, the BE models will result in the same ex-
pected value. Thus, the BE models naturally become the VE mod-
els. Meanwhile, as discussed previously, the behavioral difference
could be mediated by the receiving rewards of agent ¢ in the value
computation. Thus, the behaviroally distinct models may result in
the same expected value and are further classified as VE models.
The VE approach may filter out more models than BE does. [

The BE techniques fail to measure the quality of I-DID solu-
tions, which are agent ¢’s policy given by the I-DID, since BE lit-
erally compares j’s policies that have no direct links with ¢’s pol-
icy. In contrast, the VE approach conducts the model reduction by
comparing the model influence on the expected value of ¢’s policy.
Hence the method can directly bound solution errors if approxima-
tion is introduced in the VE determination. Let V7 (m, ;) be ex-
pected value of 7’s optimal policy given by the I-DID in which the
model m; ;1 is replaced with the representative VE model. Evi-
dently, according to Def. 3, the e-VE approach bounds the [-DID
solution error not larger than €. Thus, Proposition 2 holds.

PROPOSITION 2 (QUALITY). IV (m) — VT (may)| < e

S. EXPERIMENTAL RESULTS

We implemented the VE approach by learning the expected val-
ues from the data. The implementation replaces the procedure
PruneBehavioralEq (M ;) in Fig. 5 to prune agent j’s models
in the I-DID. Meanwhile, we implemented the e-VE method for the
comparison purpose. We compare the variants of the VE approach
to the exact BE technique (DMU) [6] and report their performance
in two problem domains. The first domain is the multi-unmanned
aerial vehicle reconnaissance problem (UAV), which is the largest
problem setting so far used in the recent I-DID development [24];
while the second one is the RTS game of StarCraft in the I-DID
practical applications. We show that, (a) in comparison to DMU,
the VE approach further reduces the model space of other agents
in the I-DID and achieves better scalability; (b) the quality of so-
lutions provided by the VE methods improves upon more available
data; (c) the VE technique can be effectively adapted in an online I-
DID solution and outperforms the recently developed online I-DID
solution [3].

5.1 UAV Problem Domain

We assume that the UAV scenario is played outina 5 x 5 grid of
sectors (|S]=81, | Ai|=|A;|=5, |Q:|=|€2;|=5), as illustrated in Fig. 7.
We build the level 1 I-DID for UAV I modelling J using level 0
DIDs. We consider 20 models of UAV J that differ in the beliefs
on its initial position in the grid.

We solve the I-DID using the DMU approach and obtain the op-
timal policy for UAV I. To generate the data for the VE approach,
we let UAV [play with J for /N times in which a model of J is
randomly picked in the interaction. Given the data of N plays, we

S e
J
‘I
. " l
‘L \ v
L1039 R
|4
f
3]
->;-‘__> 2__>
J

Figure 7: UAV [is tasked with intercepting J before the latter
raids the allied base. Two example trajectories show the different
behavior of UAV J, which results in the same interception strategy
for UAV I. The numbers denote the policy steps of the two UAVs
that move continuously and concurrently in the simulation.

proceed to learn J’s behavior as well as I’s policy, and use VE to
prune the behavioral space. Subsequently, we build a new [-DID
using the J’s behavior reduced by the VE approach. Solving the
[-DID results in the new I’s optimal policy.

In Fig. 8(a)-(b), we show the average rewards received by UAV
I over 200 runs when it plays with J by executing the policies ob-
tained by either DMU or VE approaches. Since DMU can’t solve
the I-DIDs for the horizon of 7 2, its performance is not shown
in Fig. 8(b). When more interaction data is available for learning
the values, determining VE becomes more accurate and the perfor-
mance approaches that of the DMU method. The e-VE methods
perform as expected for the solution quality when the € values are
varied in the experiments. We notice that the VE approach even
outperforms DMU given more accumulated data. This is because
the DMU approach considers the entire space of UAV J’s distinct
behavior with a uniform probability distribution while VE concen-
trates on a small set of J’s behavior that avoids more randomness
in I’s prediction.

Fig. 8(c) confirms our intuition that VE leads to fewer model
classes compared to DMU. A larger € value allows the grouping
of more VE models resulting in more compressed model space at
each time step. We show two examples of selected trajectories of
UAVs I and J using the two methods for a horizon of 4 in Fig. 7.
Although UAV J exhibits rather different strategies on approaching
the allied base, the distinction does not lead to a different policy to
I intercepting .J before J initiates the attack. Note that the two
example trajectories represent some typical raid behavior of UAV
J, which belongs to solutions of J’s different models differing in
its initial beliefs.

Since VE leads to a smaller model space, it achieves a better
scalability than DMU and can solve the I-DID for a larger horizon
up to 10 ®. We don’t report their time efficiency in solving the I-
DIDs since DMU and VE employ different schemes to obtain J’s
policies. But we observe in the experiments that learning behavior
from data is much more efficient than solving decision models as-
cribed to J. Solving the I-DIDs that are expanded with the reduced
number of models for other agents is very efficient.

We take a further step to adapt VE in the online I-DID solutions,
namely OPIAM (online plan, interact and adapt models), as de-
veloped in [3]. OPIAM starts with a small set of J’s models and
uses BE to adapt the model space in the online interactions. In the

2We use the approximate BE technique (e-BE [24]) to generate the
data.

3We use e-BE to generate a sufficiently large set of data that result
in reliable policies.

1167

version of OnlineVE, we adapt the model space by choosing the
models that result in larger expected values to I during the interac-
tions. In this set of experiments, we let UAV I choose a set of 5
models (from 20 models) of J to build an initial I-DID, and adapt
the I-DID online. Fig. 9 shows that the OnlineVE progresses much
better than OPIAM over interactions. OnlineVE benefits from di-
recting I’s prediction on J’s behavior to I’s rewards during imme-
diate interactions. We are optimistic that VE may be well integrated
into the development of other I-DID solutions.

5.2 StarCraft Application

The real world domain we choose to model and test the VE ap-
proach is StarCraft. We choose StarCraft because it has partial
observability as to the true battle state, as well as the availability of
human vs human replay files from sources such as Gosu Gamers *
and Team Liquid °. From these replay files states, observations, ac-
tions and rewards can be extracted such as shown in Table 1 from
which we can learn policies of human players.

StarCraft games are incredibly complex with players having to
focus on areas such as resource gathering, build orders, combat and
scouting. To simplify this domain for the purposes of this paper
we focus on a typical combat scenario between groups of units.
Specifically for testing we use a 3 vs 3 unit scenario. Fig 10(a)
shows the complexity of games between two human players and the
typical scenario we have broken this down into. We mine for data
from replays by observing in the data where small groups of units
are close together and record their states, actions, observations and
rewards for these battles. A battle is considered over when either
one of the groups of units are all killed or units have moved far
enough away from enemy units to no longer engage in battle.

We build level 1 I-DID for player ¢ modelling j of sectors (|.S|=16,
| Ai|=|A;]=3, |92:]=|Q2;|=4) using data from replay files. Policies
of player j are learned from replay data and pruned through either
DMU or VE approaches. In Fig. 10(b) we show a small sample
tree of typical behavior in the aforementioned scenario taken from
a much larger and complex policy. The behavior shown is a typi-
cal defensive behavior where a player may be defending an area or
unit by only attacking when confident there is a low number of en-
emy units to prevent loss, standing ground both when there is noth-
ing close-by to attack, and when there is a larger number close-by
standing ground to defend whatever the units may be defending.

Fig. 11 shows results of experiments of simulated battles be-
tween players ¢ and j where ¢ is controlled by the polices by solving
the above I-DIDs for varying amounts of mined replay data and j
executes a random policy from those learned from the mined data,
average rewards are calculated over approximately 100 battles. In
Fig. 11(a)-(b), we compare DMU methods of reducing j’s model
space with reduction of j’s model space by VE and VE with vary-
ing € values (0.25 and 0.3) for planning horizons T=5 and T=7. For
the larger horizon of T=7 where more data is available a greater
number of j’s behavior are learned increasing the size of the I-
DID model space. This causes the model to no longer be solvable
by DMU methods due to memory limitations; however, we find
that reduction by VE methods reduces the model space by approx-
imately 20-30%, enough for the I-DID to be solved where DMU
fails. We also find that for a larger € such as 0.3 for VE methods
can introduce unpredictability into the quality of policies calculated
for ¢ due to over-reducing the known behavior of j preventing accu-
rate predictions of their behavior. On the other hand, VE performs
better and more stable when more data is supplied.

‘http://www.gosugamers.net/
Shttp://www.teamliquid.net/

PN =
a

DMU ——
VE —%—
VEe=2 —5—
‘VEG=5f

Average Reward
Average Reward

17 e I I I I

Model Classes

600 800 1000 1200 1400 1600 1800 2000
Data(N)

500 1000

(a) Average reward for T=5

1500

Data(N)

(b) Average reward for T=7

2000 2500 3000

Horizon

(c) Number of models at each time step for T=5

Figure 8: Performance profile for the UAV problems obtained by solving level 1 I-DID through either DMU or VE approaches.

B T
© -
S
[.
-4
<]
o -
o
v .
>
< 18 | OPIAM —— |
174 OnlineVE —%— -
16 1 1 1 1 1 1
100 200 300 400 500 600 700 800
Time (sec)

Figure 9: Average rewards received by UAV I interacting with J
online. UAV [adapts the model space every 200-300 seconds.

6. RELATED WORK

I-DIDs generalize influence diagrams to multiagent settings fa-
cilitating decision making in the presence of other sophisticated
decision makers of uncertain types. They are viewed as graphi-
cal counterparts of finitely-nested interactive partially observable
Markov decision processes (I-POMDPs) [8].

As we mentioned before, a predominant factor in the complex-
ity of I-DIDs is due to an exponential growth in candidate mod-
els of other agents. Exploiting BE to reduce the model space is a
mainstream research on addressing I-DID solution challenges [24].
Notably, by discriminating between model updates, the DMU ap-
proach [6] generates a minimal set of models in each non-initial
model node. It may pre-emptively avoid expanding models that
will turn out to be BE to others in the next time step. Meanwhile,
much effort has been invested into determining BE models effi-
ciently by investigating the development of policy trees. Zeng et
al. [25, 5, 23] sought to cluster models by comparing only a partial
set of paths in the policy trees. Chen ef al. [3] initiated the study of
online I-DID solutions by developing true behavior of other agents
during their interactions. Conroy et al. [4] focused on learning
agents’ behavior from available data, which provides prior knowl-
edge on refining model space in [-DIDs. The BE based techniques
have improved the usability of I-DIDs and driven potential real-
world applications [12, 11, 4], which contributes into the learning
techniques in computer games [2].

While graphical models remain as yet unexplored in the context
of cooperative decision making models using frameworks such as
decentralized POMDPs [19], factored representations of the state
space are becoming prevalent [13]. The factored representations
facilitate solutions to decentralized POMDPs with many agents by
exploiting the interaction structure among the agents [14]. Pajari-
nen and Peltonen [16] utilized factored representations in a dy-
namic Bayesian network to project agents’ beliefs forward, and ap-
plied expectation-maximization to learn stochastic finite-state con-
trollers. Meanwhile, Witwicki and Durfee [22] used influence-

1168

(a) StarCraft battles are very complex and we focus on a commonly
occurring scenario where two groups of units are battling in the field.

attack

0,1,7 \f
Observations O; *

stand-ground
0: No visible enemy units

1 0,2,3
1: 1 visible enemy unit
*

2: 2 visible enemy units attack

3: 3 visible enemy units 7 szg
attack *
0,f’>/ \1,2

stand-ground attack

(b) Sample section of a policy tree learned for agent j for a
typical type of gaming behavior.

Figure 10: Applications of I-DIDs in StarCraft where behavior of
players can be learned from replay data.

. 160

g— —X 140
T] 120
7 @ 100
°
4 O 80
[}
DMU —— | 3 60
VE —%— = 40
VEEe =025 —5— 20

VEe =0.3
L L L

T z 0Br ,

g S o6t Y

g g Vi

o o 04 /

& & /

5 § o2r

> >

< 02¥ VEe=025 & | < ol
~ VEe =03 —~— /

'0.4 L 1 1 1 1 1 1 1 '0.2 1 1

1 20 40 60 80 100 120 140 1 20 40

Training Replays

(a) Average reward for T=5

60

Training Replays

(b) Average reward for T=7

L 0

80 100 120 140

Horizon

(c) Model reduction for T=5 from 150 replays

Figure 11: Performance profile of the VE approach in StarCraft where we learn behavior of player j from replay data.

based abstraction to decouple local agents’ interactions in decen-
tralized POMDPs, which is further generalized to quantify the com-
plexity of multiagent planning [15].

Specifically, exploiting structure of value functions has been a
useful technique for improving solutions to agents’ planning [21].
This research attempts to reduce the complexity of belief updates
by approximating the value functions, e.g., through a set of ba-
sis functions [9]. With the exploitation of stochastic transition and
observation functions, the value function approximation results in

very efficient solutions to decentralized POMDPs with many agents [17].

Recently, Amato and Oliehoek [1] used search methods to facilitate
the decomposition of interacted values in multiagent planning. The
VE technique shows significant improvement on solution scalabil-
ity and enjoys theoretical guarantee.

7. DISCUSSION AND CONCLUSION

We show how we exploit behavioral impact to further determine
the model equivalence and apply it to scale up solutions of I-DIDs.
Our insight is that comparing the expected value induced by other
agents is likely sufficient for grouping more models than previously
clustered by BE approaches. We formulate a principled VE tech-
nique to decide the model equivalence and implement it through
the value learning task. We empirically examine the VE approach
from multiple facets in two selected problem domains.

While we demonstrate the utility of VE in a comprehensive set of
experiments, we still face the challenge of computing the expected
value of the subject agent without fully expanding the I-DID. As
indicated in the experiments, learning values from data can serve
to compose an initial model space that will be refined in the new
interactions. This could be particularly useful in the areas of game
playing and user modeling where either data or domain knowledge
can be accessed. Pynadath and Marsella [18] demonstrated an ap-
plication of utility equivalence techniques in a social simulation
setting related to class bullying. Here, both the teacher and the
bully maintain a limited number of mental models of each other
without suffering a loss in expected utility.

Interleaving VE determination with expanding [-DIDs is another
way to solve I-DID in a more general decision making setting. We
evaluate VE while expanding the I-DID with a partial set of can-
didate models, and prune the models in an incremental way. The
issue is about selection of candidates so that the solution quality
could be guaranteed in the VE approach. This is in line with our
future research.

REFERENCES

[1] C. Amato and F. A. Oliehoek. Scalable planning and learning
for multiagent POMDPs: Extended version. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial

1169

Intelligence (AAAI), pages 1995-2002, 2015.

K. T. Andersen, Y. Zeng, D. D. Christensen, and D. Tran.
Experiments with online reinforcement learning in real-time
strategy games. Applied Artificial Intelligence: An
International Journal, 23:855-871, 2009.

Y. Chen, P. Doshi, and Y. Zeng. Iterative online planning in
multiagent settings with limited model spaces and pac
guarantees. In Proceedings of the Fourteenth Internationl
Conference on Autonomous Agents and Multiagents Systems
Conference (AAMAS), pages 1161-1169, 2015.

R. Conroy, Y. Zeng, M. Cavazza, and Y. Chen. Learning
behaviors in agents systems with interactive dynamic
influence diagrams. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 39-45, 2015.

P. Doshi, M. Chandrasekaran, and Y. Zeng. Epsilon-subject
equivalence of models for interactive dynamic influence
diagrams. In WIC/ACM/IEEE Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT),
2010.

P. Doshi and Y. Zeng. Improved approximation of interactive
dynamic influence diagrams using discriminative model
updates. In Eighth Internationl Conference on Autonomous
Agents and Multiagents Systems Conference (AAMAS),
pages 907-914, 2009.

P. Doshi, Y. Zeng, and Q. Chen. Graphical models for
interactive pomdps: Representations and solutions. Journal
of Autonomous Agents and Multi-Agent Systems (JAAMAS),
18(3):376-416, 2009.

P. Gmytrasiewicz and P. Doshi. A framework for sequential
planning in multiagent settings. Journal of Artificial
Intelligence Research (JAIR), 24:49-79, 2005.

M. Hauskrecht. Value-function approximations for partially
observable markov decision processes. Journal of Artificial
Intelligence Research (JAIR), 13:33-94, 2000.

D. Koller and B. Milch. Multi-agent influence diagrams for
representing and solving games. In International Joint
Conference on Artificial Intelligence (IJCAI), pages
1027-1034, 2001.

J. Luo, H. Yin, B. Li, and C. Wu. Path planning for
automated guided vehicles system via interactive dynamic
influence diagrams with communication. In 9th [EEE
International Conference on Control and Automation
(ICCA), pages 755 759, 2011.

B. Ng, C. Meyers, K. Boakye, and J. Nitao. Towards
applying interactive POMDPs to real-world adversary
modeling. In Innovative Applications in Artificial
Intelligence (IAAI), pages 1814-1820, 2010.

[13] F. Oliehoek, M. Spaan, S. Whiteson, and N. Vlassis.

(2]

[3

—

[4

—

(5

—

[6

—

[7

—

(8]

(9]

(10]

(1]

[12]

[14]

[15]

[16]

(17]

(18]

[19]

Exploiting locality of interaction in factored Dec-POMDPs.
In Seventh International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 517-524, 2008.

F. A. Oliehoek, S. Whiteson, and M. T. Spaan. Approximate
solutions for factored Dec-POMDPs with many agents. In
Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems (AAMAS),
pages 563-570, 2013.

F. A. Oliehoek, S. J. Witwicki, and L. P. Kaelbling.
Influence-based abstraction for multiagent systems. In
Twenty-Sixth AAAI Conference on Artificial Intelligence
(AAAI), pages 1422-1428, 2012.

J. Pajarinen and J. Peltonen. Efficient planning for factored
infinite-horizon Dec-POMDPs. In International Joint
Conference on Artificial Intelligence (IJCAI), pages
325-331, 2011.

J. Pajarinen and J. Peltonen. Efficient planning for factored
infinite-horizon Dec-POMDPs. In Proceedings of the
Twenty-Second international joint conference on Artificial
Intelligence (1JCAI), pages 325-331, 2011.

D. Pynadath and S. Marsella. Minimal mental models. In
Twenty-Second Conference on Artificial Intelligence (AAAI),
pages 1038-1044, Vancouver, Canada, 2007.

S. Seuken and S. Zilberstein. Formal models and algorithms
for decentralized decision making under uncertainty. Journal
of Autonomous Agents and Multi-agent Systems, pages
190-250, 2008.

1170

[20]

[21]

(22]

(23]

[24]

[25]

[26]

J. A. Tatman and R. D. Shachter. Dynamic programming and
influence diagrams. IEEFE Transactions on Systems, Man,
and Cybernetics, 20(2):365-379, 1990.

T. Veiga, M. T. J. Spaan, and P. U. Lima. Point-based pomdp
solving with factored value function approximation. In
Twenty-Eighth AAAI Conference on Artificial Intelligence
(AAAI), pages 2513-2519, 2014.

S. J. Witwicki and E. H. Durfee. Influence-based policy
abstraction for weakly-coupled dec-pomdps. In International
Conference on Automated Planning and Scheduling
(ICAPS), pages 185-192, 2010.

Y. Zeng, Y. Chen, and P. Doshi. Approximating behavioral
equivalence of models using top-k policy paths (extended
abstract). In International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), pages 1229-1230, 2011.
Y. Zeng and P. Doshi. Exploiting model equivalences for
solving interactive dynamic influence diagrams. Journal of
Artificial Intelligence Research (JAIR), 43:211-255, 2012.

Y. Zeng, P. Doshi, Y. Pan, H. Mao, M. Chandrasekaran, and
J. Luo. Utilizing partial policies for identifying equivalence
of behavioral models. In Twenty-Fifth AAAI Conference on
Artificial Intelligence, pages 1083-1088, 2011.

Y. Zeng, H. Mao, Y. Pan, and J. Luo. Improved use of partial
policies for identifying behavioral equivalence. In
Proceedings of the Eleventh Internationl Conference on
Autonomous Agents and Multiagents Systems Conference
(AAMAS), pages 1015-1022, 2012.

