
Regular Strategies and Strategy Improvement: Efficient
Tools for Solving Large Patrolling Problems

Antonín Kučera
∗

Faculty of Informatics, Masaryk University
Botanická 68a, 60200 Brno

Czech Republic
kucera@fi.muni.cz

Tomáš Lamser
Faculty of Informatics, Masaryk University

Botanická 68a, 60200 Brno
Czech Republic

ABSTRACT
In patrolling problems, the task is to compute an optimal
strategy for a patroller who moves among vulnerable tar-
gets and aims at detecting possible intrusions. Previous ap-
proaches to this problem were mostly based on non-linear
programming, and the solution space was restricted to po-
sitional strategies or to strategies dependent on a bounded
history of patroller’s moves. In this paper, we extend the
solution space to regular strategies, and show that regular
strategies are strictly more powerful than strategies depen-
dent on a bounded history. Further, we design a strategy im-
provement technique for regular strategies which completely
avoids the use of non-linear programming. Intuitively, we
start with some regular strategy, and then repeatedly im-
prove this strategy by incorporating a solution of a certain
linear program. Our experiments demonstrate that the pro-
posed approach can quickly produce strategies of very good
quality even for quite large patrolling problems.

Keywords
Robotic patrolling; Security of Agent Systems; Stackelberg
Equilibrium; Strategy Synthesis

1. INTRODUCTION
Game theoretic approaches to patrolling problems have

received a considerable amount of attention in recent years
(see, e.g., [15, 4] for an everview). The task is to design an
optimal strategy (policy) for a patroller who moves among
a given set of vulnerable targets and aims at detecting pos-
sible intrusions. Since the intruder can observe the moves
of the patroller but the patroller has no knowledge about
the plans and actions of the intruder, the solution concepts
used in this setting are mostly based on Stackelberg equilib-
rium [17]. That is, the patroller’s strategy for visiting the
targets should maximize his expected utility against all best
responses of the intruder.

Most of the existing algorithms for solving patrolling prob-
lems (see Section 2) are based on mathematical program-

∗Supported by the Czech Science Foundation, grant
No. 15-17564S.

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ming. This approach has to deal with two fundamental
difficulties: First, some of the constraints are (inevitably)
non-linear. Second, the encoding is usually restricted to
positional patroller’s strategies, where the decision depends
only on the current patroller’s position. That is, the solution
encoded by the program is actually optimal only among the
subset of positional strategies. It has been argued in, e.g.,
[8, 5], that the patroller can achieve a better expected utility
when his decisions depend on the last K visited positions,
where K ≥ 1 is a suitable constant (such strategies are called
last-K strategies in this paper). Although one can modify
the programs constructed for positional strategies so that
they work for last-K strategies, the size of the modified pro-
grams grows exponentially in K. Even for small instances
(say, 10 targets and K = 3), one may thus obtain non-linear
programs with more than 1000 variables. Hence, this ap-
proach does not scale with increasing K.

Our contribution. We consider a special class of regular
patroller’s strategies that utilize deterministic finite-state
automata to collect some information about the history of
patroller’s moves. The patroller’s decision after a history
v1, . . . , vn of visited positions then depends not only on the
current position vn, but also on the state of the automaton
entered after reading the word v1 · · · vn. We show that reg-
ular strategies are strictly more powerful (i.e., can achieve
a strictly better expected utility for the patroller) than all
strategies of

⋃∞
K=1 last-K. Further, we design a strategy im-

provement technique for regular strategies which completely
avoids the use of non-linear programming. Intuitively, we
start with some regular strategy, and then try to improve
this strategy by performing a given number of rounds, where
each round consists of three steps: (1) we construct a linear
program whose coefficients depend on the regular strategy
computed in the previous round. The size of this program
is linear in the size of the patrolling problem and the size
of the automaton used by the regular strategy; (2) we solve
the linear program; (3) we construct a new regular strat-
egy by taking a suitable “combination” of the strategy from
the previous round and the solution of the linear program.
Compared to the existing methods, our approach is applica-
ble to patrolling problems of considerably larger size, which
is witnessed by the experiments presented in Section 5.

2. RELATED WORK
Existing approaches to protecting the targets against in-

trusions are based either on optimizing static allocation of
available resources to the targets in order to discover the

1171

intruder, or by computing an optimal movement strategy
for a mobile patroller. The first model, also known as secu-
rity games, has been studied in [11, 12]. The earlier works
[14] concentrated on finding an allocation that minimizes
the chance for penetrating an unprotected target. Later,
the main task was extended with a requirement that the
allocation needs to satisfy some extra constraints [16].

In the second model, also known as patrolling games, the
focus was primarily on finding locally optimal strategies for
robotic patrolling units either on restricted graphs (e.g., on
circles in [2, 3]), or arbitrary graphs with weighted prefer-
ence on the targets [5, 6]. Alternatively, the work focused
on some novel aspects of the problem, such as variants with
moving targets [8, 10], multiple patrolling units [7], or move-
ment of the intruder on the graph [6] and reaction to alarms
[13]. Most of the existing literature assumes that the pa-
troller is following a memoryless (Markov) strategy that de-
pends solely on the current position of the patroller in the
graph and they seek for a solution using mathematical pro-
gramming. Few exceptions include duplicating each node of
the graph to distinguish internal states of the patroller (e.g.,
in [2] authors consider a direction of the patrolling robot as
a specific state; in [9], this concept is further generalized),
or seeking for higher-order strategies in [5]. In [1], an algo-
rithm for computing an ε-optimal strategy for the patroller
is designed, but this algorithm is of exponential complexity.

The model considered in this paper is the same as in [5].
That is, we allow for an arbitrary topology of the game
graph, we assume that the time needed to complete an in-
trusion can be different at each target, and the importance
of the individual targets can be different for the patroller
and the intruder.

3. REGULAR STRATEGIES
A patrolling problem is a tuple G = (V,E, T, d), where V is

a finite set of vertices (patroller’s positions), E ⊆ V × V are
admissible moves, T ⊆ V is a set of targets, and d assigns
to every t ∈ T the number d(t) > 0 of time units needed
to complete the intrusion at t. We require that the directed
graph (V,E) is strongly connected. It can be safely assumed
that the patroller spends one unit of time in each vertex,
because longer stays can be modeled by inserting auxiliary
vertices and edges. A history is a finite path in G, and a
walk is an infinite path in G. Note that a history h can also
be seen as a (non-empty) finite word over the alphabet V .
The set of all histories is denoted by H.

A finite-state observer for G = (V,E, T, d) is a determin-
istic finite-state automaton A = (S, δ), where S is a finite
set of states and δ : S × V → S is a total transition func-
tion. We extend δ to histories in the expected way. Further,
we require that the state space of A is strongly connected,
i.e., for all s, s′ ∈ S where s 6= s′ there exists a history
h such that δ(s, h) = s′. An A-regular patroller’s strategy
is a triple σ = (v̂, ŝ, κ), where v̂ ∈ V is the initial vertex,
ŝ ∈ S is the initial state, and κ is a function which to ev-
ery pair (v, s) ∈ V × S assigns a probability distribution
µ over V such that µ(v′) > 0 only if (v, v′) ∈ E. The
set of all A-regular patroller’s strategies is denoted by ΣA.
Given a history h ending in a vertex v, the next vertex is se-
lected randomly according to the distribution κ(v, s), where
s = δ(ŝ, h). The state s represents the information collected
by A after reading h. Thus, σ determines a unique proba-

bility measure Pσ over all patroller’s walks in G initiated in
v̂.

An intruder’s strategy is a function π : H →
{wait , enter t | t ∈ T} which says whether the intruder
should wait or try to penetrate a target t after observing a
given history of patroller’s moves. The intruder is allowed to
attack at most once along a patroller’s walk, which means
that if π(h) = enter t for some t ∈ T , then π(h′) = wait
for all proper prefixes h′ of h. The set of all intruder’s
strategies is denoted by Π. Given a strategy π ∈ Π and
a patroller’s walk w = v0, v1, v2, . . ., we say that the in-
truder waits along w if π(h) = wait for every finite prefix
h of w. If there is j ≥ 0 such that π(v0, . . . , vj) = enter t,
then we say that the intruder enters t along w, and he is
either captured in t or penetrates t, depending on whether t
appears among the vertices vj , . . . , vj+d(t)−1 or not, respec-
tively. Given an A-regular patroller’s strategy σ = (v̂, ŝ, κ)
and an intruder’s strategy π, the probability of all walks
w initiated in v̂ such the intruder waits along w, is cap-
tured in t, and penetrates t, is denoted by Pσ(noattackπ),
Pσ(captureπt), and Pσ(penetrateπt), respectively.

In general, the patroller and the intruder may regard the
importance of each outcome differently, and hence there are
separate families of utilities UPc (t), UPp (t) to the patroller

and UIc (t), UIp (t) to the intruder if the outcome is capturet
and penetratet, respectively. Without restrictions, we as-
sume that both players receive 0 for the outcome noattack ,
and require that UPp (t) ≤ 0 ≤ UPc (t) and UIc (t) ≤ 0 ≤ UIp (t)
for every target t. Given a pair of strategies σ, π, the ex-
pected patroller’s utilility is defined by

EUσ,π
P =

∑
t∈T

Pσ(captureπt) · UPc (t) + Pσ(penetrateπt) · UPp (t)

The expected intruder’s utility EUσ,π
I is defined in the same

way, but UIc (t), UIp (t) are used instead of UPc (t), UPp (t).
For each σ ∈ ΣA, we define the set BR(σ) of all π∗ ∈ Π

such that EUσ,π∗

I = supπ∈Π EUσ,π
I , i.e., π∗ is a best response

to σ. A pair of strategies (σ∗, π∗) ∈ ΣA ×Π is a Stackelberg
equilibrium if the following conditions are satisfied:

(a) π∗ is a best response to σ∗;

(b) π∗ maximizes the expected patroller’s utility among

all best responses, i.e., EUσ∗,π∗

P = supπ∈BR(σ) EUσ∗,π
P ;

(c) the patroller is not motivated to change his strategy,

i.e., EUσ∗,π∗

P = supσ∈ΣA
supπ∈BR(σ) EUσ,π

P .

Theorem 1. For every patrolling problem G, every finite-
state observer A, and all UPc , U

P
p , U

I
c , U

I
p , there exists a

Stackelberg equilibrium.

Proof Sketch. First we show that for every σ ∈ ΣA,
the set BR(σ) is non-empty. The argument crucially de-
pends on the regularity of σ, which guarantees that the pa-
troller plays in one of the finitely many ways after re-visiting
a given vertex. Then, we show that there exists a strategy
π∗ ∈ BR(σ) which maximizes the expected patroller’s utility
among all best responses. Finally, we prove there exists at
least one σ∗ ∈ ΣA satisfying the condition (c) above. This
is achieved by considering an infinite sequence σ0, σ1, . . . of
strategies such that supπ∈BR(σi)

EUσi,π
P converges monoton-

ically to supσ∈ΣA
supπ∈BR(σ) EUσ,π

P as i → ∞, and shoving
that σ∗ can be chosen as the limit of a converging subse-
quence of σ0, σ1, . . .

1172

s0 s1 s2 s3
V V V

V

Figure 1: A finite-state observer A.

Due to Theorem 1, we can also define the Stackelberg value
achievable by A-regular strategies in G by

Val(G,A) = EUσ∗,π∗

P

where (σ∗, π∗) is a Stackelberg equilibrium. Further, for
every σ∗ ∈ ΣA, we define the value of σ∗ in G by

Val(σ∗,G) = sup
π∈BR(σ)

EUσ∗,π
P .

We say that σ∗ ∈ ΣA isA-optimal if Val(σ∗,G) = Val(G,A).
In the special case of zero-sum patrolling problems, where

the utilities also satisfy UPc (t) + UIc (t) = UPp (t) + UIp (t) = 0
for all t ∈ T , the intruder maximizes his expected utility
iff he minimizes the expected patroller’s utility. Further,
every π ∈ BR(σ) achieves the same (and hence the maximal)
expected patroller’s utility. Thus, for zero-sum patrolling
problems we obtain that

Val(σ∗,G) = inf
π∈Π

EUσ∗,π
P

Val(G,A) = sup
σ∈ΣA

inf
π∈Π

EUσ,π
P

Example 1. To get some intuition about the efficiency of
regular strategies, consider a (zero-sum) patrolling problem G
where

• V = {v1, . . . , v30}
• E = V × V , T = V ,

• d(vi) = 3 for all 1 ≤ i ≤ 10, and d(vj) = 5 for all
11 ≤ j ≤ 30,

• UPc (t) = UIc (t) = 0, UPp (t) = −1, UIp (t) = 1 for all t.

Consider a finite-state observer A of Fig. 1. Further, let
V0, V1 be a partition of {v1, . . . , v10} into two subsets of 5
elements, and U0, U1, U2, U3 be a partition of {v11, . . . , v30}
into four subsets of 5 elements. Also observe that for all
(σ, π) ∈ ΣA × Π, we have that 1 + EUσ,π

P is the probabil-
ity of all walks where the intruder is captured or waits for-
ever. Hence, the patroller/intruder actually aims at maxi-
mizing/minimizing this probability.

Let σ = (v1, s3, κ) be an A-regular strategy such that
κ(v, si) is a uniform distribution over the set Vj ∪Uk, where
j = (i+ 1) mod 2 and k = (i+ 1) mod 4. Then, one can
easily confirm that Val(σ,G) = −9/10. That is, if the pa-
troller uses the strategy σ, the probability of all walks where
the intruder is either captured or waits forever is at least
1/10 (for every intruder’s strategy). Intutively, this seems
quite close to the optimum, because in the first 4 moves, each
vertex of {v1, v11, . . . , v30} should be visited at least once, and
each vertex of {v2, . . . , v10} should be visited “about twice on
average”. Hence, the probability of all walks where the in-
truder is captured or waits forever is bounded by a number
close to 4/(21 + 2 · 9) = 4/39. The “periodicity” of σ cap-
tured by A is essential for achieving the efficiency of σ, and
it cannot be mimicked by any strategy which depends just on
some finite suffix of the history.

a

b

c

de

For all t ∈ T = {a, b, c, d, e}:
d(t) = 3

UP
c (t) = UI

c (t) = 0

UP
p (t) = −1

UI
p (t) = 1

a

[cdbea]

c

[beadc]

d

[beacd]

b

[adceb]

e

[adcbe]

a

[cebda]

d

[cebad]

a

[cbeda]

d

[cbead]

c

[bdaec]

e

[bdace]

b

[aecdb]

d

[aecbd]

a

[cdbea]

e

[cdbae]

Figure 2: A zero-sum patrolling problem.

Now we give a rigorous proof that regular strategies can be
strictly better than all strategies of

⋃∞
K=1 last-K (see Sec-

tion 1), even for zero-sum patrolling problems with fully
connected environment where all vertices are targets, d(t)
is the same for all targets, and the patroller/defender aims
just at maximizing/minimizing the probability of all walks
where the intruder is either captured or waits forever. First,
observe that last-K strategies can be seen as AK-regular
strategies, where the finite-state observer AK “remembers”
the sequence of the last K visited vertices in its state-space
(hence, AK needs (|V | + 1)K control states). We have the
following:

Theorem 2. Let G be the zero-sum patrolling problem of
Fig. 2 (left). Then there exists a finite-state observer A such
that Val(G,A) > Val(G,AK) for all K ≥ 1.

Proof Sketch. The set of states of A are all permu-
tations of {a, b, c, d, e} which encode the information about
the current vertex, and about two previously visited vertices
and their immediate successors. For example, the permuta-
tion [cebda] says that the current vertex is a, the vertex
visited before a was b and the other successor of b was d,
and the vertex visited before b was c and the other suc-
cessor of c was e. The transition function of A is defined
as follows. For every state (permutation) [x1, x2, x3, x4, x5]
we put δ([x1, x2, x3, x4, x5], x1) = [x3, x4, x5, x2, x1]) and
δ([x1, x2, x3, x4, x5], x2) = [x3, x4, x5, x1, x2]). For the other
y such that x1 6= y 6= x2 we define δ([x1, x2, x3, x4, x5], y)
arbitrarily. Further, for every vertex x and every state
of the form [y1, y2, y3, y4, x] we put κ(x, [y1, y2, y3, y4, x]) =
µ(y1, y2), where µ(y1, y2) selects between y1 and y2 with
probability 1/2. For the other arguments, κ is defined
arbitrarily. Let us consider an A-regular strategy σ∗ =
(a, [aecdb], κ). A fragment of this strategy is shown in
Fig. 2 (right), together with the states of A entered after
reading the history associated to the nodes. One can easily

verify that infπ∈Π EUσ∗,π
P = −1/2. That is, if the patroller

uses the strategy σ, the probability of all walks where the
intruder is either captured or waits forever is at least 1/2
(for every intruder’s strategy). Further, for every finite-
state observer B and every B-regular strategy σ we have
that this probability is at most 1/2, because σ is obliged to

1173

visit four vertices in at most two steps, which means that
some of them is inevitably visited with probability at most
1/2. Hence, Val(G,A) = −1/2.

Now we prove that for an arbitrarily large K ≥ 1 we
have that Val(G,AK) < −1/2. For the sake of contra-
diction, assume that Val(G,AK) ≥ −1/2, which implies
that Val(G,AK) = −1/2 by using the same argument as
above. The core of the argument reveals that every optimal
AK-regular strategy must, from certain point on, behave
identically as the A-regular strategy σ constructed above.
This is because whenever a vertex x is visited, each of the
four remaining vertices must be visited exactly with proba-
bility 1/2 in the next two steps. This very soon enforces the
regularity captured by A. However, AK-regular strategies
cannot behave like the strategy σ. Consider the leftmost
branch in the tree of Fig. 2 (right). This branch is an infi-
nite sequence of vertices obtained by repeating the sequence
acb infinitely often. The behaviour of σ along this branch
depends on the length of the history modulo 6, which cannot
be deduced from an arbitrarily long suffix of the history.

4. STRATEGY IMPROVEMENT
A Stackelberg equilibrium for a given patrolling problem

and a given finite-state observer is hard to compute in gen-
eral. In this section, we consider a slightly relaxed variant
of this task: Compute a pair of strategies (σ∗, π∗) such that

(a) π∗ is a best response to σ∗;

(b) π∗ maximizes the expected patroller’s utility among
all best responses to σ∗;

(c) EUσ∗,π∗

P is as large as possible.

Hence, the intruder is still not motivated to change his strat-
egy, and the patroller may still be satisfied with his expected
utility.

Our approach to computing (σ∗, π∗) is based on strategy
improvement. Intuitively, we start with some regular strat-
egy for a given patrolling problem, and then improve this
strategy in a finite number of rounds by repeatedly con-
structing and solving a “small” linear program. In the end,
we obtain a pair (σ∗, π∗) satisfying the above requirement,

together with the associated EUσ∗,π∗

P .
For the rest of this section, we fix a patrolling problem G =

(V,E, T, d), a finite-state observer A = (S, δ), and utility
functions UPc , U

P
p , U

I
c , U

I
p .

4.1 Zero-Sum Patrolling Problems
For simplicity, we first assume that our patrolling problem

is zero-sum, i.e., UPc (t) + UIc (t) = UPp (t) + UIp (t) = 0 for all
t ∈ T . General utility functions are discussed in Section 4.2.

Before describing the algorithm, we need to introduce fur-
ther notions. Let C ⊆ V × S. A selector for C is a func-
tion sel : C → 2V such that, for every (v, s) ∈ C, the
set sel(v, s) is non-empty and contains only vertices that
are immediate successors of v (i.e., if v′ ∈ sel(v, s), then
(v, v′) ∈ E). A consistent path in (C, sel) is a finite sequence
(v0, s0), . . . , (vn, sn) such that (vi, si) ∈ C for all i ≤ n, and
vi+1 ∈ sel(vi, si), si+1 = δ(si, vi+1) for all i < n. We say
that (C, sel) is an end component if the following conditions
are satisfied:

• C is closed under sel , i.e., if (v, s) ∈ C and v′ ∈
sel(v, s), then (v′, s′) ∈ C, where s′ = δ(s, v′).

• For all (v, s), (v′, s′) ∈ C, there is a finite consistent
path from (v, s) to (v′, s′) in (C, sel).

Let σ = (v̂, ŝ, κ) be an A-regular strategy. Then κ deter-
mines a selector selκ for V × S where selκ(v, s) consists of
all v′ ∈ V such that κ(v, s)(v′) > 0. Let Cσ be the set of
all (v, s) ∈ V × S which can be reached from (v̂, δ(ŝ, v̂)) via
a consistent path in (V × S, selκ). Further, let selσ be a
selector for Cσ obtained by restricting selκ to Cσ. We say
that σ stays in an end component (C, sel) if Cσ ⊆ C and
selσ(v, s) ⊆ sel(v, s) for all (v, s) ∈ C.

Theorem 3. For every A-regular strategy σ = (v̂, ŝ, κ)
there exist v̄ ∈ V and s̄ ∈ S such that the A-regular strategy
σ̄ = (v̄, s̄, κ) satisfies Val(σ̄,G) ≥ Val(σ,G) and (Cσ̄, sel σ̄) is
an end component.

Proof Sketch. Let →σ be a binary relation on V × S
such that (v, s) →σ (v′, s′) iff κ(v, s)(v′) > 0 and s′ =
δ(s, v′). Let D be a bottom strongly connected component
(BSCC) of (V × S,→σ). For every (v, s) ∈ D and t ∈ T ,
let Uσ[(v, s), t] be the expected patroller’s utility when the
strategy σ is changed into (v, s′, κ) where δ(s′, v) = s, and
the intruder’s strategy π satisfies π(v) = enter t. Further,
let Val(D) = min{Uσ[(v, s), t] | (v, s) ∈ D, t ∈ T} and let
D̄ be a BSCC of (V × S,→σ) such that Val(D̄) ≥ Val(D)
for every BSCC D of (V × S,→σ). Let (v, s) ∈ D̄. We put
v̄ = v and set s̄ so that δ(s̄, v) = s. One can easily verify
that Val(σ̄,G) ≥ Val(σ,G). Further, (Cσ̄, sel σ̄) is an end
component because D̄ is a BSCC of (V × S,→σ).

For the rest of this subsection, we fix an initial A-regular
strategy σ = (v̂, ŝ, κ). Due to Theorem 3, we may safely
assume that (Cσ, selσ) is an end component.

When improving σ, it may happen that the original se-
lector selσ is extended. However, we constrain such ex-
tensions by choosing an end component (C, sel) such that
(Cσ, selσ) is (componentwise) contained in (C, sel); the
A-regular strategy computed by our strategy improvement
algorithm is then guaranteed to stay in (C, sel). This is par-
ticularly useful in situations when we want to restrict the
scope of our algorithm to strategies that do not assign pos-
itive probabilities to some edges of E when A is in certain
states. If we do not want to implement any such restric-
tions, we set (C, sel) to the largest end component subsum-
ing (Cσ, selσ), which is guaranteed to exist and is easy to
compute. For the rest of this section, we fix some end com-
ponent (C, sel) that subsumes (Cσ, selσ).

For all (v, s) ∈ C and t ∈ T , we define the set
CP [(v, s), t] of t-capturing paths consisting of all consistent
paths (v0, s0), . . . , (vn, sn) in (C, sel) such that (v0, s0) =
(v, s), vn = t, n < d(t), and vi 6= t for all i < n. A prob-
ability assignment for (C, sel) is a function λ that assigns
to each (v, s) ∈ C a probability distribution over sel(v, s).
Now consider the non-linear program of Fig. 3 constructed
for (C, sel). The variables x[(v, s), v′] encode a probability
assignment for (C, sel) (constraints (1) and (2)). The auxil-
iary variables c[(v, s), t] encode the probability of capturing
the intruder entering t when the patroller visits v and A is in
the state s after reading the current history (constraint (3)).
The variable z encodes the expected utility of the patroller
against the “best attack” of the intruder (assuming that the
patroller plays according to the probability assignment en-
coded by the variables x[(v, s), v′]).

1174

max z
subject to:

∀(v, s) ∈ C, ∀t ∈ T :

0 ≤ x[(v, s), v′] ∀v′ ∈ sel(v, s) (1)

1 =
∑

v′∈sel(v,s)
x[(v, s), v′] (2)

c[(v, s), t] =
∑

(v0,s0),...,(vn,sn)
∈CP[(v,s),t]

n−1∏
i=0

x[(vi, si), vi+1] (3)

z ≤ c[(v, s), t] · UPc (t) + (1− c[(v, s), t]) · UPp (t) (4)

Figure 3: A non-linear program NLP[(C, sel)].

Solving the program of Fig. 3 is computationally difficult.
Nevertheless, the program can be used to improve an ex-
isting probability assignment λ for (C, sel) in the following
way: We construct a linear program LP[(C, sel), λ]) by re-
placing the righ-hand side of the non-linear constrains (3)
with ∑

(v0,s0),...,(vn,sn)
∈CP[(v,s),t]

(
x[(vn−1, sn−1), vn] ·

n−2∏
i=0

λ(vi, si)(vi+1)

)
.

That is, the variables x[(vi, si), vi+1] for 0 ≤ i ≤ n − 2 are
replaced with the corresponding constants of λ. By solving
LP[(C, sel), λ]), we obtain concrete values for all variables
x[(v, s), v′], where (v, s) ∈ C and v′ ∈ sel(v, s), that mini-
mize the objective z. These values form another probabil-
ity assignment for (C, sel) denoted by Solve(LP[(C, sel), λ]).
Now, we compute an “improved” probability assignment
by taking a suitable combination Combine(λ, α) of λ and
α = Solve(LP[(C, sel), λ]). As we shall see in Section 5,
even a simple convex combination works quite well in prac-
tice; however, Combine can be a more complicated func-
tion in general. Our strategy improvement algorithm (i.e.,
Algorithm 1) performs N such rounds, starting with the
unique probability assignment λσ satisfying the following
conditions:

• λσ(v, s)(v′) = κ(v, s)(v′) for all (v, s) ∈ Cσ and v′ ∈
selσ(v, s).

• For all (v, s) ∈ C r Cσ, λσ(v, s) is the uniform distri-
bution on sel(v, s).

Let λ be the probability assignment for (C, sel) obtained
after completing the repeat-until loop at lines 3–7 of Algo-
rithm 1. For every pair (v, s) ∈ C, the assignment λ deter-
mines an A-regular strategy σ[(v, s), λ] = (v, s̄, λ̄), where
s̄ ∈ S is a state satisfying δ(s̄, v) = s and λ̄ is (some)
extension of λ to all elements of V × S (since (C, sel) is
an end component, the choice of λ̄(v′, s′) for (v′, s′) 6∈ C
is actually irrelevant). One may be tempted to think that
Val(σ[(v, s), λ],G) is the same for all (v, s) ∈ C. However,
this is generally not true, and we need to invest some extra
computational effort to identify an “optimal” pair (v, s) and
compute the associated Val(σ[(v, s), λ],G). This is achieved
by the procedure Evaluate(λ) at line 8 of Algorithm 1, which
is described in the next paragraphs.

Let→λ ⊆ C×C be a relation defined by (v, s)→λ (v′, s′)
iff λ(v, s)(v′) > 0 and s′ = δ(s, v′). Further, let D ⊆ C

Algorithm 1: Strategy improvement for G, A, UPc , UPp

input : σ, (C, sel), N
output : (σ∗, π∗), Val(σ∗,G)

1 λ← λσ
2 i← 0

3 repeat
4 α← Solve(LP[(C, sel), λ])
5 λ← Combine(λ, α)
6 i← i+ 1

7 until i = N

8 (σ∗, π∗),Val(σ∗,G)← Evaluate(λ)

be a bottom strongly connected component (BSCC) of the
directed graph (C,→λ). For every (v, s) ∈ D and t ∈ T ,
let cλ[(v, s), t] be the probability of capturing the intruder
entering t when the patroller visits v and A is in the state s
after reading the current history. That is,

cλ[(v, s), t] =
∑

(v0,s0),...,(vn,sn)
∈CP[(v,s),t]

n−1∏
i=0

λ(vi, si)(vi+1) .

We also use Uλ[(v, s), t] to denote the associated expected
patroller’s utility, i.e.,

Uλ[(v, s), t] = cλ[(v, s), t] · UPc (t) + (1− cλ[(v, s), t]) · UPp (t) .

Finally, we put

enterD = min{Uλ[(v, s), t] | (v, s) ∈ D, t ∈ T}

and Val(D) = min{0, enterD}. We claim that for all
(v, s) ∈ D we have that Val(σ[(v, s), λ],G) = Val(D). To
see this, first realize that if enterD > 0, then the optimal
strategy for the intruder against σ[(v, s), λ] is to wait for-
ever, because otherwise his expected utility only decreases.
Hence, Val(σ[(v, s), λ],G) = 0 in this case. Otherwise, the
intruder should wait until the patroller enters a vertex v
so that A is in a state s where Uλ[(v, s), t] = enterD for
some ∈ T , and then enter the target t. Such a situation
must eventually occur with probability one, because D is a
BSCC of (C,→λ). Thus, the intruder achieves his (optimal)
expected utility −Val(D).

Let D be a BSCC of (C,→λ) such that Val(D) ≥ Val(D′)
for every BSCC D′ of (C,→λ). Then, for every (v, s) ∈ C we
clearly have that Val(σ[(v, s), λ],G) ≤ Val(D). Hence, the
patroller should stick to σ[(v, s), λ] where (v, s) ∈ D, and
the value of this strategy is equal to Val(D). The procedure
Evaluate(λ) returns (σ[(v, s), λ], π),Val(D), where π is the
intruder’s strategy achieving the expected utility −Val(D)
described in the previous paragraph.

4.2 Non-Zero-Sum Patrolling Problems
In this subsection, we show how to extend the results of

Section 4.1 to non-zero-sum patrolling problems. Recall that
our aim is to compute a pair of strategies (σ∗, π∗) such that
π∗ is a best response to σ∗ maximizing the expected pa-
troller’s utility among all best responses, and the expected
utility of the patroller is as large as possible.

Here we restrict ourselves to a subset of A-regular strate-
gies σ such that (Cσ, selσ) is an end component, because

1175

max uP [(v∗, s∗), t∗], where ((v∗, s∗), t∗) is a fixed element of R.

subject to:

∀(v, s) ∈ C, ∀((v̄, s̄), t̄) ∈ R, ∀t ∈ T :

0 < x[(v, s), v′] ∀v′ ∈ sel(v, s) (5)

1 =
∑

v′∈sel(v,s)
x[(v, s), v′] (6)

c[(v, s), t] =
∑

(v0,s0),...,(vn,sn)
∈CP[(v,s),t]

n−1∏
i=0

x[(vi, si), vi+1] (7)

uI [(v, s), t] = c[(v, s), t] · UIc (t) + (1−c[(v, s), t]) · UIp (t) (8)

uP [(v̄, s̄), t̄] = c[(v̄, s̄), t̄] · UPc (t̄) + (1−c[(v̄, s̄), t̄]) · UPp (t̄)(9)

uI [(v, s), t] < uI [(v∗, s∗), t∗] where ((v, s), t) 6∈ R (10)

uI [(v̄, s̄), t̄] = uI [(v∗, s∗), t∗] (11)

uP [(v̄, s̄), t̄] = uP [(v∗, s∗), t∗] (12)

Figure 4: A non-linear program NLP[(C, sel), R].

then we can easily classify intruder’s best responses (see
Theorem 4).

For the rest of this section, we fix an end component
(C, sel). Let σ = (v̂, ŝ, κ) be an A-regular strategy such
that (Cσ, selσ) = (C, sel). Further, let R ⊆ C × T . We say
that an intruder’s strategy π is R-compatible if the following
conditions are satisfied:

• If π(h) = enter t where h ends in a vertex v, then
((v, s), t) ∈ R where s = δ(ŝ, h).

• Pσ(noattackπ) = 0.

Let MBR(σ) ⊆ BR(σ) be the set of best responses to σ that
maximize the patroller’s expected utility. The next theorem
gives a characterization of MBR(σ).

Theorem 4. Let σ be an A-regular strategy such that
(Cσ, selσ) = (C, sel). Then there are two possibilities:

• MBR(σ) = {π} where π(h) = wait for every history h;

• MBR(σ) = {π ∈ Π | π is R-compatible} for some
R ⊆ C × T .

Proof Sketch. For every (v, s) ∈ C and t ∈ T , let
uI [(v, s), t] and uP [(v, s), t] be the expected intruder’s util-
ity and the expected patroller’s utility when the strategy
σ is changed into (v, s′, κ) where δ(s′, v) = s, and the in-
truder’s strategy π satisfies π(v) = enter t. Further, let
ValI = max{uI [(v, s), t] | (v, s) ∈ C, t ∈ T}. If ValI ≤ 0,
then the intruder cannot gain anything by entering any tar-
get, and his (only) optimal response to σ is the strategy π
such that π(h) = wait for every history h. Now assume
ValI > 0. Let BR = {((v, s), t) | uI [(v, s), t] = ValI},
and let ValP = max{uP [(v, s), t] | ((v, s), t) ∈ BR}. Fi-
nally, we put R = {((v, s), t) ∈ BR | uP [(v, s), t] = ValP }.
Clearly, for every R-compatible intruder’s strategy π we
have that EUσ,π

I = ValI and EUσ,π
P = ValP , which proves

the claim.

The characterization of MBR(σ) given in Theorem 4 is
implemented in the non-linear program of Fig. 4. This pro-
gram covers the second possibility when MBR(σ) consists
of all R-compatible intruder’s strategies (the other possi-
bility is discussed below). The variables x[(v, s), v′] encode

a probability assignment for (C, sel), i.e., some A-regular
strategy σ (constraints (5) and (6)). We require that all of
these probabilities are positive (constraint (5)), which im-
plements the assumption (Cσ, selσ) = (C, sel). The aux-
iliary variables c[(v, s), t] encode the probability of captur-
ing the intruder entering t when the patroller visits v and
A is in the state s after reading the current history (con-
straint (7)). The variables uI [(v, s), t] encode the expected
intruder’s utility for σ and a {((v, s), t)}-compatible in-
truder’s strategy (constraint (8)). Similarly, the uP [(v̄, s̄), t̄]
variables, where ((v̄, s̄), t̄) ∈ R, encode the expected pa-
troller’s utility for σ and a {((v̄, s̄), t̄)}-compatible intruder’s
strategy (constraint (9)). Constraints (10) and (11) guaran-
tee that MBR(σ) consists of R-compatible strategies. The
((v∗, s∗), t∗) is a fixed element of R (chosen arbitrarily).

Note that the possibility when MBR(σ) = {π}, where
π(h) = wait for every history h, can be encoded by a
simpler program consisting of the constraints (5)–(8) and
uI [(v, s), t] ≤ 0. The objective of this program is irrelevant,
we require just feasibility.

Now, for a given probability assignment λ for (C, sel),
we can replace the right-hand sides of the non-linear con-
strains (7) with∑

(v0,s0),...,(vn,sn)
∈CP[(v,s),t]

(
x[(vn−1, sn−1), vn] ·

n−2∏
i=0

λ(vi, si)(vi+1)

)

and thus obtain a linear program LP[(C, sel), R, λ]. Given
some initial strategy σ (and the associated probability as-
sigment λσ for (C, sel)), we can again “improve” λσ by
Algorithm 1 where LP[(C, sel), R, λ] is used instead of
LP[(C, sel), λ]. Observe that on top of choosing the “right”
(C, sel) and the initial strategy σ, we also need to choose a
suitable R. Although there are exponentially many candi-
dates for the “right”R, a reasonable option is to try out all
singletons first and then possibly proceed with larger subsets
of C depending on the obtained results.

5. EXPERIMENTS
In this section we experimentally evaluate the strategy

improvement algorithm designed in Section 4. For simplic-
ity, we restrict our attention to zero-sum patrolling prob-
lems where UPc (t) = UIc (t) = 0, UPp (t) = −1000, and

UIp (t) = 1000 for all t ∈ T . For every finite-state observer A
and all (σ, π) ∈ ΣA ×Π, let Pσ(defendπ) be the probability
of all walks where the intruder is captured or waits forever.
That is,

Pσ(defendπ) = Pσ(noattackπ) +
∑
t∈T

Pσ(captureπt) .

We have that

1000 + EUσ,π
P = 1000 · Pσ(defendπ) .

Hence, the patroller/intruder actually aims at maximiz-
ing/minimizing Pσ(defendπ). Since this quantity appears
more intuitive than EUσ,π

P , we also define the defending
value of a given A-regular strategy σ by DVal(σ,G) =
1000+Val(σ,G), and we use DVal(σ,G) instead of Val(σ,G)
when presenting the performance of the computed strate-
gies. Hence, if DVal(σ,G) = 250, then the patroller defends
all targets with probability at least 0.25 against all intruder’s
strategies, and there exists an intruder’s strategy π such that

1176

Table 1: The Outcomes of the 1st Comparison.
|V | |V4| |V7| DVal(σA), N ≤ 20 DVal(σB), N ≤ 20

9 3 6 500.00000 448.78190

11 6 5 345.47092 337.56432

13 5 8 328.80138 316.48640

15 8 7 257.93970 252.89687

17 7 10 246.77666 241.28626

19 10 9 204.66290 202.02953

21 9 12 200.00000 194.72047

23 12 11 168.63060 168.15142

25 11 14 163.13892 162.93894

26 11 15 160.06754 158.73937

27 14 13 145.73724 143.98550

31 16 15 127.24003 125.88467

31 13 18 136.05868 133.96578

35 18 17 112.46766 111.82252

36 15 21 117.34851 115.87416

39 20 19 101.47058 100.58408

41 17 24 103.35841 102.08437

43 22 21 092.00802 091.39703

46 19 27 092.11294 091.22598

47 24 23 084.01209 083.74692

the probability of defending all targets against π is exactly
0.25.

Note that Algorithm 1 is parameterized by the choice of
(C, sel), the initial strategy σ, the number of iterations N ,
and the function Combine invoked at line 5. In all of our
experiments, we use Combine(λ, α) = 0.5 · λ + 0.5 · α. The
number of iterations is typically set to 20. The choice of
(C, sel) and σ substantially influences the quality of the
strategy produced by Algorithm 1. In principle, (C, sel)
and σ can be constructed either “manually” in some ad-hoc
way, or synthesized automatically by inspecting the topo-
logical properties of the underlying directed graph of G. We
compare two such methods. The first one is simple; we con-
struct a trivial finite-state observer B with just one state s
such that δ(s, v) = s for every vertex v. The associated end
component is the unique maximal end component of V ×{s}
(recall that the directed graph of G is strongly connected),
and the initial strategy is a strategy which selects uniformly
among all vertices.

The second method works as follows. Let G = (V,E, T, d)
be a patrolling problem where T = V and d(t) ≥ 2 for
all t ∈ T . Further, let D(G) = {d(v) | v ∈ V }, and for
every d ∈ D(G), let Vd be the set of all v ∈ V such that
d(v) = d. As a running example, consider the case when
D(G) = {3, 4, 7, 13}. For simplicity, let us first assume that
G has a full topology, i.e., E = V ×V . Then, we can partition
each Vd into d pairwise disjoint subsets

Vd[0], . . . , Vd[d−2], Vd[d−1]

so that each Vd[i], where 0 ≤ i ≤ d − 2, has |Vd| div (d−1)
elements, and Vd[d−1] has |Vd| mod (d−1) elements. For
example, if d = 4 and V4 consists of 11 vertices, we obtain
the sets V4[0], V4[1], V4[2], V4[3] such that each V4[i], where
0 ≤ i ≤ 2, contains 3 vertices, and V4[3] contains the two
remaining vertices.

Table 2: Some cases when A outperforms B.
D(G) DVal(σA), N ≤ 20 DVal(σB), N ≤ 20

{6, 9} 500.00000 433.27517

{8, 9} 500.00000 426.33215

{12, 14} 500.00000 413.44493

{14, 15} 500.00000 409.91645

{22, 25} 500.00000 403.87134

Let k be the least common multiple of all d− 1 such that
d ∈ D(G). In our running example, k is the least common
multiple of 2, 3, 6, 12, which is 12. Now we construct a finite-
state observer A with states {s0, . . . , sk−1} such that, for
every v ∈ V , δ(si, v) = sj where j = (i+ 1) mod k.

Further, we construct an end component (C, sel) in the
following way: For every i ∈ {0, . . . , k − 1}, let

Mi =
⋃

d∈D(G)

Vd[i mod (d−1)] ∪ Vd[d−1]

In our running example, we obtain, e.g.,

M8 = V3[0]∪V3[2]∪V4[2]∪V4[3]∪V7[2]∪V7[6]∪V13[8]∪V13[12]

The set C consists of all pairs (v, si) such that 0 ≤ i < k and
v ∈ Mi. Further, for each (v, si) ∈ C, we define sel(v, si) =
Mi r {v}.

Intuitively, (C, sel) is constructed so that, for every d ∈
D(G), the vertices of Vd[0], . . . , Vd[d−2] are visited precisely
once in d − 1 steps after every history h, where the only
possible exception is the vertex where h ends. Since it is
not clear how the remaining vertices of Vd[d−1] should be
visited, (C, sel) allows to visit all of them “any time”. The
initial strategy σ is defined by σ = (v̂, sk−1, κ), where v̂
is a fixed vertex of some Vd[0], and κ(v, s) is the uniform
distribution over sel(v, s).

Note that the above construction requires the existence
of edges only among the vertices of Mi and M(i+1) mod k.
Hence, it is applicable also to patrolling problems where E
is a proper subset of V × V , but E must be “dense” in the
sense that it contains the required edges.

For simplicity, in our experiments we consider only pa-
trolling problems with fully connected topology where all
vertices are targets, i.e., E = V × V and T = V .

In our first experiment, we examine the case when D(G) =
{4, 7} for various (almost random) instances. The outcomes
are summarized in Table 1. The columns DVal(σA), N ≤ 20,
and DVal(σB), N ≤ 20 show the defending values of the best
A-regular and B-regular strategies obtained by Algorithm 1
in at most 20 rounds. Note that σA always outperforms σB,
but the difference is not so significant as one might expect.
This is because the numbers inD(G) are still relatively small.
In Table 2, we show the outcomes (obtained after 20 rounds)
for some specific cases where |Vd| = d−1 for every d ∈ D(G).
For example, for the patrolling problem considered in the
first line of Table 2 we have that |V6| = 5 and |V9| = 8. Here,
DVal(σA) is always equal to 500, but DVal(σB) decreases as
the numbers in D(G) increase.

An interesting feature of Algorithm 1 revealed by our ex-
periments is that the outcomes can “oscillate” among bet-
ter and worse strategies as N increases. This behaviour is
documented in Table 3, where we consider the case D(G) =
{3, 4, 7, 13}, and show the defending values for the strategies

1177

Table 3: The Outcomes of the 2nd Comparison.
|V | |V3| |V4| |V7| |V13| DVal(σA), N = 10 DVal(σA), N = 15 DVal(σA), N = 20

25 4 3 6 12 200.00000 200.00000 200.00000

29 5 4 7 13 164.31373 164.36930 164.37348

33 6 5 8 14 136.23451 137.11697 137.73950

37 7 6 9 15 120.24780 115.83532 118.51474

41 8 7 10 16 105.64002 105.81254 105.50371

|V | |V3| |V4| |V7| |V13| DVal(σB), N = 10 DVal(σB), N = 15 DVal(σB), N = 20

25 4 3 6 12 197.03123 197.11447 197.11542

29 5 4 7 13 162.85415 162.90246 162.90214

33 6 5 8 14 138.67156 138.70364 138.70487

37 7 6 9 15 120.69474 120.71614 120.71646

41 8 7 10 16 106.81787 106.83392 106.83405

obtained after 10, 15, and 20 rounds. The mentioned oscilla-
tion is present in several lines (for both observers). It can be
influenced by changing the mixing ratio used by Combine.
The two finite-state observers A and B do comparably well
on the presented instances. This is mainly because |Vd| is
not much larger than d, and hence the size of Vd[d−1] is
comparable to the size of Vd[j] for j ≤ d− 2.

All of our results have been obtained by a naive imple-
mentation of Algorithm 1 in Python that was run on an av-
erage Intel 64 PC with 4GB RAM. We used the PuLP pack-
age to solve the linear programs (all of our instances were
solved in less then two minutes, often is seconds). Despite
this lightweight implementation, we were able to analyze pa-
trolling problems with about 100 vertices. We believe that a
more serious implementation can easily handle substantially
larger instances.

6. CONCLUSIONS
We designed a strategy improvement algorithm for regular

strategies which avoids the use of non-linear programming.
This algorithm is applicable to patrolling problems of realis-
tic size, and it can quickly produce quite efficient strategies.

There is a lot of space for improvement, and we believe
that the main ideas presented in this paper can be further
developed and refined into an even more efficient framework.
The strategy improvement technique is generic and possi-
bly applicable also to other problems that have so far been
tackled using non-linear programming and other computa-
tionally costly methods. We see all of these possibilities as
great challenges for future work.

REFERENCES
[1] M. Abaffy, T. Brázdil, V. Řehák, B. Bošanský,

A. Kučera, and J. Krčál. Solving adversarial patrolling
games with bounded error. In Proceedings of AAMAS
2014, pages 1617–1618, 2014.

[2] N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot
perimeter patrol in adversarial settings. In Proceedings
of ICRA 2008, pages 2339–2345, 2008.

[3] N. Agmon, V. Sadov, G. A. Kaminka, and S. Kraus.
The impact of adversarial knowledge on adversarial

planning in perimeter patrol. In Proceedings of
AAMAS 2008, pages 55–62, 2008.

[4] N. Basilico, N. Gatti, and F. Amigoni. Patrolling
security games: Definition and algorithms for solving
large instances with single patroller and single
intruder. Artificial Intelligence, 184–185:78–123, 2002.

[5] N. Basilico, N. Gatti, and F. Amigoni. Leader-follower
strategies for robotic patrolling in environments with
arbitrary topologies. In Proceedings of AAMAS 2009,
pages 57–64, 2009.

[6] N. Basilico, N. Gatti, T. Rossi, S. Ceppi, and
F. Amigoni. Extending algorithms for mobile robot
patrolling in the presence of adversaries to more
realistic settings. In WI-IAT, pages 557–564, 2009.

[7] N. Basilico, N. Gatti, and F. Villa. Asynchronous
Multi-Robot Patrolling against Intrusion in Arbitrary
Topologies. In AAAI, 2010.

[8] B. Bosansky, V. Lisy, M. Jakob, and M. Pechoucek.
Computing Time-Dependent Policies for Patrolling
Games with Mobile Targets. In Proceedings of
AAMAS 2011, 2011.

[9] B. Bosansky, O. Vanek, and M. Pechoucek. Strategy
Representation Analysis for Patrolling Games. In
AAAI Spring Symposium, 2012.

[10] F. Fang, A. X. Jiang, and M. Tambe. Optimal Patrol
Strategy for Protecting Moving Targets with Multiple
Mobile Resources. In Proceedings of AAMAS 2013,
2013.

[11] M. Jain, E. Karde, C. Kiekintveld, F. Ordóñez, and
M. Tambe. Optimal defender allocation for massive
security games: A branch and price approach. In
Workshop on Optimization in Multi-Agent Systems at
AAMAS, 2010.

[12] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez,
and M. Tambe. Computing optimal randomized
resource allocations for massive security games. In
Proceedings of AAMAS 2009, pages 689–696, 2009.

[13] E. Munoz de Cote, R. Stranders, N. Basilico, N. Gatti,
and N. Jennings. Introducing alarms in adversarial
patrolling games: extended abstract. In Proceedings of
AAMAS 2013, pages 1275–1276, 2013.

1178

[14] J. Pita, M. Jain, J. Marecki, F. Ordónez, C. Portway,
M. Tambe, C. Western, P. Paruchuri, and S. Kraus.
Deployed ARMOR protection: The application of a
game theoretic model for security at the Los Angeles
Int. Airport. In Proceedings of AAMAS 2008, pages
125–132, 2008.

[15] M. Tambe. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge
University Press, 2011.

[16] J. Tsai, S. Rathi, C. Kiekintveld, F. Ordóñez, and
M. Tambe. IRIS—a tool for strategic security
allocation in transportation networks categories and
subject descriptors. In Proceedings of AAMAS 2009,
pages 37–44, 2009.

[17] Z. Yin, D. Korzhyk, C. Kiekintveld, V. Conitzer, and
M. Tambe. Stackelberg vs. Nash in security games:
Interchangeability, equivalence, and uniqueness. In
Proceedings of AAMAS 2010, pages 1139–1146, 2010.

1179

