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ABSTRACT
Temporal Epistemic Logic is used to reason about the evolution of
knowledge over time. A notable example is the temporal epistemic
logic KL1, which is used to model what a reasoner can infer about
the state of a dynamic system by using available observations. Ap-
plications of KL1 span from security (verification of cryptography
protocols and information flow) to diagnostic systems (fault detec-
tion and diagnosability).

In this paper, we tackle the verification of KL1 properties under
observational semantics, by proposing an effective approach that is
able to deal with both finite and infinite state systems. The deno-
tation of the epistemic atoms is computed in a lazy way, driven by
the counter-examples obtained from model checking an abstraction
of the property. We analyze the approach on a comprehensive set
of finite- and infinite-state benchmarks from the literature, evaluate
the effectiveness of various optimizations, and demonstrate that our
approach outperforms existing approaches.
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1. INTRODUCTION
Temporal Epistemic Logic (TEL) is a modal logic combining op-

erators for the evolution of time, and the representation of knowl-
edge. TEL is gaining interest from the practical standpoint. Several
works [10, 22, 1, 8] use temporal epistemic logic to model and ana-
lyze the knowledge of a perfect reasoner (or agent) that can observe
(or sense) a part of a running system. The most common example
is in the context of information security [1], or cryptographic pro-
tocols verification [8], where we are interested in guaranteeing that
some information will remain private, even if some public informa-
tion is shared. Another interesting example comes from the domain
of diagnostic system design [10]. In this domain, we are interested
in showing that a diagnoser can detect the occurrence of some non-
observable situation (e.g., a fault) by only using the information
provided by the available sensors. If the faults are monitored by
multiple diagnosers, possibly sharing the available sensors, we ob-
tain a multi-agent characterization of the problem, in which we can
study whether one agent is able to detect more faults than another.
In several works [19, 30, 10, 24, 4, 23, 4], in these domains, prop-
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erties are expressed in KL1 [21], which is an extension of LTL [27]
including the knowledge operator KA, with the restriction that no
nesting of knowledge operators occurs.

To properly capture the target domains of cryptograpthic proto-
cols and physical systems, infinite state models are needed. At the
same time, infinite state model-checking for transition systems has
become a consolidated area of research in the formal verification
community [17, 6, 13], where efficient SAT/SMT [2] based algo-
rithms have been developed. Although, in the general case, this is
an undecidable problem, these algorithms (e.g., IC3 [15]) are able,
in practice, to deal with infinite state models. Moreover, when these
techniques are applied to finite state models, they usually exhibit
better scalability than BDD-based [12] algorithms.

Our goal is to show how to exploit existing verification algo-
rithms (e.g., IC3) to model-check KL1 over finite/infinite state tran-
sition systems.

Contribution
In this work, we propose an effective approach for KL1 model-
checking of both finite and infinite state transition systems, under
observational semantics. This is the first approach to model check-
ing of temporal epistemic logic over infinite state systems that does
not rely on the abstraction of the system.

Our solution is characterized by a lazy approach. The compu-
tation of the denotation of epistemic subformulae of the property
is not carried out up-front. Rather, we delay it as much as pos-
sible, relying on a counter-example guided abstraction refinement
(CEGAR) of the property. Similarly to the lazy approach in Satis-
fiability Modulo Theories, the epistemic atoms are initially treated
as Boolean variables, and incrementally axiomatized as a result of
proving the spuriousness of the counterexamples.

This idea makes it possible to deal with infinite state systems,
where it might not be possible to compute the reachable state set,
and yields a unified approach for both finite and infinite state sys-
tems. Moreover, the technique is independent from the underlying
model-checking algorithm, and thus we can apply modern verifi-
cation techniques (e.g., IC3 [11]) and leverage the impressive ad-
vancements achieved in the formal verification community.

We propose a number of optimizations to the basic algorithm,
and identify a fragment of the logic (InvKL1) that has practical in-
terest and for which significant improvements can be achieved. We
experimentally evaluate the approach, analyzing the effectiveness
of the proposed optimizations, and comparing against an eager ver-
sion of the approach, where the characterization of the epistemic
subformula is computed upfront. Additionally, we compare the ap-
proach on the benchmarks that can be processed by the competitor
systems (thus limited to finite state). The evaluation demonstrates
that our approach can dramatically outperform existing approaches.
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Related Work

Decidability and complexity of model checking temporal epistemic
logic in the context of infinite state system, has been explored in the
context of Artifact Centric Systems [5, 3]. In those works, restric-
tions on the system are imposed in order to be able to reduce it
to a finite state one. Thus, conceptually, one could apply existing
finite state techniques. Our work differs in several aspects. First,
we deal with transition systems, which are a common formalism
to model physical systems and programs, and are typically used
as underlying semantics for higher-level design specification lan-
guages. Second, we implement and evaluate our technique against
both infinite and finite examples. Finally, and maybe most impor-
tantly, we use effective and well-known techniques for infinite state
model checking as a black-box. In this way, we can automatically
benefit from the improvements that are occurring in the area. To the
best of our knowledge, [5, 3] are limited to the theoretical aspects,
and no implementation is available.

Techniques for model-checking temporal epistemic logic for lin-
ear time and observational semantics for finite state systems are
mostly based on BDDs. Unfortunately, BDDs are not able to deal
with industrial size designs that can easily overcome 10200 states.
For this reason, we are interested in applying SAT/SMT based al-
gorithms.

From the algorithmic point of view, BDD-based techniques rely
on the upfront, eager computation of the denotation, i.e., the set
of states that satisfy a formula. In principle, it is possible to per-
form the eager computation of the denotation using SAT/SMT ap-
proaches but, as shown by the experimental evaluation in Section 7,
this simple approach does not scale in practice. Instead, we rely on
a lazy computation of the denotation.

In terms of underlying technology, we present an approach that is
independent from the underlying model-checking technique. In our
experimental evaluation, we implement it on top of an IC3-based
verification engine for infinite-state transition systems.

MCMAS [26] and MCK [20] represent the state of the art in
model checking temporal epistemic logic, and they both mostly
rely on BDD-based techniques. In terms of expressiveness, we fo-
cus on KL1, the fragment of the logic without nesting of epistemic
operators and common knowledge, while MCK and MCMAS sup-
port both arbitrary nesting and common knowledge; on the other
hand, the technique proposed here deals also with infinite state sys-
tems.

A few works (including MCK) use Bounded Model Checking
techniques, for fragments of the logic in which the epistemic op-
erator does not appear negated [31]. Apart from the syntactical
limitation, these approaches are incomplete, since bounded model
checking is, in general, an incomplete technique.

Our work is very related also to [29]. In [29] the temporal epis-
temic model checking problem is reduced to temporal model check-
ing, by introducing (expressions on) variables local to an agent that
are satisfied if and only if the corresponding epistemic expression is
satisfied. In that work, however, the identification of such variables,
called local propositions, is performed manually and up-front. Our
approach provides an effective and fully automated technique to
obtain an expression over the observable variables that character-
izes the epistemic expression; additionally, we show that our ap-
proach works, in practice, also for infinite state transition systems.

Structure of the paper
The paper is structured as follows. Section 2 provides some neces-
sary background. Section 3 formalizes the logic KL, the fragment
InvKL1, and defines the problem of model checking KL on a tran-

sition system. Section 4 presents an eager approach at solving the
problem, while Section 5 presents the basic version of our lazy ap-
proach. Optimizations are discussed in Section 6. In Section 7 we
provide a detailed experimental analysis of the approach. Section 8
concludes with directions for future work.

2. BACKGROUND
Our setting is quantifier-free first order logic. We use the stan-

dard notions of theory, satisfiability, validity, logical consequence.
We denote formulas with φ, ϕ, ψ, I, T , variables with v, x, y, and
sets of variables with V . We refer to 0-arity predicates as Boolean
variables, and to 0-arity uninterpreted functions as (theory) vari-
ables. If V1, . . . , Vn are a sets of variables and ϕ is a formula, we
might write ϕ(V1, . . . , Vn) to indicate that all the variables occur-
ring in ϕ are elements of

⋃n
i=1 Vi. For each variable x, we assume

that there exists a corresponding variable x′ (the primed version of
x). If V is a set of variables, V ′ is the set obtained by replacing
each element x with its primed version (V ′ = {x′ | x ∈ V }).
Given an assignment s to variables in V , we denote with s′ the
assignment to the variables V ′ such that s′(v′) = s(v) for every
v ∈ V . Given a formula ϕ, ϕ′ is the formula obtained by adding a
prime to each variable occurring in ϕ. Given a theory T , we write
ϕ |=T ψ (or simply ϕ |= ψ) to denote that the formula ψ is a
logical consequence of ϕ in the theory T . Given a finite set V of
variables with a (potentially) infinite domain, we denote with Σ(V )
the set of assignments to V .

A transition system (TS) S is a tuple S = (V, I, T ), where V is
a set of (state) variables, I(V ) is a formula representing the initial
states, and T (V, V ′) is a formula representing the transitions. A
state s ∈ Σ(V ) of S is an assignment to the variables V . A [finite]
trace σ of S is an infinite [resp., finite] sequence of states σ =
s0, s1, · · · such that s0 |= I and ∀i. (si, s

′
i+1) |= T . We use σ[i]

to denote the state si of a trace, while we use σi to denote the prefix
σ[0], σ[1], · · · , σ[i] of σ. A state s is reachable iff there is a finite
trace σ such that σ[i] = s for some i. We use Reach to denote the
set of reachable states. Without loss of generality, we assume the
system to be deadlock free, i.e., that for all s ∈ Reach, there exists
s′ such that s, s′ |= T (V, V ′).

The infinite characterization of these systems is given by the in-
finite domain of the variables, i.e., in each state we have a finite
number of variables that can potentially have an infinite domain.
For example, we can have integer or rational values, and use the
theory of arithmetic [18] to define the transition relation.

Given a transition system S and a property ϕ expressed, for ex-
ample, in LTL [27], the model-checking problem asks whether all
the traces of S satisfy ϕ, i.e., S |= ϕ. Let S be a transition system
and let U be a set of parameters, we define the parametric transi-
tion system P = (V,U, IU , TU ), where I(V,U) and T (V,U, V ′)
are now defined on both the state variables and parameters. Given
a valuation for the parameters (γ ∈ Σ(U)), and a formula ψ we
denote by γ(ψ) the formula obtained by substituting in ψ every
occurrence of u with γ(u) for every parameter u in U . Given a
parametric transition system P and a valuation for the parameters
γ, we can compute the induced transition system, by replacing the
parameters with their valuation: Pγ = (V, γ(IU ), γ(TU )). Given
an LTL property φ expressed over the state variables and param-
eters of a parametric transition system P , the parameter synthesis
problem consists in finding the set of assignments to the parame-
ters, called parameter region ω, s.t. the property is satisfied by every
trace of the induced system, formally: ω = {γ | Pγ |= γ(φ)}

In this work, we rely on off-the-shelf tools for LTL model-
checking and parameter synthesis for infinite-state systems [13].
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3. MODEL CHECKING KL1

Let A be an agent from a set A} of possible agents. We want
to talk about the possible knowledge of A assuming that it is a
perfect reasoner. A partially observable transition system (POTS)
is a transition system equipped with a set of observable variables
O ⊆ V , i.e., M = (V, I, T,O). We associate to each observer
A a set of observable variables of the POTS M : OA ⊆ O. Given
an observer, we define the observation function obsA : Σ(V ) →
Σ(OA) as the projection on the observable variables of A for a
given state. A KL formula has the following syntax:

ϕ := p | ϕ ∧ ϕ | ¬ϕ | Xϕ | Y ϕ | ϕUϕ | ϕSϕ | KAϕ

where p is a predicate, and A ∈ A} is an observer. We define
the Boolean operators ∨,→, and the temporal operators globally
(G), finally (F), once (O) and historically (H) as usual [25]. When
dealing with only one observer, we simply write Kϕ.

The semantics of KL is defined recursively on points of traces
and observation functions of the system M . Given a trace σ =
s0, · · · , sn, · · · of M , and n ≥ 0 we have that:

• (M,σ, n) |= p iff σ[n] |= p

• (M,σ, n) |= ¬ϕ iff (M,σ, n) 6|= ϕ

• (M,σ, n) |= Xϕ iff (M,σ, n+ 1) |= ϕ

• (M,σ, n) |= Y ϕ iff n > 0 and (M,σ, n− 1) |= ϕ

• (M,σ, n) |= ϕUψ iff there exists i ≥ n such that
(M,σ, i) |= ψ and for all j, n ≤ j < i, (M,σ, j) |= ϕ

• (M,σ, n) |= ϕSψ iff there exists i ≤ n such that
(M,σ, i) |= ψ and for all j, i < j ≤ n, (M,σ, j) |= ϕ

• (M,σ, n) |= KAϕ iff for all traces σ′ of M and inte-
gers m ≥ 0 s.t. obsA(σ[n]) = obsA(σ′[m]) it holds that
(M,σ′,m) |= ϕ.

We say that a system M satisfies a formula ϕ (M |= ϕ) if every
trace of M satisfies ϕ. The semantics that we use for KA is called
observational semantics. To evaluate the validity of this formula,
the observer can use only the information available in the current
time-point (i.e., no-memory). Although this looks quite limited,
the observer can reason about past and future behaviors of the sys-
tem, since it knows the model of the system. For example, imagine
a counter from 0 to 10; when the observer sees the value of the
counter being 10, it knows that previously it was 5. Another im-
portant reason for using observational semantics is the possibility
of encoding bounded recall. If the observer can remember the last
w observations, we just extend the system with a queue of observa-
tions, in which we store the last w observations.

Due to the observational semantics, if (M,σ, n) |= KAϕ,
then (M,σ′,m) |= KAϕ for every trace σ′ of M such that
obsA(σ[n]) = obsA(σ′[m]). In this sense, the satisfaction of the
formula KAϕ in (σ, n) depends only on the state σ[n]. Thus, we
define the denotation of KAϕ in M (written JKAϕKM ) as:

JKAϕKM = {s ∈ Reach | ∀σ,∀n. obsA(σ[n]) = obsA(s)

⇒ (M,σ, n) |= KAϕ}.

So, for every σ, for every n ≥ 0, (M,σ, n) |= KAϕ iff σ[n] ∈
JKAϕKM . KLn is the syntactic fragment of KL in which the deep-
est nesting of K operators contains at most n K’s: KL1 is the frag-
ment of KL without nesting of K, and KL0 is LTL. We allow
multiple agents, and thus we have potentially many K operators

(multi-modal). For example, given the observers A and B, the for-
mula KAp ∧KB¬p is in KL1, while the formula KAKBp is not,
since there is a nesting of the epistemic operator.

We call epistemic invariants of KL1 (InvKL1) the properties that
fall into the following syntactic fragment (φ):

φ := Gψ , ψ := p | ψ ∧ ψ | ¬ψ | KAγ

γ := p | γ ∧ γ | ¬γ | Xγ | Y γ | γUγ | γSγ

Notice that, apart from the top-levelG, all other temporal operators
can occur only within the K (i.e., γ). KL1 (and InvKL1) are widely
used fragments, despite their simplicity. The following are just a
few examples of properties in the literature that are not only in KL1

but in InvKL1:

• Muddy Children [19]:

G(((Kimuddyi) ∨ (Ki¬muddyi))→ saysi)

• Dining Cryptographers [30]:

G
(
[(K1¬paid1) ∧ (K1¬paid2) ∧ (K1¬paid3)]∨

[K1(paid1∨paid2∨paid3)∧¬(K1paid2)∧¬(K1paid3)]
)

• FDI maximality [10]: G(KOfault→ Alarm)

• Card Games [24]: G(allred→ KPlayer1F (win1))

and more examples include the Faulty Train Gate Controller [4],
the Gossip Protocol [4], and goals in planning problems [23].

Voters Example
A group of people are called to express a vote. The vote is rep-
resented by an unbounded integer value bigger than 0. The vote
is secret, but the jury can access the sum of all votes (observable).
This model can be captured by the following transition system:

V ars : {guess ∈ N, votei ∈ N, voted ∈ B}
Init : ¬voted

Trans : (result′ = vote0 + · · ·+ voten) ∧
voted′ ∧ guess′ = guess ∧ vote′i = votei

Can the jury know what somebody voted? More formally, can the
jury know what the first voter voted, i.e., if M |= G(voted →
¬K{jury}vote1 = guess), where guess is an integer variable,
and jury = {result, guess} is the set of observable variables for
the jury. Intuitively, for every possible guess, it is not possible for
the jury to know that the first voter’s vote matches the guess. The
counter-example to this specification is a corner case: if everybody
votes 0, the jury knows what everybody voted.

4. EAGER ALGORITHM
A simple way of solving the model-checking problem for KL1,

consists in computing the denotation of the epistemic atoms up-
front. By replacing the epistemic atoms with their denotation, the
KL1 property can then be reduced to an LTL property. This is
similar to what is done by BDD-based techniques, and we call it
eager approach. We use the definition of denotation to compute
it. In particular, we first compute the set of reachable states of the
system, and then partition it based on observations. Finally, we
consider only those sets of states with the same observations s.t.
all of them satisfy β (e.g., for JKAβK). Given the set of reachable
states, the denotation can be symbolically computed by performing
quantifier-elimination.
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A similar approach to obtain the denotation can be defined as a
parameter synthesis problem [14]. The intuition is that the param-
eters are indicators of which states belong to the denotation. We
experimented with this idea by building it on top of an IC3-based
parameter synthesis engine. However, this yielded limited scalabil-
ity (more details in Section 7). The intuition behind the limited per-
formances is the following. Consider the property G(KAβ → α)
(every-time that the observer knows β, then α holds). To disprove
this property, eager approaches need to compute the denotation of
KAβ and then intersect it with the denotation of ¬α. The intersec-
tion might represent only a small set of states. Therefore, a lot of
the computation performed up-front might not be needed (e.g., if
α is always true). Moreover, in the case of infinite state systems,
it might not be possible to represent the set of states of the denota-
tion. For this reason, we develop the lazy approach, in which we
compute only an approximation of the denotation that is sufficient
to verify the property.

5. LAZY ALGORITHM
For a system to violate a property, we need a counter-example

trace. We model-check an abstract version of the property, in which
we treat all epistemic subformulas as propositional atoms. If we
find a counter-example for this abstract property, we need to ver-
ify whether the counter-example satisfies all epistemic subformu-
las or whether it is spurious. If it is not spurious, we are done
and the property is not satisfied. Otherwise, we need to refine our
abstracted property, by learning additional constraints, and repeat.
This flow is similar to the typical CEGAR [16] loop, with the sig-
nificant difference that we do not refine the model but the property.
The approach is divided into four main phases (Figure 1):

1. KL1 to LTL abstraction

2. LTL Verification

3. Spuriousness check

4. Property Refinement.

Property Abstraction
For every epistemic subformula KAβ, we introduce a fresh place-
holder variable ρKAβ and obtain the abstracted property ϕρ =
ϕ[KAβ/ρKAβ ] by replacing each epistemic formula with the cor-
responding placeholder (Line 2 – BOOL_ABSTRACTION). The sys-
tem is extended by adding the placeholder variables, that are ini-
tially unconstrained (Line 3). This corresponds to the most general
abstraction of the property: in any state the placeholder can be true
or false. Counter-examples to the abstract property, represents as-
signments for the epistemic subformulas that can violate the prop-
erty. For example, if a state of a counter-example contains a place-
holder set to true, it means that in that state we want the epistemic
subformula to hold. After this step, we have a property ϕρ that
is purely LTL, and an extended transition system (Mρ) that con-
tains all the variables of M plus the (unconstrained) placeholder
variables.

LTL Verification
The main loop (Line 4) of the algorithm checks whether Mρ |=
ϕρ. If we verify the abstract property on the system, then also the
original property is satisfied. However, the converse is not true, due
to spurious counter-examples, i.e., a counter-example trace that is
not consistent from the epistemic point of view. For example, there
is a state where the epistemic subformula holds, but that does not

1: function VERIFY(M , ϕ)
2: ϕρ, placeholders := BOOL_ABSTRACTION(ϕ)
3: Mρ := EXTEND(M , placeholders)
4: loop
5: cex := Mρ |= ϕρ
6: if not cex then
7: return "Satisfied"
8: end if
9: if IS_SPURIOUS(M, cex, placeholders) then

10: ϕρ := LEARN_LEMMA(M, cex, placeholders, ϕρ)
11: else
12: return cex
13: end if
14: end loop
15: end function
16:
17: function IS_SPURIOUS(M, cex, placeholders)
18: for state ∈ cex do
19: for ρKAβ ∈ placeholders do
20: p_value := ρKAβ(state)
21: if not ((state ∈ JKAβK)↔ p_value) then
22: return True // Spurious!
23: end if
24: end for
25: end for
26: return False
27: end function

Figure 1: Lazy Algorithm Pseudo-Code

belong to the denotation of the epistemic formula. We iterate until
a valid counter-example is found, or the property is shown to hold
(Mρ |= ϕρ). If no counter-example is found (Lines 6-7), then
the model satisfies the abstracted property, and therefore we can
terminate: on some systems we are able to terminate without ever
checking the epistemic part. If a counter-example exists, we need
to check whether it is spurious (Line 9). If this is the case, we
can exclude the counter-example, otherwise we have found a valid
counter example.

Spuriousness Check and Refinement
To check the spuriousness of a counter-example, we need to check
that each state of the counter-example satisfies the epistemic part.
This is implemented in the function IS_SPURIOUS (Line 17).
Each state can be checked in isolation because the transition re-
lation is independent from the epistemic part. For each state of
the counter-example, and for each epistemic subformula (Lines 18-
19), we extract the value of the placeholder (p_value, Line 20), and
check whether the state belongs to the denotation. If p_value is
true but the state does not belong to the denotation or, viceversa,
p_value is false and the state belongs to the denotation, then we are
in a spurious state, and we can exclude the counter-example. If we
validated all epistemic formulas in all the states, then the counter-
example is a real counter-example (Line 26).

To know whether a state s belongs to JKAβK, (s ∈ JKAβK) we
perform the following model-checking query:

M |= G(
∧

x∈OA

x = s(x)→ β)

intuitively, we ask whether each reachable state that has the same
observation of s, satisfies the formula β. IfM satisfies the property
(positive case), we learn the lemma

∧
x∈OA

x = s(x) → ρKAβ ,
otherwise (negative case) we learn

∧
x∈OA

x = s(x) → ¬ρKAβ
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(these are the lemmas returned by the LEARN_LEMMA function
at Line 10). These lemmas impose additional constraints between
all the states with the given observation and the placeholder vari-
ables, thus characterizing the epistemic atoms. In particular, if
the counter-example is spurious, then we exclude it. Lemmas are
learned by updating ϕρ (Line 12), i.e., learned lemmas (λi) be-
come preconditions to to ϕρ. Thus in each iteration i, we have
ϕiρ := λi → ϕi−1

ρ .

InvKL1

If ϕ ∈ InvKL1, the property rewriting step gives us a formulaG(ψ)
where ψ is purely propositional. Since we are assuming deadlock
freedom, this encodes an invariant over reachable states and we
can take advantage of this fact, by using ad-hoc reachability algo-
rithms, instead of a full LTL algorithm. This provides us with a
performance boost and, more importantly, guarantees us that the
counter-example will be a finite trace ending in a state that vio-
lates ψ. During the validation of the counter-example we need to
validate only the last state of the trace, thus obtaining significant
speed-ups, since the validation phase does not depend anymore on
the length of the counter-example traces.

Example
We apply the algorithm on the property ϕ = G(Kβ → α). We
first rewrite it as LTL, and introduce the placeholder variable:
ϕρ = G(ρKβ → α). The transition system M = (V, I, T,O) is
extended by adding the unconstrained placeholder variable Mρ =
(V ∪ {ρKβ}, I, T,O). The main-loop of the procedure checks
whether Mρ |= ϕρ. Let us assume that the answer is negative, and
we get the trace:

(o1, α, β, ρKβ), (¬o1,¬α, β, ρKβ)

that violates the abstract property, since the last state requires the
epistemic formula to hold, but α does not hold. We check whether
this is a spurious counter-example, by checking the consistency of
each state of the trace. In particular, we want to know if the first
state belongs to the denotation of Kβ, since the state has observa-
tion o1, we verify whether : M |= G(o1 → β). Let us assume
that this query has a positive outcome then we check the next state,
and whether M |= (G¬o1 → β). Let us assume that this query
has a negative outcome then we modify our property to include this
lemma: ϕ′ρ = (¬o1 → ¬ρKβ) → ϕρ. Since this is a spurious
state, the counter-example is considered spurious, and we need to
find another counter-example. We checkMρ |= ϕ′ρ and no counter-
example is found. Thus, we conclude that M |= G(Kβ → α).
Notice that the property is an InvKL1 property, therefore it would
have been sufficient to only verify the last.

5.1 Correctness
The following two lemmas show that the lazy approach is cor-

rect, i.e.,M |= ϕ iff the lazy algorithm does not produce a counter-
example:

LEMMA 1. Given M and ϕ, and the associated Mρ, ϕρ, we
have that if Mρ |= ϕρ then M |= ϕ.

DEFINITION 1 (SPURIOUS STATE). Let σρ be a trace of Mρ

and σ be its projection on the variables of M . The state σρ[n] is
spurious iff: for all KAβ occurring in ϕ, (Mρ, σρ, n) |= ρKAβ iff
σ[n] ∈ JKAβKM .

LEMMA 2. Let σρ be a trace of Mρ and σ be its projection on
the variables of M . If (Mρ, σρ) |= ¬ϕρ and, for all n ≥ 0. σρ[n]
is not spurious , then (M,σ) |= ¬ϕ.

Lemma 2 requires that the counter-example is not spurious, and in
particular, that we are able to check whether a state belongs to the
denotation. Therefore, we need to prove that the model-checking
query that we use to check whether a state belongs (or not) to the
denotation is correct:

THEOREM 1. Given a reachable state s of M , the following
three statements are equivalent:

1. s ∈ JKAβKM

2. M |= G(
∧
x∈OA

x = s(x)→ β)

3. M |= G(
∧
x∈OA

x = s(x)→ KAβ)

PROOF. 1 ⇔ 3) By the definition of KL1, M |=
G(
∧
x∈OA

x = s(x)→ β) iff for all σ, for all n, if obsA(σ[n]) =

obsA(s), then (M,σ, n) |= KAβ. Then, by the definition of
JKAβKM , the condition 1 holds iff s is reachable and 2 holds.

2 ⇒ 3) Consider a trace σ and an integer n such that
obsA(σ[n]) = obsA(s). Since the condition 2 holds, then for all
σ′, for all n′, if obsA(σ′[n′]) = obsA(s), then (M,σ′, n′) |= β;
thus, for all σ′, for all n′, if obsA(σ′[n′]) = obsA(σ[n]), then
(M,σ′, n′) |= β. Thus, (M,σ, n) |= KAβ.

3⇒ 2) The condition 2 follows directly from 3 and the fact that
KAβ → β is a tautology for all β (Axiom of knowledge T).

THEOREM 2. Given a reachable state s of M , the following
three statements are equivalent:

1. s 6∈ JKAβKM

2. M 6|= G(
∧
x∈OA

x = s(x)→ β)

3. M |= G(
∧
x∈OA

x = s(x)→ ¬KAβ)

PROOF. 1⇔ 3) follows from Theorem 1 by contraposition.
2 ⇒ 3) Consider a trace σ and an integer n such that

obsA(σ[n]) = obsA(s). Since the condition 2 holds, then
there exists σ′ and n′ such that obsA(σ′[n′]) = obsA(s) and
(M,σ′, n′) 6|= β; thus, it is not true that for all σ′, for all n′,
if obsA(σ′[n′]) = obsA(σ[n]), then (M,σ′, n′) |= β. Thus,
(M,σ, n) |= ¬KAβ.

3 ⇒ 2) Suppose by contradiction that M |= G(
∧
x∈OA

x =

s(x) → β). Thus, by Theorem 1, M |= G(
∧
x∈OA

x = s(x) →
KAβ). Since s is reachable, then there exists σ and n such that
σ[n] = s. Thus (M,σ, n) |= KAβ and, by the condition 3,
(M,σ, n) |= ¬KAβ, which is a contradiction.

Finally, we need to show that the lemmas that we are adding to
exclude a spurious counter-example are correct, i.e., the abstract
model-checking problem is still a sound over-approximation of the
concrete model-checking problem. More precisely, if we use the
lemma to restrict the abstract state space and the abstract model
checking passes, then we can still conclude that M |= ϕ:

THEOREM 3. (Positive case) Assume that M |=
G(
∧
x∈O o(x) = x → β) and Mρ |= G(

∧
x∈O o(x) =

x→ ρKβ)→ ϕρ Then M |= ϕ.

PROOF. (Positive case) If Mρ |= G(
∧
x∈O o(x) = x →

ρKβ) → ϕρ, then i) M |= G(
∧
x∈O o(x) = x → Kβ) → ϕ

(by Theorem 1). If M |= G(
∧
x∈O o(x) = x → β), then ii)

M |= G(
∧
x∈O o(x) = x → Kβ) (by Theorem 1). From i) and

ii), we can deduce that M |= ϕ.
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THEOREM 4. (Negative case) Assume that M 6|=
G(
∧
x∈O o(x) = x → β) and Mρ |= G(

∧
x∈O o(x) =

x→ ¬ρKβ)→ ϕρ Then M |= ϕ.

PROOF. (Negative case) If Mρ |= G(
∧
x∈O o(x) = x →

¬ρKβ) → ϕρ, then i) M |= G(
∧
x∈O o(x) = x → ¬Kβ) → ϕ

(by Theorem 1). If M 6|= G(
∧
x∈O o(x) = x → β), then ii)

M |= G(
∧
x∈O o(x) = x→ ¬Kβ) (by Theorem 2). From i) and

ii), we can deduce that M |= ϕ.

We mentioned that if the property falls within the InvKL1 frag-
ment, then it is possible to validate only the last state of the counter-
example.

THEOREM 5. Let M be a system, Gϕ an InvKL1 property, and
Mρ andGϕρ the corresponding abstractions. If there exists a trace
σρ of Mρ of size n s.t. σρ[n] 6|= ϕρ and σρ[n] is not spurious, then
M 6|= Gϕ.

PROOF. Let σ be the projection of σρ on the variables of M .
From the Definition 1, we know that if σρ[n] 6|= ϕρ then σ[n] 6|= ϕ.
Therefore, the invariant property is violated.

5.2 Termination

System InvKL1 KL1

Finite Complete Complete
Infinite w/ Finite
Domain Obs.

Relative Complete Incomplete

Infinite w/ Infinite
Domain Obs.

Incomplete Incomplete

Figure 2: Completeness

Our algorithm is guaranteed to terminate on finite state systems,
since there is a finite number of possible values for observations
and placeholders. Model checking for infinite state systems is in
general undecidable, therefore we have the problem that the inter-
nal model-checking calls might not terminate. In practice, model-
checkers for infinite state systems (e.g., UPPAAL [6], SAL [17],
nuXmv [13]) can terminate on particular instances or classes of
models. We call relative complete an algorithm that terminates
assuming that all the model-checking queries terminate. Our ap-
proach is relative complete for infinite state systems only if we have
both finite domain observations, and finite counter-examples (as in
the case of InvKL1). Otherwise, the algorithm is incomplete, since
we might need to enumerate infinitely many observations, or vali-
date infinitely many states. Figure 2 summarizes the result. Despite
the theoretical result, we will show in Section 7, that our approach
is able in practice to verify many models of interest.

6. OPTIMIZATIONS

Static Learning
The placeholder variables are initially unconstrained. However,
there are some facts that we can learn by looking at the property,
for example, the axioms of epistemic logic. First, we know that
Kβ → β. This translates into the constraint: ρKβ → β. This
ensures that we never need to validate a counter example in which
ρKβ and ¬β. Moreover, if o is a Boolean observable for A, then
KAo ↔ o. Thus, we add the constraints ρKo ↔ o for each ob-
servable variable of the observer A.

Lemma Generalization
During refinement we learn something about a single observation.
We generalize this to cover a bigger space of the observations, re-
lating multiple observations to the value of the placeholder. For a
state s and an observation o, we generalize the lemma o → ρKβ
into o1 ∨ · · · ∨ on → ρKβ (similarly for the negative case).

The main technique that we use to perform the generalization
is parameter synthesis. Given the observation o, we remove some
element, and perform the parameter synthesis starting from a partial
assignment. We partition the set of observables in the ones we fix
and the one we parameterize: O = OF ∪OP , OF ∩OP = ∅. For
Kβ we solve the following parameter synthesis problem:

ω = {o′ |M |= G((
∧

x∈OF

o(x) = x ∧
∧

x∈OP

o′(x) = x)→ β)}

where o′ is an assignment to the OP variables. In practice, we
obtain the region ω of assignments to OP that (toghether with o)
imply β. Since the region is maximal, all other assignments to OP
do not entail β. Therefore, we learn the lemma: o→ (ω ↔ ρKβ).

Choosing the partition into OF and OP is an interesting point
of research, which we leave as future work. We propose a sim-
ple baseline heuristic, in which we randomly select a number w
of observable variables. The choice of w is also heuristic, since a
small value will cause overhead without gaining much generaliza-
tion, while a big value will quickly lead to too many parameters.
Indeed, picking OP = O (i.e., using all observable variables as
parameters) is equivalent to solving the problem using the eager
approach. In our implementation, we pick w as the logarithm of
the iterations performed so far.

Dual-Rail Encoding
Validating a long counter-example is expensive. However, not all
states might need to be validated. Let us consider the property:
a ∧ Xa ∧ XXKb. A counter-example to this might be the trace:
(a, b, ρKb), (a, b,¬ρKb), (a,¬b,¬ρKb). The satisfaction of the
epistemic subformula in the first two states is irrelevant. We would
like the model-checker to identify those states so that we can skip
them. Thus, we provide a way for the counter-example to contain
don’t care information, transforming the trace above to:

(a, b,−), (a, b,−), (a,¬b,¬ρKb)

This saves us from checking the first two states, and can be a sig-
nificant saving when the traces are long. We use the Dual-Rail
encoding [28] to encode three values: True, False and Don’t Care.
For a placeholder ρi we introduce the variables ρTruei and ρFalsei ,
that are mutually exclusive. If ρTruei is true, then the placeholder
is true; if ρFalsei is true, then the placeholder is false; if both are
false, then the placeholder has a do not care value. We then modify
the IS_SPURIOUS function (Figure 1) to handle the special case
in which the placeholder is set to don’t care, by considering the
epistemic subformula as satisfied.

Positive Generalization via UNSAT-Cores
For epistemic atoms encoding safety properties, we can perform
a more aggressive lemma generalization in case of a positive out-
come from the placeholder query. If β is a safety property, when
showing that M |= G(o→ β) holds, an IC3-based model-checker
will also provide us with an inductive invariant ι as witness. Since
ι is an inductive invariant, ι → (o → β). We use unsat-core ex-
traction to obtain a subset of the observations o that make the above
unsatisfiable. In fact, ι ∧ o ∧ ¬β is unsatisfiable, and we obtain an
unsat-core expressed over the observable variables that justifies the
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unsatisfiability [7]. Let us call o′ such an unsat core. By defini-
tion, we have that ι ∧ o′ → β. Therefore, o′ is a generalization
of o. Moreover, the unsat core extraction is a purely combinational
problem, that can be efficiently handled by a SAT or SMT solver.

Voters Example
In the voters example (Section 3), there are infinitely many vot-
ing combinations that constitute a counter-example. The positive
lemma UNSAT-Core generalization can help us quickly find the
problem, by generating the lemma:

(result = 0 ∧ guess = 0)→ ρK

that justifies the counterexample. Let us assume that at least one
voter did not vote 0. We rewrite the property as:

M |= G(voted ∧ (
∨

v∈voter

votev 6= 0)→ ¬Kjuryvote1 = guess)

To show that no other counter-example exists, we would need to
check all possible values of the votes, that are infinitely many. The
negative generalization based on parameter synthesis allows us to
terminate, by showing that any other voting is good.

7. EXPERIMENTAL ANALYSIS

7.1 Setup
We implemented a prototype on top of an IC3 model-checker

for infinite state systems using the theory of Linear Rational Arith-
metic [18]. We evaluated the scalability of the approach on infinite
state models for both KL1 and InvKL1 properties, and compared
the different optimizations to identify a competitive configuration.
Finally, we compared our approach against the latest versions of
two state-of-the-art model checkers: MCK [20] and MCMAS [26].
Both tools implement BDD-based techniques for model-checking
temporal epistemic logic with observational semantics (including
common knowledge operator, that we do not consider). Experi-
ments were executed on a 2.5Ghz Intel Xeon CPU, with a timeout
of 1 hour; tools, and benchmarks are available online1.

Benchmarks
The Battery-Sensor model (described in [10]) encodes a typical
subsystem found in aerospace designs, in which a set of redundant
sensors are powered by a redundant power supply unit containing
batteries that are modeled using real-valued variables. We study
multiple properties related to faults in the system, for example:

G(fault_gen1 → Kfault_gen1)
G(K(gen1.off ∧ gen2.off)→ KX10(¬device.on))
G(fault_psu→ FKO(fault_psu))

The second benchmark is a set of magicboxes [9], where a ball
moves through a predefined pattern defined on a bi-dimensional
grid. The external observer can only perform row and column ob-
servations, where row observation do not provide information on
the column (and viceversa). The reasoner needs to consider the
predefined path inside the magicbox and the available row and col-
umn information to try to identify the location of the ball. Scal-
ing the size of the magicbox enables stressing the algorithms. For
each magicbox we generate also an MCK and MCMAS model and
test whether it is possible to know that the ball is in a given cell:
G(target_cell→ Ktarget_cell).

1https://es.fbk.eu/people/gario/aamas16/

The Dining Cryptographers is a well studied problem in tempo-
ral epistemic logic [30]. We generated instances also for MCMAS
and MCK, for an increasing number of cryptographers (up to 400)
and verify whether if one cryptographer paid, he knows that no-
body else did: G((done ∧ paid1) → K1¬(

∨
i∈[2..n] paidi)), and

whether if a cryptographer paid it can eventually know that some-
body else paid: paid1 → XF (K1paid2).

7.2 Results

Optimizations Evaluation
We studied the impact of all optimizations on the complete bench-
mark set, and identified two main configurations. For full KL1,
we perform static learning, generalization and use the dual-rail en-
coding. For InvKL1, we also perform static learning and gener-
alization, but disable dual-rail encoding. Moreover, for InvKL1,
we only perform the validation of the last state of the trace. To
study the quality of these configurations, we proceed as follows.
We compare our chosen configuration (Lazy Best) against all other
possible configurations (i.e., for InvKL1, we have 16 configurations
in total). For each benchmark problem, we select the best configu-
ration that is different from Lazy Best. We call that configuration
Virtual Second Best Solver (VSBS). We compare Lazy Best and
VSBS in Figure 3. Lazy Best times out in only 10 instances out
of 349, while the VSBS times out in 20. Generalization sometimes
adds significant overhead. We also compare the strategy of vali-
dating the whole trace vs. the last state (Figure 4): the latter can
significantly pay off. The exceptions are cases in which a single
counter-example is sufficient to learn everything needed to prove
the property.

Generalization is fundamental to be able to solve the Dining
Cryptographers benchmarks. In fact (Figure 5), applying general-
ization we are able to solve all DC problems (up-to 400 cryptogra-
phers), while without generalization our approach times out when
reaching 13 cryptographers.

For the infinite state benchmark (Battery Sensor), we considered
problems with increasing bounded recall. Increasing the recall, in-
creases the size of the model and the number of observables (Fig-
ure 6). Without any optimization, the algorithm times out with re-
call 6 (∼80 obs. variables), while with our chosen configuration,
we can verify up to recall 40 (i.e., an infinite state model with 20
Real-valued variables and more than 500 Boolean variables).

Eager Approach
We implemented the eager approach on top of an IC3-based param-
eter synthesis engine, and compared it against the lazy approach. In
Figure 7, we can see that the eager approach does not scale when
increasing the problem size, i.e., for a recall of 5 the eager approach
reaches the timeout of 1 hour, while the lazy approach terminates
in less than a minute.

Finite State
In the finite case, we get excellent performances when compared
to MCK and MCMAS. The comparison on all finite state problems
(magicboxes and dining cryptographers) for MCK and MCMAS is
given in Figures 8 and 9. In many cases our approach can pro-
vide up-to two orders of magnitude improvement, and solves all
the 118 instances, while MCMAS times out on 20, and MCK on
66. We highlight the results for the dining cryptographers bench-
mark in Figure 10. In which MCMAS is able to verify models only
up-to 240 dining cryptographers (MCK is not included because it
times-out at 20). The lazy approach can verify problem with 400
cryptographers in slighly more than 10 minutes.
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Figure 3: Comparing configurations.
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Figure 4: InvKL1 Optimization.

#DC Lazy w/o Gen. Lazy w/ Gen.
3 0.26 0.15
5 1.01 0.15
7 6.07 0.13
9 58.03 0.15
11 1358.11 0.15
13 TO 0.15

Figure 5: DCs InvKL1 properties (sec.)
Recall #Obs Lazy Basic Lazy Best
0 11 3.28 1.46
5 66 3536.17 52.72
10 121 TO 103.47
20 231 TO 288.31
40 451 TO 981.11

Figure 6: Bounded Recall BS: Optimiza-
tions Impact (sec.)

Recall Eager Lazy
0 3.38 1.46
1 29.48 2.18
2 153.16 5.15
3 661.28 10.24
4 3028.94 13.44
5 T.O. 52.72

Figure 7: Bounded Recall BS: Eager vs
Lazy (sec.)

 1

 10

 100

 1000

 1  10  100  1000

M
C

K

Lazy Best

TO
TO

 1

 10

 100

 1000

 1  10  100  1000

M
C

K

Lazy Best

TO
TO

Figure 8: Lazy vs MCK (66/118 T.O.)
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Figure 9: Lazy vs MCMAS (20/118 T.O.)

#DC MCMAS Lazy
40 3.66 1.83
80 26.57 8.54
120 169.43 25.9
160 322.45 55.2
200 528.42 104.02
240 1582.68 174.86
280 T.O. 287.06
320 T.O. 391.57
360 T.O. 598.4
400 T.O. 765.96

Figure 10: DCs Runtime for KL1 properties (sec.)

8. CONCLUSIONS
KL1 is a temporal epistemic logic that is extensively used in the

literature. In this paper, we presented an efficient model checking
approach for KL1 under observational semantics. This is the first
approach for KL1 model checking over infinite state transition sys-
tems. The use of modern model-checking techniques, together with
our lazy refinement approach and several optimizations (i.e., static
learning, generalization, and dual-rail encoding) enables reasoning
on models of considerable size. The experimental evaluation shows
orders of magnitude improvements over existing approaches.

As future work, we plan to generalize the technique for perfect
recall semantics. Moreover, it would be interesting to extend our
lazy approach to reason about Artifact-Centric Systems. Finally,

we would like to apply the approach on more industrial case-studies
from diagnoser design.
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