
Requirements Specification in The Prometheus
Methodology via Activity Diagrams

(JAAMAS Extended Abstract)
Yoosef Abushark

RMIT University
Melbourne, Australia

yoosef.abushark@rmit.edu.au

John Thangarajah
RMIT University

Melbourne, Australia
johnt@rmit.edu.au

Tim Miller
University of Melbourne

Melbourne, Australia
tmiller@unimelb.edu.au

Michael Winikoff
University of Otago

Dunedin, New Zealand
michael.winikoff@otago.ac.nz

James Harland
RMIT University

Melbourne, Australia
james.harland@rmit.edu

ABSTRACT
In this work we extend a popular agent design methodology,
Prometheus, and improve the understandability and maintainabil-
ity of requirements by automatically generating UML activity di-
agrams from existing requirements models; namely scenarios and
goal hierarchies. The approach is general to all the methodologies
that support similar notions in specifying requirements.

Keywords
AOSE Methodology; Goal-Oriented Requirements

1. INTRODUCTION
The agent-oriented software engineering field has a number of

methodologies that assist developers in the development process,
including the Prometheus methodology [2]. A fundamental as-
pect of all agent-oriented software engineering methodologies is
the specification of requirements. We base our approach on Prometheus,
however, it can be generalised to all the methodologies that support
similar notions in specifying requirements.

We use the trading agent system [2] to illustrate this specification
process. In Prometheus, the system is specified via scenarios, goals
and interfaces to the environment. A scenario is similar to a use
case [1] and describes a particular run of the system as a sequence
of steps (Figure 1). These step types include percepts, actions or
goals. Goals can be decomposed into sub-goals, using a goal-tree.
There are three types of goal decompositions (only two are shown
in Figure 2): disjunctive, undirected conjunctive or directed con-
junctive. The disjunctive decomposition (denoted by OR) implies
that a parent goal is realised if any of its children is realised. The
undirected conjunctive decomposition (denoted by AND) implies
that a parent goal is realised if all its children are realised in some,
unspecified, order. The directed conjunctive decomposition (de-
noted by AND with dashed arrows between the children) implies
that a parent goal is realised if all its children are realised in the
specified order. The combination of the scenarios together with the
goal trees forms part of the requirements for the system.

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, Marsella, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Type Name

1

2

3

4

5

6

7

8

Goal

Percept

Goal

Goal

Goal

Goal

Goal

Goal

Store_Opening

Send_Item_List

Select_Item

Send_Item_Price

Make_Payment

Validate_Card

Notify_Participants

Send_Item

Role

Seller

Seller

Buyer

Buyer

Banker

Banker

Seller

Seller

Figure 1: Sale Transaction Scenario Description

Figure 2: Goal Overview Diagram for the Trading Agent System

Although a scenario is a single sequence of steps there may be
different ways to realise the same scenario. This is because when
there are goal steps, the goals may also be realised (and hence, the
requirement specified) through its children from the goal overview
diagram. For example, the goal step “Notify Participants” in Fig-
ure 1 could be implemented through the step itself, the step with its
children, or just the children, (“Notify Buyer” and “Notify Seller”,
see Figure 2).

Our approach aims to provide agent-based software designers
with an automatically constructed activity diagram that comple-
ments the scenario and goal overview diagram by modelling the
possible paths in a given scenario, with consideration of informa-
tion from the goal overview diagram relevant to that scenario. The
activity diagram includes alternatives of the goal steps in the sce-
nario according to the goal overview diagram.

2. METHOD
The construction process of the activity diagram of the specified

scenario involves two phases:

1. step-wise activity diagram generation: this phase takes one
step – of a given scenario – at a time, and constructs its

1247



D

M

M D

D

D

M

M

a1_Store 
Opening

a5_Confirm
_Item

a4_Confirm
_Item

a2_Send 
Item List

a3_Select 
Item

a7_Select 
Item

a6_Send 
Item List

a8_Send 
Item Price

a9_Manage 
Payment

a10_Manage 
Payment

a11_Make 
Payment

a12_Validate 
Card

[F=S]

[F=S.Ch]

[F=Ch]

a13_Make 
Payment

a14_Validate 
Card

[F=S]
[F=S.Ch]

[F=Ch]

a26_Notify 
Seller

a24_Notify 
Buyer

a16_Notify 
Participants

a15_Notify 
Participants

a25_Notify 
Seller

a23_Notify 
Buyer

a22_Notify 
Buyer

a20_Notify 
Seller

a18_Notify 
Participants

a19_Notify 
Seller

a21_Notify 
Buyer

a17_Notify 
Participants

a27_Send 
Item

[F=S]

[F=S.Ch]

[F=Ch]

[F=S][F=S.Ch]

[F=Ch]

(a) Original Activity Diagram

D

M

M

D

D

D D

D

Store 
Opening

Confirm
_Item

Send 
Item List

Select 
Item

Send 
Item Price

Manage 
Payment

Make 
Payment

Validate 
Card

Notify 
ParticipantsNotify 

Seller

Notify 
Buyer

Send 
Item

[F=S]

[F=Ch]

[F=Ch] [F=M]

[F=S]

[F=Ch]

[F=Ch]

[F=M]

[F=S]

[F=Ch]

[F=Ch]

[F=M]

(b) Reduced Activity Diagram

Figure 3: Activity diagram that merges the scenario in Figure 1 with the goal tree in Figure 2 (F:Flow, S:Goal Step, Ch: Children, P: Parent)

equivalent activity diagram structure. Such a description re-
flects the transformation of the steps in a given scenario into
activity diagram control fragments. Actions and percepts
are transformed into sequential control fragments. The goal
steps are transformed into combination of alternative, paral-
lel, and sequential control fragments, depending on the de-
composition of these goal steps in the goal overview dia-
gram. Then, the different structures are concatenated to form
the complete activity diagram corresponding to the specified
scenario (Figure 3a).

2. activity diagram reduction: the generation phase results in
an activity diagram with duplicate nodes. As it is shown in
Figure 3a, the diagram includes several duplicate nodes, and
in some cases, duplicate sub-graphs, which affects its read-
ability. Duplicate nodes are semantically equivalent, that is,
they refer to the same event, but are prefixed with unique
identifiers This phase intends to reduce these duplicates, if
possible, while preserving the semantics of the original ac-
tivity diagram (Figure 3b).

We have implemented the mapping from scenario and goal overview
diagram to activity diagram as an eclipse plug-in that integrates
with the Prometheus Design Tool (PDT). The tool applies a set of
rules that merge the specified scenario with its relevant information
from the goal overview diagram to generate the abstract descrip-
tion. Then, it uses the abstract description to generate a DOT Graph
source script, which Graphviz can then use to generate a graphical
depiction of the activity diagram.

3. EVALUATION
We conducted a controlled experimental evaluation to measure

the usefulness of activity diagram as a complementary artefact in
Prometheus. We recruited fifteen participants with varying levels of
experience in Prometheus, and gave them several tasks to complete
on simple requirements documents, measuring aspects of their per-
formance. A pre-evaluation questionnaire was used to measure the
experience of the participants. Then, each participant was given
several tasks to perform. The tasks asked participants to manipulate
a set of requirements models for two simple systems. The presence
or absence of the additional activity diagram in the requirements
provided was the independent variable. After the tasks had been
completed, participants were asked to complete a post-evaluation

Table 1: Summary of the total results in both approaches (CI: con-
fidence interval value at a confidence level of 95%)

Activity Diagam Non-Activity

Scores
(out of 9)

Time
(in minutes)

Scores
(out of 9)

Time
(in minutes)

Mean 8.4 7:55 5.8 10:29
CI 0.373 1:41 0.96 2:20

Upper confidence bound 8.77 9:36 6.76 12:49
Lower confidence bound 8.02 6:13 4:84 8:08

questionnaire, asking about their experience, and their perception
of the usefulness of activity diagrams..

We measured two dependent variables: time and correctness. For
time we simply measured the clock time from start to completion
for each task as a proxy for both maintainability and understand-
ability; that is, how much the activity diagram aids software engi-
neers to come up to speed with the semantics of the requirements
models, and to modify them. There were no time limits on tasks.
For correctness we assessed the participants’ answers to each task
to determine whether they had completed the task correctly. This is
also used as a proxy for measuring maintainability and understand-
ability; that is, how much the activity diagram impacts the ability
to understand and modify the requirements models correctly.

The results in Table 1 shows that including activity diagrams
leads to better understanding of the specification by giving a more
holistic view on what the intended system is meant to achieve and
how it should behave, and provides assistance when performing
maintenance on the system. Also, participants in our experiment
unanimously agreed, through the post-evaluation questionnaire, that
the inclusion of the activity diagram improved their ability to un-
derstand the requirements models. Given this, we recommend the
Prometheus methodology, and indeed other AOSE methodologies,
to include activity diagrams as an integrated feature in the method-
ology.

REFERENCES
[1] I. Jacobson. Object-oriented software engineering: a use case

driven approach. ACM Press Series. ACM Press, 1992.
[2] L. Padgham and M. Winikoff. Developing intelligent agent

systems: A practical guide. John Wiley & Sons, Chichester,
2004.

1248




