
How Testable are BDI Agents?
An Analysis of Branch Coverage

(Extended Abstract)
Michael Winikoff

Department of Information Science, University of Otago
Dunedin, New Zealand

michael.winikoff@otago.ac.nz

ABSTRACT
In this paper we extend our understanding of the feasibility of test-
ing BDI agent programs by analysing their testability with respect
to the all edges test adequacy criterion, and comparing with pre-
vious work that considered the all paths criterion. Our findings
extend the earlier analysis with respect to the all paths criterion to
give a more nuanced understanding of the difficulty of testing BDI
agents.

Keywords
Verification and validation; agent-based systems

1. INTRODUCTION
When any software system is deployed, it is important to have

assurance that it will function as required. Traditionally, this assur-
ance is obtained by testing. However, there is a general intuition
that agents exhibit behaviour that is complex. Given this complex-
ity, a key question is whether agent systems are harder, and possibly
even infeasible, to assure by testing.

The only work that we are aware of that considers the question
of testability is the recent work by Winikoff & Cranefield [3, 4],
which investigates the testability of Belief-Desire-Intention (BDI)
agent programs with respect to the all paths test adequacy criterion.
They concluded that BDI agent programs do indeed give rise to a
very large number of possible paths (see left part of Table 1). They
therefore conclude that whole BDI programs are likely to be infea-
sible to assure via testing. They also compared BDI programs with
procedural programs, and found that BDI programs are harder to
test than equivalently sized procedural programs. However, they do
acknowledge that the all paths criterion is known to be overly con-
servative, i.e. it requires a very large number of tests. Indeed, the
all paths criterion subsumes a wide range of other criteria, including
all edges.

In this paper we consider the testability of BDI agent programs
with respect to the all edges [2] test adequacy criterion. Whereas
the all paths criterion used by Winikoff & Cranefield is conserva-
tive, the all edges criterion is optimistic: it is regarded as “the gen-
erally accepted minimum” [1]. The contribution of this paper is to
extend the previous work to obtain a better understanding of, and a
tighter bound on, the testability of BDI agent programs.

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2. ALL-EDGE COVERAGE ANALYSIS
Given a program and a test adequacy criterion (e.g. all paths, all

edges), we consider the testability of a program to be the smallest
number of tests1 that would be required to satisfy the criterion. The
all paths criterion is satisfied iff the set of tests in the test suite T
cover all paths in the program’s control flow graph. The all edges
criterion (also referred to as “branch coverage”) is satisfied iff the
set of paths in the test suite T covers all edges in the control-flow
graph [2].

We define a BDI program P using the grammar:

P ::= a | g{P
∗} | P1;P2 | P1.P2

where a is an action, gP is a (sub-)goal with associated applicable
plans P = {P1, . . . , Pn}, P1;P2 is a sequence, and P1 . P2 rep-
resents a “backup plan”: if P1 succeeds, then nothing else is done
(i.e. P2 is ignored), but if P1 fails, then P2 is used.

S . . . P . . .

Y

N

E

One important fea-
ture of BDI programs is
that the execution of a
BDI program (or sub-
program) can either suc-
ceed or fail. A failed ex-
ecution triggers failure handling. We represent this by mapping a
program P to a graph that is reachable from the start node S, and
that has two outgoing edges: to Y (corresponding to a successful
execution) and to N (corresponding to a failed execution).

We have derived equations (details omitted, results in Figure 1)
that calculate the smallest number of paths from S to E required
such that all edges appear at least once in the set of paths. In order
to do this, it turns out that we need to also capture how many of
these paths correspond to successful executions (go via Y) and how
many go viaN . We define p(P) to be the number of paths required
to cover all edges in the graph corresponding to program P . We
also define y(P) (respectively n(P)) to be the number of these
paths that go via Y (respectively N). By construction we have that
p(P) = y(P) + n(P).

3. RESULTS
We now use the derived equations (Figure 1) to compare the all

edges criterion against the all paths criterion. We know that the
all paths criterion requires more tests to be satisfied, but how many
more? Since comparing (complex) formulae is not easy, we follow
the approach of Winikoff & Cranefield, and instantiate the formulae
with a range of plausible values, to obtain actual numbers that can

1A single test corresponds to a path through the program’s control-
flow graph from its starting node to its final node.

1273

Parameters Number of . . . All Paths All Edges All Edges
j k d goals plans actions n4(g) n8(g) p(g) q(Q)
2 2 3 21 42 62 (13) 6.33× 1012 1.82× 1013 78 62
3 3 3 91 273 363 (25) 1.02× 10107 2.56× 10107 2,961 363
2 3 4 259 518 776 (79) 1.82× 10157 7.23× 10157 808 776
3 4 3 157 471 627 (41) 3.13× 10184 7.82× 10184 4,767 627

Table 1: Comparison of All Paths and All Edges analyses. The first number under “actions” (e.g. 62) is the number of actions in the
tree, the second (e.g. 13) is the number of actions in a single execution where no failures occur.

p(a) = 2 y(a) = 1 n(a) = 1

p(P1;P2) = n(P1) + max(y(P1),p(P2))

y(P1;P2) = y(P2) + ε1

n(P1;P2) = n(P1) + n(P2) + ε2

where ε1 + ε2 = max(0,y(P1)− p(P2))

p(P1 . P2) = y(P1) + max(n(P1),p(P2))

y(P1 . P2) = y(P1) + y(P2) + ε3

n(P1 . P2) = n(P2) + ε4

where ε3 + ε4 = max(0,n(P1)− p(P2))

p(g{P}) = p(P)

y(g{P}) = y(P)

n(g{P}) = n(P)

p(gP) =
∑
Pi∈P

y(Pi) + max(n(Pi),p(g
P\{Pi}))

y(gP) =
∑
Pi∈P

y(Pi) + y(gP\{Pi}) + εi

n(gP) =
∑
Pi∈P

n(gP\{Pi}) + ε′i

where εi + ε′i = max(0,n(Pi)− p(gP\{Pi}))

Figure 1: Equations to calculate p(P), y(P) and n(P)

be compared. We use the same scenarios (i.e. parameters) that they
used, and compare “uniform” BDI programs [3, Section 4]

Table 1 contains the results for these illustrative comparison cases
(ignore the rightmost column for now). The left part of the Table
(Parameters, Number of goals, plans, and actions, and All Paths)
are taken from the all paths analysis of Winikoff & Cranefield [3].
The right part (All Edges, p(g)) is the new numbers from this work.

As expected, the number of tests required to adequately test a
given BDI program P with respect to the all edges test adequacy
criterion is lower than the number of tests required with respect to
the all paths criterion. However, what is interesting is that the num-
bers are very much lower. Indeed, the number of tests required with
respect to the all edges criterion is sufficiently small to be feasible.
For instance, in the third case (j = 2, k = 3, d = 4) where the (uni-
form) BDI program has 259 goals and 518 plans, corresponding to
a non-trivial agent program, the number of required test cases is
less than 1000. However, it is worth emphasising that the all edges
criterion, even for traditional software, is regarded as a minimum.
Additionally, it can be argued that agents, which are situated in an
environment that is typically non-episodic, might be more likely
than traditional software to be affected by the history of their inter-
action with the environment [3, Section 1.1], and therefore the all
paths criterion would be more appropriate.

We also considered the question of whether testing BDI agent
programs is harder. We did this by comparing the number of tests
required to adequately test a BDI agent program (with respect to the
all edges criterion) with the number of tests required to adequately
test an equivalent-sized (abstract) procedural program.

Following Winikoff & Cranefield [3] we define an abstract pro-
cedural program as Q ::= s | Q + Q | Q;Q where the base case
is a statement s, and a compound program can be a combination of
programs either in sequence (Q1;Q2), or as an alternative choice
(Q1 + Q2). We then consider how many tests (i.e. paths) are re-
quired to cover all edges in the graph corresponding to a procedural
program Q. We denote this number by q(Q).

The rightmost column of Table 1 shows the number of tests
(paths) required to test a procedural program Q of the same size2

as the BDI program in question for that row. Although in some
cases p(g) is quite close to q(Q) (e.g. 78 vs. 62 in the first row),
in other cases there is a significant difference (e.g. 4767 vs. 627).
In essence, the more plans there are per goal (j), the bigger the
difference. Overall, we conclude that where goals have multiple
plans available, then testing a BDI agent program is indeed harder
than testing an equivalently-sized procedural program. This lends
strength to the earlier result of Winikoff & Cranefield, who found
that BDI agent programs were harder to test than equivalently sized
procedural programs with respect to the all paths criterion.

In conclusion, we analysed the testability of BDI programs with
respect to the all edges criterion. Our findings extend the earlier
analysis with respect to the all paths criterion to give a more nu-
anced understanding of the difficulty of testing BDI agents. We
conclude that the number of required tests to satisfy the all edges
criterion is not just lower, as expected, but very much lower. We
also conclude that, as is the case for all paths, testing BDI agents is
harder than testing equivalently-sized procedural programs.

REFERENCES
[1] P. Jorgensen. Software Testing: A Craftsman’s Approach.

CRC Press, second edition edition, 2002.
[2] A. P. Mathur. Foundations of Software Testing. Pearson, 2008.

ISBN 978-81-317-1660-1.
[3] M. Winikoff and S. Cranefield. On the testability of BDI agent

systems. Journal of Artificial Intelligence Research (JAIR),
51:71–131, 2014.

[4] M. Winikoff and S. Cranefield. On the testability of BDI agent
systems (extended abstract). In Journal track of the
International Joint Conference on Artificial Intelligence
(IJCAI), pages 4217–4221, 2015.

[5] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy. ACM Computing Surveys,
29(4):366–427, Dec. 1997.

2i.e. number of actions in the BDI program = number of statements
in the procedural program

1274

