
Distributed Search for Pure Nash Equilibria in Graphical
Games

(Extended Abstract)
Omer Litov

Department of Computer Science
Ben-Gurion University of the Negev

Beer-Sheva, 84-105, Israel
litov@cs.bgu.ac.il

Amnon Meisels
Department of Computer Science

Ben-Gurion University of the Negev
Beer-Sheva, 84-105, Israel

am@cs.bgu.ac.il

ABSTRACT
Graphical games introduce a compact representation, where agents’
outcomes depend only on their neighbors. A distributed search al-
gorithm for pure Nash equilibria of graphical games is presented.
The algorithm uses the analogy of graphical games with asym-
metric distributed constraints optimization problems (ADCOPs).
The proposed algorithm includes three components - an admissi-
ble pruning heuristic; a back-checking mechanism; and a pseudo
tree representation of the game. An experimental evaluation of the
components of the proposed search algorithm is presented for ran-
domly generated networks of multiple agents. The major speedup
over a naive search algorithm is shown to arise from the use of a
pseudo tree representation. A simple assessment method of the pri-
vacy loss due to back-checking is presented and is shown to result
in a tradeoff between the performance of the complete algorithm
and its privacy loss.

Categories and Subject Descriptors
I.2.11 [Distributed artificial intelligence]: Multi-agent systems

General Terms
Algorithms

Keywords
Distributed problem solving; DCOP; Nash equilibrium; Privacy

1. INTRODUCTION
In many Multi Agent situations, agents interact with one another

to achieve some goal. For cooperative agents, this goal may be a
global objective such as the minimization of total cost in distributed
constraints reasoning. For selfish agents, attempting to maximize
their personal gains, Game Theory predicts that the outcome will
be a stable state (e.g., an equilibrium) from which every agent will
not wish to deviate.This notion of stability is a fundamental concept
in game theory and has been a major focus of work in the field of
Multi Agent Systems.

Graphical Games have been proposed as a compact representa-
tion of normal form games played over a graph [3]. It is a model

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

that exploits the locality of interactions between agents and enables
one to specify payoffs in terms of neighbors rather than in terms of
the entire population of agents. Several algorithms have been pro-
posed for finding an approximate mixed strategy equilibrium of
graphical games, the most recent being ANT [2].

In a pure Nash equilibrium (PNE), which may not always ex-
ist, every agent chooses a single pure strategy. It is a clear solution
concept for a multi-agent situation since it is deterministic in nature
(unlike mixed Nash equilibria in which every agent is eventually
required to draw its selected strategy from the probability distribu-
tion of its mixed strategy). Centralized solvers have been proposed
(Gambit [4] and more recently ConGa [6]), although centralized al-
gorithms may not be appropriate when privacy of gains is an issue,
since it requires complete revelation of information from all of the
agents.

The present paper focuses on finding Pure Nash Equilibria in a
distributed environment and is based on modeling graphical games
as (Asymmetric) Distributed Constraints Optimization Problems
(DCOPs) [5]. Several tools for finding stable points are presented
and are then combined into a complete algorithm. The model uses
Asymmetric DCOPs (ADCOPs) [1], which are an extension of
standard DCOPs. The proposed search algorithms for finding a
PNE combines two well known DCOP techniques – a back check-
ing procedure and a pseudo-tree.

An extensive experimental evaluation (abbreviately shown in fig-
ure 1) shows the improvement in performance of both run-time and
network load, over a distributed version of the Gambit solver and
over any of the algorithmic tools separately. An upper bound on the
loss of privacy is calculated, to present the tradeoff between perfor-
mance and privacy conservation. An improvement in performance
of a factor 10 in speedup in exchange for an upper bound of 7%
loss of privacy.

The next section describes the main concepts of the proposed
algorithm.

2. FINDING A PURE NASH EQUILIBRIUM
Every graphical game with a finite set of strategies can be rep-

resented as an ADCOP in the following way: The set of players is
represented by the set of agents A, where each agent Ai has ex-
actly one variable Xi. The set of strategies of Ai is represented by
its domain Di. The cost/payoff of every interaction between play-
ers in a given neighborhood (i.e., connected by edges in the graph
of the game) is represented as an asymmetric constraint. Standard
ADCOP algorithms search for the Social Welfare solution [1]. The
present study focuses on search for pure Nash equilibria (PNEs),
which will be addressed next.

1279



2.1 Back Checking algorithm
For simplicity, we start by describing a partial algorithm, which

uses a back checking procedure, without the structure of a pseudo-
tree. The proposed back checking algorithm is based on distributed
backtracking search, and uses the following messages.

1. CPA - Current Partial Assignment.
2. Backtrack
3. Check_PNE - A request to check whether the value assign-

ment vik ∈ CPA has the potential to be a best response.
4. Response - A response to a Check_PNE message.

The algorithm has each agent assign a value synchronously on
the CPA message according to a predefined complete order of all
the agents. After agent Ai assigns a value to its variable, and before
it sends a CPA message to the next agent, it sends a Check_PNE
message to every constrained agent before it. When an agent that is
constrained with Ai receives a Check_PNE message it will check
for the pruning criteria according to the heuristic defined below.
Next, it will send back a Response message that states whether the
current CPA can be continued. Only when agent Ai receives back
all of the Response messages from its constrained predecessors it
will proceed, either by pruning its value or by sending forward a
CPA. When the last agent has received a positive Response mes-
sage from all of its constrained ancestor a Pure Nash Equilibrium
solution has been reached.

We must now define the method to identify obsolete value as-
signments, which can be pruned. We will define the following two
heuristics.

LB(vik ) = CurrentCost(CPA, vik )

+
∑

Aj /∈CPA

min
vjq∈Dj

Costi(vik , vjq ) (1)

UB(vik ) = CurrentCost(CPA, vik )

+
∑

Aj /∈CPA

max
vjq∈Dj

Costi(vik , vjq ) (2)

where Costi(vik , vjq ) is defined to be the cost for agent Ai for
the constraint between Ai’s value vik and Aj’s value vjq , and
CurrentCost(CPA, vik ) =

∑
vj∈CPA Costi(vik , vj).

It is possible to see that LB(vik ) (and UB(vik )) is a lower
bound (and upper bound) on the cost of agent Ai for assigning vik ,
respectively. It follows that if ∃viq 6= vik : UB(viq ) < LB(vik ),
then the value vik can be pruned from the search. This check is per-
formed in two places: when an agent receives the CPA and attempt
to assign a new value, and when an agent receives a Check_PNE
(in order to inform the sending agent to prune its own value).

2.2 Using a Pseudo-Tree
The main component of the proposed search algorithm for a

PNE uses a very well known tool for DCOP search algorithms –
a Pseudo-Tree [5]. The pseudo-tree defines a partial order over the
agents (unlike the total order used before), starting from the root
down to the leafs. When an agent with more than one child needs
to send forward a CPA, it sends it concurrently to every one of
its children. Each leaf acts as a last agent in its branch and since
there are multiple leaves the possible solutions must propagate up
the tree to the root. This presents a problem for agents with more
than one child. An agent may receive several Check_PNE mes-
sages from each sub-tree, and the solution may be any combination
of the partial assignments of those messages.

In order to solve the problem described above one needs to define
a new type of message – Sub_Problem_PNE. When a leaf agent

0.0E+0

5.0E+5

1.0E+6

1.5E+6

2.0E+6

2.5E+6

10 11 12 13 14 15 16 17 18 19 20

Gambit solver
Heuristic only
Back-Checking
Complete algorithm

Figure 1: NCCC for variable number of agents

receives a positive Response from all of its constrained agents it
sends a Sub_Problem_PNE message to Splitter(Ai). We define
the Splitter(Ai) agent to be the closest ancestor of agent Ai who
has more than one child. Branch(Ai) is defined to be the set
of ancestors of agent Ai up to (and excluding) the Splitter(Ai)
agent. The Sub_Problem_PNE message contains a Partial As-
signment PA. The assignment of every agent Aj ∈ Branch(Ai)
in PA is a best response. This is due to the fact that all agents
sent a positive Response to the leaf for the given PA, in which all
of their constrained agents are already assigned. The leaf agent
continues the search, because it is not waiting for any response
to that message. Agent Ai tries to combine the partial assign-
ment from the Sub_Problem_PNE with every other partial assign-
ment received from the other sub-trees, and check whether any
one of the combinations is a possible PNE. For any Partial As-
signment PA constructed from a combination of assignments re-
ceived by Sub_Problem_PNE messages, if value assignment of
Ai is a best response then PA may possibly be extended into a
PNE for the entire problem and thus should be propagated up the
tree. Agent Ai propagates every such PA by sending every agent
Aj ∈ Branch(Ai) a Check_PNE message and if all Responses
are positive it then sends a Sub_Problem_PNE to Splitter(i).

REFERENCES
[1] T. Grinshpoun, A. Grubshtein, R. Zivan, A. Netzer, and

A. Meisels. Asymmetric distributed constraint optimization
problems. Journal of Artificial Intelligence Research, pages
613–647, 2013.

[2] A. Grubshtein and A. Meisels. Finding a nash equilibrium by
asynchronous backtracking. In Principles and Practice of
Constraint Programming - 18th International Conference, CP
2012, Québec City, QC, Canada, October 8-12, 2012.
Proceedings, pages 925–940, 2012.

[3] M. J. Kearns, M. L. Littman, and S. P. Singh. Graphical
models for game theory. In UAI ’01: Proceedings of the 17th
Conference in Uncertainty in Artificial Intelligence,
University of Washington, Seattle, Washington, USA, August
2-5, 2001, pages 253–260, 2001.

[4] R. D. McKelvey, A. M. McLennan, and T. L. Turocy. Gambit:
Software tools for game theory, version 14.1.0.
http://www.gambit-project.org, 2014.

[5] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT:
asynchronous distributed constraints optimization with quality
guarantees. Artificial Intelligence, 161:1-2:149–180, January
2005.

[6] T. Nguyen and A. Lallouet. A complete solver for constraint
games. In Principles and Practice of Constraint Programming
- 20th International Conference, CP 2014, Lyon, France,
September 8-12, 2014. Proceedings, pages 58–74, 2014.

1280




