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ABSTRACT
To date, many theoretical results on discrete POMDPs have
not yet been extended to continuous-state POMDPs, due to
the infinite dimensionality of the belief space in a continuous-
state case. In this paper, we define a distance in the `n-
metric space with respect to a partitioning representation
of the continuous-state space, and formalize the size of the
search space reachable under inadmissible heuristics via the
covering number concept. Together with existing proof tech-
niques in discrete POMDPs, we use the covering number to
analyze the computational complexity of approximate plan-
ning for some types of continuous-state POMDPs.
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1. INTRODUCTION
Recent developments in approximate solutions, e.g., point-

based methods and online heuristic algorithms, have drasti-
cally improved the speed of discrete POMDP planning. On
the theortical front, the covering number of a search space
has been used to quantify the complexity of approximate
discrete POMDP planning [2, 4]. However, most real world
POMDP problems are naturally modeled by continuous-
state spaces. In this case, the dimensionality of the belief
space is infinite. Thus, simple generalizations of known ap-
proaches and complexity results for discrete-state models to
continuous-state domains are not appropriate.

To find approximate solutions, existing approaches first
approximately represent beliefs in the infinite-dimensional
space by a low-dimensional discrete representation. Some
of them share the idea to represent beliefs in the infinite-
dimensional continuous belief space by a parametric form
and solve the approximate POMDP on the parametric s-
pace. The algorithm recently proposed in Brechtel et al. [1]
is similar to ours, in that they also automatically learn a low-
dimensional, discrete representation of the continuous-state
space during the process of solving. The insight exploited in
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[1] is that states which are close in the continuous-state space
will usually lead to similar outcomes and thus have similar
α-vectors in most problems. Motivated by the work of [1], we
propose a disjunct space representation, namely, space par-
titioning, with piecewise constant beliefs and α-functions.
Then, we define a distance in the `n-metric space with re-
spect to the space partitioning and use it to formalize the size
of the search space reachable under inadmissible heuristics.
Thus, we can use the covering number proof techniques in
discrete POMDPs to analyze the computational complexity
of approximate planning for some types of continuous-state
POMDP from the covering number viewpoint.

2. DEFINITIONS
Formally, a POMDP is a tuple (S,A,Z, T,R,Ω), where

S, A, and Z, respectively, denote a state space, action space
and observation space; T , R, and Ω are transition, reward,
and observation functions, respectively. In continuous-state
POMDPs, S is continuous, but A and Z are discrete.

The knowledge about the system’s state is represented
by a belief b in the belief space B with b : S → R≥0 and∫
s∈S b(s)ds = 1. The initial belief b0 is assumed to be known.

After taking action a in belief b, the agent reaches the next
belief ba,z, computed by the Bayesian updating formula.

The goal of a POMDP solver is to find a policy π : B → A
maximizing the value V : B → R for b0. The value asso-

ciated with a policy π is given by E
[∑∞

t=0 γ
tR(bt, π(bt))

]
.

The optimal value function V ∗(b) satisfies the Bellman equa-
tion: V ∗(b) = maxa∈AQ

∗(b, a), where Q∗(b, a) = R(b, a) +∑
z∈Z Pr(z|b, a)V ∗(ba,z). So, π∗(b) = arg maxa∈AQ

∗(b, a).
Additionally, V ∗(b) can be approximated arbitrary well by a
peicewise-linear and convex function: V ∗(b) ≈ maxα∈Γ∗(α ·
b) = maxα∈Γ∗

∫
s∈S b(s)α(s)ds with S ⊆ Rn and α : S → Rn,

where Γ∗ is the finite set of linear α-functions.
We use V L and V U to represent the lower and upper

bounds of V ∗, respectively. Both V L and V U are assumed
to be uniformly improvable. We also assume that we are
provided with heuristics, f and y, that can provide initial
values V Lf to the lower bound of V ∗ and V Uy to the upper
bound of V ∗. The function y(b) may not be the true upper
bound. That is, y(b) is allowable to be less than V ∗(b) for
some b in the belief space B. Similarly, QL, QU , QLf and QUy
are used for the corresponding bounds of Q∗.

A search space B is a subspace of B and can be repre-
sented as a belief tree TB rooted at the initial belief b0.
The reachable belief space under inadmissible heuristics,
Ry,Uf,L (b0), is defined as the set of beliefs that are reach-
able from b0 by going through action branches a that satisfy
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QUy (b, a) ≥ V ∗(b) and observation branches z that satisfy

V Uy (b)− V Lf (b)− ε

γdb
> 0.

To split the continuous-state space into finite and abstrac-
tion states, we adopt the following definition of a state-
space partitioning. Such a kind of partitioning works well
in bounding the error between the value function of the in-
duced discrete POMDP and the true value function of the
original continuous-state POMDP.

Definition 1. A µ-partitioning of a continuous-state s-

pace S, Kµ = {K1
µ,K

2
µ, · · ·K

|Kµ|
µ }, satisfies that

1. S ⊆
⋃|Kµ|
i=1 Ki

µ;

2. Ki
µ

⋂
Kj
µ = ∅, where i, j ∈ {1, 2, · · · , |Kµ|} and i 6= j;

3. for any si, sj ∈ Km
µ and any α ∈ Γ∗, |α(si)−α(sj)| ≤

µ, where i, j ∈ {1, 2} and m = {1, 2, · · · , |Kµ|}.

The partitioning Kµ induces an `n-distance metric on the
belief space B, as below:

Definition 2. Suppose that Kµ be a µ-partitioning of the
continuous-state space S. The distance between any two be-
liefs b and b′ in the infinite-dimensional `n-metric space B
with respect to Kµ is

dn,Kµ(b, b′) =
( ∑
K∈Kµ

∣∣∣ ∫
s∈K

b(s)ds−
∫
s∈K

b′(s)ds
∣∣∣n) 1

n
.

The new metric measures the difference in probability
mass for subsets of states rather than individual states. The
mathematical definition of the covering number of a set of
points in the `n-metric space with respect to the space par-
titioning Kµ is recapitulated as follows:

Definition 3. Given an infinite-dimensional `n-metric
space X , a δ-cover of a set B ⊆ X is a set of points C ⊆ X
such that for every point b ∈ B, there is a point c ∈ C with
dn,Kµ(b, c) ≤ δ. The δ-covering number of B, denoted by
CB(δ), is the size of the smallest δ-cover of B.

Intuitively, the covering number of a space B is equal to
the minimum number of balls of radius δ needed to cover B.
We denote Cy,Uf,L (δ) as the δ-covering number of Ry,Uf,L (b0).

3. COMPLEXITY RESULTS
The following Lipschitz condition is satisfied by the opti-

mal value function on the `n-metric space with respect to
the space partitioning Kµ.

Lemma 1. Let Kµ be a µ-partitioning of the continuous-
state space S, and let B be the corresponding belief space over
S in the `n-metric space. For any b, b′ ∈ B, if dn,Kµ(b, b′) ≤
δ, then |V ∗(b)− V ∗(b′)| ≤ Rmax

1−γ ρnδ + 2µ. Here

ρn =


1 n = 1√
|Kµ| 1 < n ≤ 2
|Kµ| 2 < n ≤ ∞.

(1)

The effect of the µ-partitioning over the state space in
Lemma 1 is to obtain a finite-dimensional belief representa-
tion and constrain the error caused by dimensional reduc-
tion, that is, the difference of optimal values between two be-
liefs in the same µ-region splitted by Kµ, is no more than 2µ.

Lemma 1 is fundamental here because it provides a way of
connecting the covering number to POMDP planning com-
plexity: for any two beliefs in an infinite-dimensional space
of continuous probability distributions, if their distance in
the `n-metric space with respect to Kµ is small, then their
optimal values are also similar.

Using Lemma 1, we can establish a theoretical connection
between the covering number and the planning complexity
of continuous-state POMDPs, as below:

Theorem 1. Assume that Kµ be a µ-partitioning of the

continuous-state space S, where µ ≤ (1−γ)ε
6γ

. Suppose that

the computational complexity of
∫
s∈K b(s)ds for any K ∈ Kµ

is O(1). For any b0 ∈ B, let Cy,Uf,L (δ) be the δ-covering num-

ber of Ry,Uf,L (b0) in the `n-metric space with respect to Kµ.

Define ζ = max
{

0,maxb∈R(b0)[V
∗(b0) − V Uy (b)]

}
. Given

constant ε > 0, an approximation V (b0) of V ∗(b0), with
error |V ∗(b0) − V (b0)| ≤ 2ε + γζ, can be found in time

O
(
h · Cy,Uf,L (δ/2)2

)
, where h = logγ

(1−γ)ε
3Rmax

, δ = (1−γ)2ε
3γρnRmax

,

V Lf is used as an initial lower bound, and the inadmissible

heuristic function V Uy is used for the initial upper bound.
Here, ρn is defined as Equation 1.

The theorem provides insights in the three aspects: (1) un-
der some conditions an approximately optimal solution over
the `n-metric space with respect to Kµ can be computed in
time at most quadratic polynomial in the covering number
of Ry,Uf,L (b0); (2) prior knowledge can be used as heuristics
to reduce the search space size to make POMDP problems
easier to solve; and (3) a near optimal policy is still com-
putable when using an inadmissible heuristic as the upper
bound of V ∗. These insights might be helpful in designing
more efficient methods for continuous-state POMDPs.

Finally, we discuss the two conditions in Theorem 1. The
first one is that the computational complexity of finding a µ-
partitioning of the continuous-state space isO

(
h·Cy,Uf,L (δ/2)2

)
.

This is satisfiable under the assumption: there exists a posi-
tive constant θ such that, for any two states s and s′ satisfy-
ing |s−s′| ≤ θ, we have |α(s)−α(s′)| ≤ µ. We think such an
assumption can be met in most continuous-state problems.
When |s−s′| < +∞, |Kµ| equals to d1/ε∗maxs,s′ |s−s′|e in
this case. The second one that requiring

∫
s∈K b(s)ds to be

computed in O(1) is satisfiable when the beliefs can be rep-
resented by Gaussian mixtures [3]. In this case, the integral∫
s∈K b(s)ds, for a continuous region K, has a closed form.
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