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ABSTRACT
This paper studies a class of decentralized multi-agent stochas-
tic optimization problems. In these problems, each agent has
only a partial view of the world state, and a partial control of
the actions but must cooperatively maximize the long-term
system reward. The state that an agent observe consists
of two parts - a common public component and an agent-
specific private component. Importantly, taking actions in-
curs costs and the actions that the agents can take are sub-
ject to an overall cost constraint in each interaction period.
We formulate this problem as an infinite time horizon De-
centralized Markov Decision Process (DEC-MDP) with re-
source constraints and develop efficient approximate algo-
rithms that allow decentralized computation of the agent
policy based on Lagrangian relaxation.
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1. INTRODUCTION
Decentralized MDP (DEC-MDP) [4] [8] [3] has emerged

as an important framework for cooperative multi-agent de-
cision making problems in which each agent has only a par-
tial view of the world and a partial control of the actions
but must cooperatively maximize the system reward. This
paper studies an important variant of DEC-MDP in which
the actions that agents can take are subject to resource con-
straints. The considered DEC-MDPs operate in an infinite
time horizon and are almost independent among agents but
their decision making is coupled via the resource constraints
imposed in each interaction period. There are numerous
applications where this problem class can be useful, such
as wireless multi-user communications and distributed in-
trusion detection. To solve this type of constrained DEC-
MDP, we develop efficient decentralized solutions based on
Lagrange relaxation [9] [1] [6] [5]. Iterative approaches based
on Lagrange multipliers are widely adopted in myopic opti-
mization problems [6] [5], but the stochastic version is much
more complicated since the objective function is about fore-
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sighted rewards and the resource constraint is state-specific.
Standard Lagrange relaxation methods fail to decompose the
problem because agents need the knowledge of the stochastic
environment and policies of other agents to solve their own
subproblems. In this paper, we develop a novel method that
enables efficient problem decomposition by using Lagrange
multipliers that depend on only the public component of
agent states. We prove the correctness of such decomposi-
tion - agents can solve their own subproblems without know-
ing other agents’ subproblems and solutions. Moreover, we
derive closed-form solutions for the subgradients of the de-
composed as well as the overall relaxed problems, thereby
enabling a decentralized implementation of the policy com-
putation based on the subgradient method. We note that
the joint policy derived by our method may still be sub-
optimal since the relaxation is approximate due to the use
of only public state-dependent multipliers rather than joint
state-dependent multipliers. However, compared to existing
Lagrange relaxation methods based on uniform multipliers,
we theoretically prove and experimentally demonstrate the
superiority of our method to existing method that relies on
a uniform multiplier [9][1].

2. PROBLEM FORMULATION
An infinite time horizon N -agent constrained DEC-MDP

is defined by a tuple ⟨I, S,A, P,R,C,B⟩, where I is the set
of agents; S is a finite set of states, with a distinguished
initial state s0; A = ×i∈IAi is a finite set of joint actions;
P : S×A×S → [0, 1] is the transition function; R : S×A→
R is a reward function; C : S × A → R is a resource cost
function; B : S → R is a resource budget function for each
joint state. The constrained DEC-MDP requires that, for
each state, C(s,a) ≤ B(s), ∀s. Without loss of generality,
we can let B(s) = 1, ∀s after a normalization and hence
C(s,a)← C(s,a)/B(s).

As a common assumption in the DEC-MDP literature
[2][3], we study factored DEC-MDP (i.e. the state can be
factored into N + 1 components, S = S0 × S1 × ... × SN ).
Such a factorization allows a separation of features of the
world state that belong to one agent from those of the oth-
ers and from the external features. In this definition, S0

refers to public external states which all agents can observe
but cannot affect. Si refers private internal state features
for agent i. These features can only be observed by agent i
and only affect agent i’s rewards. A stationary local policy
π for agent i is a mapping from its local states to local ac-
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tions, i.e. π : S0×Si → Ai. A joint policy (π1, ..., πN ) is the
combination of local policies. The long-term discounted re-
ward of the system is U(s0, π) = E

{
(1− δ)

∑∞
t=0(δ

t ·Rt)
}

where δ ∈ (0, 1) is the discount factor. The system objec-
tive is to maximize the long-term discounted reward while
satisfying the resource constraint by determining the joint
policy. Formally

max
π1,...,πN

U(s0, π) s.t. Ct ≤ 1, ∀t (1)

We identify a subclass of infinite-horizon DEC-MDP with
resource constraints that is amenable to problem decompo-
sition. In particular, we consider DEC-MPDs that are tran-
sition independent (i.e. there exist P0 through PN such that
P (s′i|s,a) = P0(s

′
0|s0), if i = 0; P (s′i|s,a) = Pi(s

′
i|s0, si, ai),

if i ̸= 0), reward independent (i.e. R(s,a) =
∑N

i=1 Ri(ŝi, ai))

and cost independent (C(s,a) =
∑N

i=1 Ci(ŝi, ai)). If there
were no resource budget constraint, then these DEC-MDPs
would be fully independent and hence, the agents can solve
their local problems in a fully decentralized manner. How-
ever, due to the resource budget constraint, agents’ decision
making is still coupled and hence requires careful coordina-
tion. Weakly-coupled multi-agent MDP studied in [9][1][7]
can be considered as a special case of this class where S0 is
a singleton.

3. DECENTRALIZED SOLUTION
The central idea of our method is as follows. Instead of

associating each joint state s with a Lagrange multiplier λs,
we associate each public external state s0 ∈ S0 with a La-
grange multiplier µs0 . We use the boldface symbol µ to
denote the set of all such Lagrange multipliers. Then the
Lagrangian of (1) becomes L(s;µ) = maxa[

∑
i

Ri(ŝi, ai) −

µs0(
∑
i

Ci(ŝi, ai) − 1) + δ
∑
s′

P (s′|s,a)L(s′;µ)]. We aim to

solve L∗,p(s0) = minµ≥0 L(s
0,µ). The advantages of us-

ing only public state-dependent multipliers are many-fold.
Firstly, this problem is now scalable. The number of dual
variables is a constant |S0| that does not depend on the
number of agents. Secondly, this problem can be decou-
pled, thereby enabling decentralized solutions. Specifically,
for any joint state s, given µ, we have

L(s;µ) =
∑
i

Li(ŝi;µ) + eT
s0(I− δP )−1µ (2)

where eT denotes a row vector of size |S0| with the element
corresponding to public state s0 being 1 and other elements
being 0, I is the identity matrix of size |S0| and Li(ŝi;µ) =
maxai{Ri(ŝi, ai)−µs0Ci(ŝi, ai)+δ

∑
ŝi
P (ŝ′i|ŝi, ai)Li(ŝi;µ).

Thirdly, solving the optimal µ becomes much easier. We can
provide closed-form solutions for the subgradient∇µL(s0,µ).
Specifically, one subgradient ∇µLi(ŝi;µ) for agent i’s prob-

lem is ∀s′0,∇µs′0
Li(ŝi;µ) = −eT

ŝi
(Ii−δP̂i,µ)−1Di,µ,s′0

where

eT
ŝi

is a row vector of size |Ŝi| with the element corresponding
to ŝi being 1 and other elements being 0, Ii is the identity
matrix of size |Ŝi|.
Based on these results, we develop a decentralized algo-

rithm for solving the N -agent constrained DEC-MDP. The
algorithm is an iterative algorithm with an optional cen-
tralized coordinator. In each iteration, the agents exchange
limited messages with each other or with the optional coor-
dinator. First, given the current µ, each agent solves its

Table 1: Simulation Results
N |S0| |Si| δ L∗,p L∗,u Up Uu

4 2 4 0.95 14.74 15.06 13.24 12.95
4 2 4 0.8 3.73 3.83 3.40 3.36
4 2 8 0.95 14.33 14.57 12.78 12.59
4 2 8 0.8 3.79 3.88 3.41 3.37
8 3 4 0.95 16.76 17.11 14.65 14.11
8 3 4 0.8 4.35 4.44 3.88 3.76
8 3 8 0.95 16.70 16.93 14.48 14.08
8 3 8 0.8 4.34 4.42 3.83 3.75

own Bellman equation using value iteration or policy it-
eration. Each agent also computes the local subgradient
∇µLi(ŝi;µ). Next, agents exchange their local subgradi-
ents. Then the coordinator or the agent themselves combine
the local subgradients to obtain the overall subgradient. The
Lagrange multipliers µ are then updated using the subgra-
dient method according to µk+1 ← [µk − γk∇µL(s;µ)]+

where γk is the step size in iteration k. The iteration termi-
nates when ∥∇µL(s;µ)∥ is sufficiently small.

We can prove that L∗,u(s0) ≥ L∗,p(s0) ≥ L∗(s0) ≥ U∗(s0)
where L∗,u(s0) is the solution by using a uniform multiplier
and L∗,p(s0) is the solution by the proposed public state-
dependent multiplier. Therefore, we achieve a tighter solu-
tion bound than existing work. Numerical results under a
multiarmed bandit problem setting to validate the efficacy
of our proposed method are reported in Table 1.
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