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ABSTRACT

Plan recognition algorithms need to maintain all candidate
hypotheses which are consistent with the observations, even
though there is only a single hypothesis that is the correct
one. Unfortunately, the number of possible hypotheses can
be exponentially large in practice. This paper addresses the
problem of how to disambiguate between many possible hy-
potheses that are all consistent with the actions of the ob-
served agent. One way to reduce the number of hypotheses
is to consult a domain expert or the acting agent directly
about its intentions. This process can be performed sequen-
tially, updating the set of hypotheses during the recogni-
tion process. The paper specifically addresses the problem
of how to minimize the number of queries made that are
required to find the correct hypothesis. It adapts a num-
ber of probing techniques for choosing which plan to query,
such as maximal information gain and maximum likelihood.
These approaches were evaluated on a domain from the lit-
erature using a well known plan recognition algorithm. The
results showed that the information gain approach was able
to find the correct plan using significantly fewer queries than
the maximum likelihood approach as well as a baseline ap-
proach choosing random plans. Our technique can inform
the design of future plan recognition systems that interleave
the recognition process with intelligent interventions of their
users.
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1. INTRODUCTION

Plan recognition, the task of inferring agents’ plans based
on their observed actions, is a fundamental problem in AT,
with a broad range of applications, such as advising in health
care [1], or recognizing activities in gaming and educational
software [4]. Many real world domains are ambiguous, in the
sense that there are many possible hypotheses that are con-
sistent with an observed agent’s activities. Consider for ex-
ample an e-learning software for chemistry education. Stu-
dents’ interactions in the lab consist of building models of
chemical reactions, running the models, and analyzing the
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results. There can be many possible solution strategies that
students can use to solve problems, and variations within
each due to exploratory activities and mistakes carried out
by the student. Given a set of actions performed by the
student, one hypothesis may relate a given action to the so-
lution of the problem, while another may relate this action
to a failed attempt or a mistake. In general, the size of the
hypothesis space can be very large. We focus on domains
in which agents may pursue several goals at the same time.
Thus a hypothesis includes a set of plans, one for each goal
that the agent is pursuing.

In many domains it is possible to query the observed agent
itself or a domain expert about certain aspects of the correct
hypothesis. The query can be performed in real time (for
example, the student may be asked about her solution strat-
egy to a problem during her interaction with educational
software), or offline after all observations were collected (for
example, a system administrator observing suspicious be-
havior that can ask a cyber security expert for her opinion
of these actions). Answers for such queries allow to reduce
the set of possible hypotheses in a way that does not impede
the completeness of the recognition process. Our approach
is to query whether a given plan in one of the hypotheses
is correct, and update all hypotheses in which this plan ap-
pears (or does not appear, depending on the answer to the
query).

We evaluated these approaches in several domains from
the plan recognition literature. We considered candidate
plans to query that maximize the information gain as well as
the likelihood of the resulting hypotheses given the expected
query result. These approaches significantly decreased the
number of queries compared to a baseline technique. In ad-
dition, once the number of hypotheses is large enough, the
number of queries performed by the information-gain ap-
proach was significantly smaller than the other approaches.
The potential impact of this work is to show how existing
recognition systems can be extended to disambiguate the hy-
pothesis space by intelligently querying their potential users
in a way that minimizes the disruption and overhead.

2. SEQUENTIAL PLAN RECOGNITION

We define the sequential plan recognition process (SPRP)
as a process with two stages: First, a plan recognizer receives
a set of observations and returns a set of hypotheses that de-
scribe the observations. Second, the query process receives
the set of hypotheses as input and sequentially chooses a
plan p from the hypotheses set, to query whether it is part
of the agent’s plans. According to the answer of the query,
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Figure 1: The SPRP Process

the set of hypotheses needs to be updated.

Querying about p means that we wish to know if the agent
is executing a set of plans that include p. In SPRP, query-
ing about p might also return True if p is a partial plan in
the agent’s set: QA(p)=True if there exists a plan p’ in the
agent’s true set of plans such that p can be extended to p’
if the agent executes additional actions. Accordingly, if the
result of the query is True, we cannot discard all hypothe-
ses that do not contain p, but only those which will never
contain p, no matter what future actions will be taken. Sim-
ilarly, if a query about p returns False, we can discard all
plans that equal to p or extend it.

The query process continues until there are no more plans
to query about in the remaining hypotheses set. The com-
plete SPRP process is described in Figure 1.

Using SPRP, we can define the sequential plan recognition
problem: how to minimize the set of queries required to reach
the correct hypothesis.

We propose several heuristic methods for generating a pol-
icy that aim to minimize the number of queries required to
achieve the minimal set of hypotheses that are consistent
with the observations. These methods rely on the standard
assumption that each hypothesis h is associated with a prob-
ability P(h) that is assigned by the PR (such as PHATT [2]).
Most Probable Hypothesis (MPH). Choose a plan from
the hypothesis h that is associated with the highest proba-
bility and was not yet queried about.

Most Probable Plan (MPP). Choose the plan that is as-
sociated with the highest cumulative probability across all
hypotheses: argmax, . P(t), where T is the union set of all
plans in all of the hypotheses H, and P(t) denotes the cu-
mulative probability assigned to all hypotheses that contain
the plan t.

Minimal Entropy. Choose the plan with the maximal in-
formation gain (or minimal entropy) given the resulting hy-
pothesis set.

We show an evaluation of the probing approach on the
simulated domain used by Kabanza et al. [3]. This domain
includes 100 instances with a fixed number of actions, 10
identified goals, and a branching factor of 3 for rules in the
grammar. We used the Most Probable Plan (MPP), the
Most Probable Hypothesis (MPH) and the Minimal Entropy
(Entropy) approaches, as well as a baseline approach that

1348

-+Random -+MPH -+ MPP »<Entropy
35
w 30
2
5 25
>
g 20
2
& 15 /
o
2
<

10
5 /

0-4 59 10-14 15-29 30-49
# Hypotheses

=>50

Figure 2: Queries until convergence given explana-
tions for simulated domain

picked a tree to query at random. For the plan recognition
process, we used the PHATT algorithm [2].

Figure 2 shows the average number of queries until con-
verging to the single correct hypothesis in both of the do-
mains, as a function of the number of hypotheses. As shown
by the figure, in both domains, the random baseline gener-
ated significantly more queries than did the other approaches.

In particular, the number of queries needed for conver-
gence grew exponentially for the random approach in the
VirtualLabs domain. At first there is not enough ambigu-
ity between the different explanations to make the insights
from the queries useful, thus no method is significantly bet-
ter than the others. As we increase the number of hypothe-
ses, we see a difference between the more informed query
approaches. As shown by the figure, although there is a
monotonous increase in the number of queries required by
all approaches, the growth rate of the Entropy query ap-
proach is the smallest. In total, the number of queries that
were generated by the Entropy approach were significantly
less than the number of queries generated by the MPP and
MPH approaches (two-sided t-test p < 0.05).

Acknowledgments

This work was supported in part by EU FP7 FET project,
Grant agreement n.600854, and the Israeli Science Founda-
tion Research Grant no. 1276/12.

REFERENCES

[1] J. Allen, G. Ferguson, N. Blaylock, D. Byron,

N. Chambers, M. Dzikovska, L. Galescu, and M. Swift.
Chester: Towards a personal medication advisor.
Journal of Biomedical Informatics, 39(5):500 — 513,
2006. Dialog Systems for Health Communications.

C. Geib and R. Goldman. A probabilistic plan
recognition algorithm based on plan tree grammars.
Artificial Intelligence, 173(11):1101-1132, 2009.

F. Kabanza, J. Filion, A. R. Benaskeur, and

H. Irandoust. Controlling the hypothesis space in
probabilistic plan recognition. In IJCAI, pages
2306-2312, 2013.

O. Uzan, R. Dekel, and Y. Gal. Plan recognition for
exploratory domains using interleaved temporal search.
In Proceedings of the 16th International Conference on
Artificial Intelligence in Education (AIED), 2013.

2l

(4]





