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ABSTRACT

Rank aggregation is the problem of generating an overall
ranking from a set of individual votes which is as close as
possible to the (unknown) correct ranking. The challenge
is that votes are often both noisy and incomplete. Existing
work focuses on the most likely ranking for a particular noise
model. Instead, we focus on minimising the error, i.e., the
expected distance between the aggregated ranking and the
correct one. We show that this results in different rankings,
and we show how to compute local improvements of rank-
ings to reduce the error. Extensive experiments on both
synthetic data based on Mallows’ model and real data show
that Copeland has a smaller error than the Kemeny rule,
while the latter is the maximum likelihood estimator.
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1. INTRODUCTION

Marquis de Condorcet [6] said that voting or rank aggre-
gation may be regarded as a way of uncovering the ground
truth. There are many practical examples of rank aggre-
gation, including websites that produce rankings of restau-
rants, books and movies based on crowdsourced contribu-
tions from their users, and scientific communities that use
votes from their members to select which project proposals
to fund or which papers to accept [2]. In these settings votes
are not only noisy, but also incomplete since typically only a
subset of the alternatives is ranked by any single individual.

To find a ranking close to the ground truth, most cur-
rent work assumes a probabilistic noise model such as Mal-
lows [4, 7], and then aims to find the aggregate ranking
with the highest likelihood of being the true ranking. For
Mallows’ model, it has been shown that the Kemeny rule is
the maximum likelihood estimator (MLE) [7]. However, in
most settings the aim should be to find a ranking that gives
the best results when used in subsequent decision making.
When votes are noisy and incomplete, many rankings may
have a likelihood of similar magnitude, and the probability
of any of these being the true ranking is small. In addition,
the likelihood does not account for the distance to the true
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ranking when the chosen ranking is not the true one. There-
fore, we argue that, instead, the aim should be to minimise
the expected distance of an aggregate ranking to the true
ranking, which we term the error. In contrast to MLEs,
to date, it is still unknown what voting rules perform best
regarding this objective.

2. MODEL AND THEORETICAL RESULTS

Let A ={1,2,...,m} denote a set of alternatives and N =
{1,2,...,n} the set of agents. We define a vote by agent k
as a linear order over an Ay C A, denoted by or : Ax —
{1,2,...,|Ax|}. Here, o(i) defines the rank of alternative
i (lower is better). We also use ¢ >, j to denote o(i) <
0%(7). Furthermore, we use D to denote the set of all votes.

The Kendall-tau distance K counts the pairs of alterna-
tives that are differently ordered by o than by 7.

K(o,7)=|{{i,j} CA:i>sjand i <, j}| (1)

We assume noise according to the well-known Mallows’
model for a probability p > 0.5. Given this model, the like-
lihood of observing the votes D given that the true ranking
is 7 is given by:

ey = 1

{i,j}C A1)

ma(i:d1D) (1 _ pyna(islP)

p P) (2)

where Z; is a (normalisation) constant. It has been shown
that the Kemeny rule — which minimises the sum of Kendall-
tau distances to all votes — is an MLE [7]. We extend this
model to incomplete rankings by introducing a probability
q of missing an alternative:
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3)

It is easy to see that Kemeny optimal still maximises the
likelihood, irrespective of the value of q.

Given a set of all rankings T', we define the rank aggrega-
tion error as the expected Kendall-tau distance, formally:

KT-error(r) = Z K(r, ) L'(7'|D). (4)
T'eT
The following example shows that minimising this error
produces a single natural ranking, whereas multiple rankings
maximise the likelihood.

EXAMPLE 1. Let three alternatives a,b,c be given, and
one agent with vote a >, b. The Kemeny rule is indif-
ferent between the three possible aggregate rankings without
noise. The expected Kendall-tau distances, however, differ:
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Figure 1: Results for synthetic data with m = 6,
p= % and g = 0.7. The right graph shows results after
applying local Kemenisation (same for Figure 2).

7 ranking  L(m|{o1}) K(m,7;) KT-error(r;)
T oa>b>c 3 0 1 2 1
T2 a>=c>=b % 1 0 1 %
s cmaxb i 2 1 0 1

Because the distance of a = c = b to each of the other rank-
ings is only 1, it has a lower expected error.

Similarly, we can construct examples with complete votes
where the rankings maximising the likelihood do not min-
imise the KT-error.

Hardness. Finding the ranking with the largest likelihood
(i.e., Kemeny) is NP-complete [3]. Towards establishing the
computational complexity of finding an aggregate ranking
with the minimum error, we can show that the problem of
computing the error of a (single) aggregate ranking is #P-
hard (even) when there is no noise in the data D.

THEOREM 1. Fven without noise, determining the expected

error of an aggregate ranking 7 is #P-hard.

The proof is by reduction from computing the number of lin-
ear extensions of a partial order, which is #P-complete [1].

Local Search. Although computing the error does not seem
to be feasible, we can improve a ranking by making local
adjustments. In particular, given a ranking 7, it is easy to
determine if, by swapping two adjacent alternatives, we can
improve the KT-error.

THEOREM 2. Let Tap and Toe be two equal rankings ex-
cept that two adjacent alternatives, a and b, are swapped.
That is, a >, b and b >-,, a. Then: KT-error(te) <
KT-error(tea) iff na(a, b D) > nq(b,a|D).

It turns out that repeatedly applying this rule until a local
optimum is found has been termed local Kemenisation [2].
Our result adds that this is locally minimising the KT-error
as well. Note that, although the proof assumes Mallows’
model, it seems intuitive for any noise model to swap adja-
cent alternatives if one is ranked more often above the other.

3. EXPERIMENTAL RESULTS

We consider experiments using synthetic data, and real data
from the Dots experiments (PrefLib library [5]). In Figures 1
and 2 we compare extensions of Spearman’s Footrule (Scaled
Footrule Optimal) and Borda for incomplete votes [2], Cope-
land, the Kemeny rule and an Optimal rule that minimises
the KT-error assuming Mallows’ model. As expected, hav-
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Figure 2: Results using the Dots dataset and ¢ = 0.7

ing more agents decreases the average distance to the true
ranking for all rules. We also observe that the Kemeny rule
is indeed not optimal, with around 0.5 inversions more than
Optimal on average. Interestingly, Copeland performs sig-
nificantly better than Kemeny, and at times on par with
Optimal. Even more striking is the significant improvement
of most rules by local Kemenisation. Surprisingly, similar
results hold for the Dots data set, despite the fact that this
is not generated using Mallow’s model.

4. CONCLUSIONS

We have shown that voting rules which maximise the likeli-
hood of a ranking do not necessarily minimise the expected
distance to the true ranking. Specifically, for rank aggrega-
tion with noise and missing votes, maximising the likelihood
can result in a significantly higher error than computation-
ally simpler methods such as Copeland. This discrepancy
can occur even when votes are complete. Furthermore, we
have shown that Optimal performs best in both synthetic
and real data settings, even when we do not know the noise
parameter exactly. For Mallows’ model we have shown that
computing this error is hard. Furthermore, we proved that
an efficient procedure called local Kemenisation, which is
known to improve the likelihood, also reduces the error, and
that this leads to a significant performance improvement.
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