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ABSTRACT
The operations of water resources infrastructures, like dams
and diversions, often involve multiple conflicting interests
and stakeholders. Agent-based approaches have recently at-
tracted an increasing attention to design optimal operating
policies for these systems. In this paper we contribute a gen-
eral monotonic concession negotiation protocol that allows
the stakeholders-agents of a regulated lake to reach agree-
ments on the amount of water to release daily, balancing
control of lake floods and water supply to agricultural dis-
tricts downstream.
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1. INTRODUCTION
Agent-based approaches have been recently proposed to

represent the variety of stakeholders and decision makers in
the operations of water resources infrastructures. To better
capture the conflicting nature of the stakeholders’ interac-
tions, few works have attempted to model such interactions
as negotiations [1, 6]. Yet, they introduce strong and some-
how unrealistic assumptions, like the necessity for each agent
to know the preferences of all other agents.

In this paper, we propose to use a general monotonic con-
cession negotiation framework that allows the stakeholders-
agents of a regulated lake to periodically reach agreements
on the lake operating policy that determines the amount of
water to release daily. The agreements mimic the outcomes
of the decision-making process of the lake regulator, who has
to balance di↵erent goals. In our approach, a mediator coor-
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Figure 1: The control law and the feasible regulation region.

dinates the negotiation process, without the need for agents
(including the mediator) to know all their preferences.

2. THE CASE STUDY
We consider a realistic test case inspired by a real world

context, the Lake Como system, in Northern Italy, which is
a regulated lake dammed on the outlet. The lake dam is
operated to supply water downstream mostly for irrigation
and to control floods on the lake shores.

The dam is operated with a control law ⇡() mapping the
lake storage s⌧ (expressed in m3) at day ⌧ into the release
decision u⌧ (expressed in m3/day): u⌧ = ⇡(s⌧ ). When ac-
tuated, u⌧ produces the actual release r⌧+1

(expressed in
m3/day) according to the physical constraints over the ac-
tuation (see green area in Fig. 1). As a control law ⇡(), we
consider the piecewise linear function of Fig. 1, known as the
Standard Operating Policy, which depends on three param-
eters: x

1

, x
2

, and x

3

. Note that !̄ is the (constant) water
request for irrigation and S

max

is the maximum storage the
lake can reach.

We consider the conflicting interests of the lake regulator
that operates the dam as two agents. The city agent rep-
resents the communities living on the lake shores, who are
worried about floods that happen when the water level is
above a given threshold. The irr agent represents the farm-
ers in the downstream irrigation districts that need !̄ water
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supply to grow their crops. Di↵erent agents have di↵erent
preferences on the values of the parameters x

1

, x
2

, and x

3

of the release policy. While the city agent prefers to max-
imize the release at every water level, the irr agent wants
the release to satisfy the fixed demand and to not waste wa-
ter that can be used in the future. Hence, values of x

1

, x
2

,
and x

3

are the issues that are negotiated with the protocols
illustrated below.

3. THE NEGOTIATION PROTOCOLS
We assume n agents that negotiate over m variables that

can take real values (in our application, n = 2 and m = 3).
An agent imakes its best proposal (that maximizes its utility
function Ui : Rm 7! R)1 p

0

i at the first negotiation step t = 0.
It then proposes p

t+1

i = Fi(p
t
i, a

t) at later steps according
to its strategy function that takes into account the counter-
proposal at of mediator at step t. The mediator receives the
proposals of the agents, calculates the counter-proposal ac-
cording to its agreement function a

t = A({pt
1

, p

t
2

, . . . , p

t
n}),

and sends it to the agents. The negotiation process can ter-
minate with an agreement over the values of the m variables
or with a conflict deal.

The first protocol is called point-based, has been originally
presented in [2], and considers proposals as vectors of m

elements: p

t
i = [x

1

, x

2

, . . . , xm] 2 Rm, with the meaning
that pti contains the values that agent i would like to assign
to the m variables at step t (in our application, a proposal
is the release policy that agent i would like to adopt). The
strategy function of agent i is:

p

t+1

i = Fi(p
t
i, a

t) = p

t
i + ↵i · (at � p

t
i)

where ↵i 2 (0, 1] is called concession coe�cient and rep-
resents the rigidity of agent i to move toward the counter-
proposal received from the mediator. The agreement func-
tion A({pt

1

, p

t
2

, . . . , p

t
n}) averages the proposals p

t
i of the n

agents and, in a way, expresses the aggregated preferences
of all agents. If, at some t, all pti are equal to the same value
p̄, then the final agreement is reached.

The second protocol is called set-based and has been origi-
nally introduced in [4]. Let call Pi(�

t
i) = {x 2 Rm | Ui(x) �

�t
i} the set of proposals that agent i accepts given an accept-

ability threshold �t
i. Namely, Pi(�

t
i) contains all the com-

binations of values for the m variables that give agent i an
utility that is at least� t

i. In the set-based protocol the pro-
posals are defined as: p

t
i = Pi(�

t
i), namely agent i, at each

step t of the negotiation, proposes the set of all the combi-
nations of values for the m variables that it can accept (in
our application, a proposal is the set of release policies that
agent i can adopt). The strategy function of agent i updates
the acceptability threshold� t

i in order to concede, namely in
order to have� t+1

i < �t
i, for example:� t+1

i = �t
i � ci, where

ci > 0 is called concession step. The agreement function
A({pt

1

, p

t
2

, . . . , p

t
n}) used by the mediator is:

a

t =
n\

i=1

p

t
i =

n\

i=1

Pi(�
t
i)

If, at some step t, at 6= ;, then an agreement is found.

1Note that the negotiation protocols are presented referring
to utility functions Ui for uniformity with relevant literature,
but in our application we consider cost functions. The two
representations are trivially related.
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Figure 2: Actual costs incurred by the agents.

4. SIMULATIONS
We have implemented the two protocols in Matlab. We

assume a linear relation between inflow q⌧ and water stor-
age: s⌧+1

= s⌧+q⌧+1

�r⌧+1

. Values for q⌧ are stochastically
generated from a normal distribution q⌧ ⇠ N(µq,�q) with
µq = 40 m3

/day and �q = 10 m3

/day. We generate time se-
ries of 5, 000 samples (one sample per day) and divide them
in blocks B

1

, B

2

, . . . , Bj , . . . of b = 90 days each. A negoti-
ation is performed every b days. Cost functions of the city
and irr agents are derived from [3, 5]. For the negotiation
relative to block Bj+1

, the cost functions of agents are cal-
culated by considering the cost incurred by the agents over
block Bj .
We report experiments showing that the set-based proto-

col consistently produces Pareto optimal agreements, which
are not reached in many cases when using the point-based
protocol. Fig. 2 shows the actual costs incurred by the
two agents for the policies corresponding to the agreements
found over all the blocks with the point-based (green) and
the set-based (orange) protocols. Agreements relative to the
same block are connected with a line segment that is orange
if the policy found by the set-based protocol dominates that
found by the point-based protocol, green if the opposite hap-
pens, and grey if the the two policies are not dominated.
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