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ABSTRACT
We study a multiplayer extension of the well-known Ultima-
tum Game (UG) through the lens of a reinforcement learning
algorithm. Multiplayer Ultimatum Game (MUG) allows us
to study fair behaviors beyond the traditional pairwise in-
teraction models. Here, a proposal is made to a quorum of
Responders, and the overall acceptance depends on reaching
a threshold of individual acceptances. We show that learn-
ing agents coordinate their behavior into different strategies,
depending on factors such as the group acceptance thresh-
old and the group size. Overall, our simulations show that
stringent group criteria trigger fairer proposals and the ef-
fect of group size on fairness depends on the same group
acceptance criteria.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—multiagent systems; J.4 [Social and Behavioral
Sciences]: Economics
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1. INTRODUCTION
The evidence of fairness in decision-making has for long

captured the attention of academics and the subject com-
prises a fertile ground of multidisciplinary research [1]. In
this context, UG stands as a simple interaction paradigm
that is capable to synthesize the clash between rationality
and fairness [2]. In its original form, two players interact
acquiring two distinct roles: Proposer and Responder. The
Proposer is endowed with some resource and has to pro-
pose a division (p) to the second player. After that, the
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Responder has to state her acceptance or rejection, based
on a threshold of acceptance (q). If the proposal is rejected
(p < q), none of the players earns anything. If the pro-
posal is accepted (p ≥ q), they will divide the resource as it
was proposed: the Proposer keeps 1− p and the Responder
earns p. A fair outcome is defined as an egalitarian division,
p = 0.5, in which both the Proposer and the Responder earn
a similar reward.

A large set of works address the dynamics of agents play-
ing UG in its original two-player formulation. There are,
however, many group interactions in which fairness also plays
a fundamental role [7, 4, 3], and which cannot be captured by
means of the traditional 2-player UG. Consider, for instance,
the cases of democratic institutions, economic and climate
summits, collective bargaining, group buying, auctions, or
the ancestral activities of proposing divisions regarding the
loot of group hunts and fisheries. Here we analyze a group
version of UG that allows us address the interactions in
which proposals are made to groups and the groups should
decide, through suffrage, about its acceptance or rejection
[7]. In MUG, proposals are made (p), yet now each of the
Responders states acceptance (p ≥ q) of rejection (p < q)
and the overall acceptance depends on an aggregate of these
individual decisions: if the number of acceptances equals
or exceeds a threshold M , the proposal is accepted by the
group. In this case, the Proposer keeps what she did not
offered, 1− p, and the offer is evenly divided by all the Re-
sponders, p/(N−1); otherwise, if the number of acceptances
remain bellow M , the proposal is rejected by the group an
no one earns anything. The interesting values of M range
between 1 and N − 1. If M < 1 all proposals would be
accepted and having M > N − 1 would dictate unrestricted
rejections. If N = 2 and M = 1 we recover the traditional
2-person UG, described above [2].

2. LEARNING MODEL AND RESULTS
We use the Roth-Erev algorithm [6] to analyse the out-

come of a population of learning agents playing MUG in
groups of size N . In this algorithm, at each time-step t, the
decision-making of each agent k is implemented by a propen-
sity vector Qk(t) that, as we will see, translates the prob-

1381



●

●
●

● ● ● ● ● ● ● ● ● ●

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

●
● ● ● ● ● ● ● ● ● ● ● ●

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

●
● ● ● ● ● ● ● ● ● ● ● ●

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Unanimity to Accept
M=N-1

N
4

Majority
M=(N-1)/2

Unanimity to Reject
M=1

8 12 16 20 240

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0
0

0.2

0.4

0.6

0.8

1.0
p
q

●

●
●

● ● ● ● ● ● ● ● ● ●

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

●
● ● ● ● ● ● ● ● ● ● ● ●

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

●
● ● ● ● ● ● ● ● ● ● ● ●

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Unanimity to Accept
M=N-1

N
4

Majority
M=(N-1)/2

Unanimity to Reject
M=1

8 12 16 20 240

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0
0

0.2

0.4

0.6

0.8

1.0
p
q

group size, N

Figure 1: Average values of p and q for different
combinations of group sizes, N , and group decision
criteria, M when population size Z = 50

ability of using each strategy. This vector will be updated
considering the payoff gathered in each play. This way, suc-
cessfully employed actions will have high probability of being
repeated in the future. We consider that games take place
within a population of size Z > N of adaptive agents. To
calculate the payoff of each agent, we sample random groups
without any kind of preferential arrangement (well-mixed
assumption). We consider MUG with discretised strategies.
We round the possible values of p (proposed offers) and q
(individual threshold of acceptance) to the closest multiple
of 1/D, where D measures the granularity of the strategy
space considered. We map each pair of decimal values p and
q into an integer representation, thereafter ip,q is the inte-
ger representation of strategy (p, q) and pi (or qi) designates
the p (q) value corresponding to the strategy with integer
representation i. The core of the learning algorithm takes
place in the update of the propensity vector of each agent,
Q(t+1), after a play at time-step t. Denoting the set of pos-
sible actions by A, ai ∈ A : ai = {pi, qi} and the population

size by Z, the propensity matrix, Q(t) ∈ RZ×|A|
+ is updated

following the base rule

Qki(t + 1) =

{
Qki(t) + Π(pi, qi, p−i, q−i) if k played i

Qki(t) otherwise

(1)
When an agent is called to pick an action, she will do so
following the probability distribution dictated by her nor-
malised propensity vector.

Following the traditional game theoretical equilibrium as-
sumptions, the strategy picked by each agent would always
be that of unconditional acceptance and minimal offer (sub-
game perfect equilibrium [5]). Given this prediction, even
considering MUG, proposals would always be accepted (q →

0) and Proposers would always keep the largest share of pay-
off (p → 0). This conclusion rules out any possible effect
played by group sizes (N) or group acceptance criteria (M).
Notwithstanding, through the implemented learning model,
we show that larger groups induce individuals to rise their
average acceptance threshold (Figure 1). Indeed, it is rea-
sonable to assume that, as the group of Responders grow and
as they have to divide the offers between more individuals,
the pressure to learn optimal low q values is alleviated. This
way, the values of q should increase, on average, approach-
ing the 0.5 value. Differently, the proposed values exhibit
a dependence on the group size that is conditioned on M .
For mild group acceptance criteria (low M), having a big
group of Responders is synonym of having a proposal easily
accepted. In these circumstances, Proposers tend to offer
less without risking having their proposals rejected, keeping
this way more for themselves and exploiting the Respon-
ders. Oppositely, when groups agree upon stricter accep-
tance, having a big group of Responders means that more
persons need to be convinced of the advantages of a proposal.
This way, Proposers have to adapt, increase the offered val-
ues and sacrifice their share in order to have their proposals
accepted. Contrarily to the sub-game perfect equilibrium
played by fully rational agents, learning agents, under the
proper group configurations, can indeed learn to be fair.

Acknowledgments
This research was supported by Fundação para a Ciência
e Tecnologia (FCT) through grants SFRH/BD/94736/2013,
PTDC/EEI-SII/5081/2014, PTDC/MAT/STA/3358/2014 and
by multi-annual funding of CBMA and INESC-ID (under
the projects UID/BIA/04050/2013 and UID/CEC/50021/2013
provided by FCT).

REFERENCES
[1] U. Fischbacher, C. M. Fong, and E. Fehr. Fairness,

errors and the power of competition. Journal of
Economic Behavior & Organization, 72(1):527–545,
2009.
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