
Verifying Conflicts among Multiple Norms in Multi-agent
Systems

(Extended Abstract)
Eduardo Augusto Silvestre

Federal Fluminense University (UFF)
Av. Gal. Milton Tavares de Souza, sem nro

24210-346, Niterói, Brazil
eduardosilvestre@iftm.edu.br

Viviane Torres da Silva
IBM Research, Brazil (on leave from UFF)
Av. Gal. Milton Tavares de Souza, sem nro

24210-346, Niterói, Brazil
vivianetorressilva@gmail.com

ABSTRACT
Norms represent the expected behavior of an agent in a
multi-agent system. Generally, norms describe the actions
that can be performed, must be performed, and cannot be
performed in the system. Due to the number of norms de-
fined to govern a multi-agent systems (MAS), norms may
conflict with each other. Norms are in conflict when the ful-
fillment of one norm violates the other and vice-versa. There
are several works that analyze the conflicting norms. How-
ever, to the best of our knowledge, these works only analyze
conflicts between pairs of norms. There are situations that
conflict can only be detected when we analyze several norms
together. This work presents an approach to check for con-
flicts among multiple norms and a strategy to minimize the
complexity of this NP-hard problem.

Keywords
Multi-agent systems; normative multi-agent systems; nor-
mative conflict

1. INTRODUCTION
Multi-agent systems (MAS) have been gaining great im-

portance in the development of various applications. MAS
are autonomous, and heterogeneous societies that can work
to achieve common or different goals [5].
In order to deal with the autonomy and diversity of inter-

ests among different members, the behavior of agents is gov-
erned by a set of norms specified to regulate their actions [1].
The norms govern the behavior of agents by defining obli-
gations (stating the actions that the agents must perform),
prohibitions (stating the actions that the agents must not
perform) or permissions (stating the actions that the agents
can perform). An important challenge when implementing
normative MAS is that the set of norms can be in conflict.
Conflicts occur when norms regulating the same behavior
are activated and are inconsistent [3]. In such cases, the
agent is unable to fulfill all the activated norms.
Although there are several works that deal with normative

conflicts, to the best of our knowledge, all those approaches

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c⃝ 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

check for conflicts by analyzing the norms in pairs. How-
ever, there are conflicts that can only be detected when we
consider several norms together. For instance, let’s consider
a conflict that can only be detected if norms N1, N2 and
N3 are analyzed together. N1 obliges agent A to dress red
shirt. N2 forbids agent A to dress red pant. N3 obliges agent
A to dress pant and shirt of the same color. There are no
conflicts between the pairs N1-N2, N2-N3 and N1-N3, but
when the three norms are analyzed together, we can figure
out the conflict.

Since several authors in literature have proved that the
analysis of multiple norms is a NP-complete problem [3], we
have developed an strategy to minimize the complexity of
such problem. Our conflict checker starts by filtering the set
of norms and grouping the norms in subsets of norms that
may be in conflict. The analysis of conflicts is in fact applied
to such subsets. The main contributions of this work are: (i)
a more expressive representation of norms; (ii) a normative
conflict checker algorithm able to check for conflicts among
multiple norms; and (iii) a Java application.

2. BACKGROUND
The norm definition is based on [2] but our representa-

tion is more complex and expressive. A norm n ∈ N is a
tuple of the form {deoC, c, e, a, ac, dc} where deoC is a
deontic concept from the set {O(obligation), F(prohibition)
or P(permission)}, c ∈ C is the context where the norm is
defined, e ∈ E is the entity whose action is being regulated,
a ∈ B is the action being regulated, ac ∈ Cd indicates the
condition that activates the norm and dc ∈ Cd is the condi-
tion that deactivates the norm.

An action is defined by the name of the action and, op-
tionally, its attributes and their values, an object where the
action will be executed and a list of attributes (with their
values). Thus, in this paper we define four different ways to
represent the action: (i) {action}; (ii) {action object}; (iii)
{action (attr1=value1,. . . ,attrN=valueN)}; and (iv) {action
object (attr1=value1,. . . ,attrN=valueN)}. In order to ex-
emplify these four ways to describe a action, let’s consider
the following four prohibition norms: Na = forbids agent A
to get dressed, Nb = forbids agent A to dress pant, Nc =
forbids agent A to dress red clothes and Nd forbids agent
A to dress red pants. The action of the norms can be rep-
resented as: (i) Na: {to dress}; (ii) Nb: {to dress pant};
(iii) Nc: {dress (color={red})}; and (iv) Nd : {dress pant
(color={red})}.

1383



3. CONFLICT CHECKER
Our conflict checker algorithm is divided in three steps.

First, all norms are transformed into permissions (details in
[4]) in order to facilitate the analysis. Since all norms are
permissions, the analysis made by the conflict checker is very
simple, it checks if the norms intersects. Two or more norms
intersects if there is at least one possible situation where the
agent is able to fulfill all norms being analyzed.
In order to apply the transformation, we assume that if

an agent is obliged to execute an action, it needs to be per-
mitted. Therefore, the transformation from an obligation
norm to a permission norm is direct. A prohibition is con-
verted into a permission by (i) negating the execution of the
action being prohibited, (ii) negating the execution of the
action over the object, (iii) and (iv) by inverting the values
of the attributes. The second step of our conflict checker is
responsible to filter the norms by including them into bags
of similar norms. In order to do so, such step uses 3 filters.
The filters separate into bags the norms that apply in the
same context, govern the same entity and regulate the same
action. After applying all filters, only the norms stored in
the same bag are the ones that may be in conflict. Norms
stored in different bags apply in different contexts, govern
different entities or actions. The analyzes of the conflict is
executed in the third step of the algorithm. The algorithm
checks if the norms in each bag are in conflict. It starts by
checking the norms by pairs of norms and then consider all
possible group of k-norms until k be equal to the number of
norms in the bag. At the end, the algorithm is checking for
conflicts among all the norms of the bag at the same time.
For instance, let’s consider the three norms described in

Section 1. Since norm N3 is a complex norm (a norm applied
over two objects), we have splited it in two norms: N3a
(obliges agent A to dress pants of color X) and N3b (obliges
agent A to dress shirts of color X), where X is a generic color.
In the first step of the algorithm, it transforms the three
obligations into permissions. Then, in the second step, the
algorithm groups all norms in the same bag since they are
applied in the same context (we are omitting the context for
simplicity), govern the same entity (agent A) and regulate
the same action (to dress). In the third and last step, it
verifies that there is a conflict among these three norm. The
conflict exists because there is not an intersection among
the norms, i.e., agent A is unable to dress a red shirt, a pant
that is not red, and a shirt and a pant of the same color.
Analysing the most expensive operation of the algorithm,

the cost of the algorithm in the best case is O(1). The best
case occur when each bag stores exactly one norm, i.e., the
norms apply in different contexts and regulate different enti-
ties of different actions, and, therefore, are never in conflict.
In such case, there is not a need to execute the third step.
The worst case occurs when all norms are stored in one bag.
It can happen if all norms apply in the same context, govern
the same entity and regulate the same action. The cost of
the algorithm in the worst case is O(2n), where n is the num-
ber of norms. The cost of the medium case, O(2k), where k
is the number of norms in the bigger bag, we are unable to
calculate. Such evaluation depends on the application do-
main, i.e., it depends on the number of different contexts,
entities and actions found in the norms. Although it is not
possible to calculate the medium case, we strongly believe
(Section 4) that the use of filters can drastically reduce the
cost of the conflict checker.

4. VALIDATION
The main purpose of the validation section is to ensure

that our approach is able to detect all conflicting norms and
ensure that the technique is computationally feasible. We
have developed a tool to randomly generate norms based
on the norms of type (iv) in order to focus on the checking
of multiple conflicts. This test explores the worst scenario,
i.e., all 14 norms generated have the same context, entity
and action and, therefore, are stored in the same set. In
this case, the time spent by the algorithm to check a small
set of 14 norms is tremendous. On the other hand, a more
feasible scenario where a set of 14 norms is also generated,
but now considering different contexts, entities and actions
have a execution time extremely smaller than the time spent
when all norms are in the same bag. These test cases also
demonstrate the applicability of the filter we have defined.

5. CONCLUSIONS AND FUTURE WORK
Despite significant research in the area, there are still

many challenges to be considered. We presented an ap-
proach able to checker for conflicts among multiple norms
that uses transformations and filters to minimize the com-
putational cost. We have implemented our strategy in Java;
the source can be accessed in https://goo.gl/CqXR4Z.

A direct consequence of this work is the investigation of
how the conflicts among multiple norms should be solved.
Can the techniques used to solve conflicts between pairs of
norms be used to solve conflicts among multiple norms? An
initial approach should investigate the applicability of fa-
mous techniques found in literature used to solve conflicts
between pairs of norms, such as, lex posterior, lex superior
and lex specialis.

In this work, we have not considered indirect conflicts.
The algorithm presented in this paper does only check for
direct conflicts, i.e., conflicts among norms that have the
same entities, contexts and actions. An important and nec-
essary extension of our work is the identification of indirect
conflict among multiple norms

REFERENCES
[1] V. T. da Silva. From the specification to the

implementation of norms: an automatic approach to
generate rules from norms to govern the behavior of
agents. Autonomous Agents and Multi-Agent Systems,
17(1):113–155, 2008.

[2] K. da Silva Figueiredo, V. T. da Silva, and
C. de O. Braga. Modeling norms in multi-agent systems
with normml. In Coordination, Organizations,
Institutions, and Norms in Agent Systems VI - COIN
2010 International Workshops, COIN@AAMAS 2010,
Toronto, Canada, May 2010, COIN@MALLOW 2010,
Lyon, France, August 2010, Revised Selected Papers,
pages 39–57, 2010.

[3] W. Vasconcelos, M. Kollingbaum, and T. Norman.
Normative conflict resolution in multi-agent systems.
volume 19, pages 124–152. Springer US, 2009.

[4] G. H. von Wright. Deontic logic. Mind, 60(237):1–15,
1951.

[5] M. Wooldridge. An Introduction to MultiAgent
Systems. Wiley Publishing, 2nd edition, 2009.

1384




