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ABSTRACT
Submodular function maximization finds application in a variety
of real-world decision-making problems. However, most existing
methods, based on greedy maximization, assume it is computation-
ally feasible to evaluate F , the function being maximized. Unfortu-
nately, in many realistic settings F is too expensive to evaluate ex-
actly even once. We present probably approximately correct greedy
maximization, which requires access only to cheap anytime confi-
dence bounds on F and uses them to prune elements. We show
that, with high probability, our method returns an approximately
optimal set. We propose novel, cheap confidence bounds for con-
ditional entropy, which appears in many common choices of F and
for which it is difficult to find unbiased or bounded estimates. Fi-
nally, results on a real-world dataset from a multi-camera tracking
system in a shopping mall demonstrate that our approach performs
comparably to existing methods, but at a fraction of the computa-
tional cost.
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1. INTRODUCTION
Submodularity is a property of set functions that formalizes the

notion of diminishing returns. Many real-world problems involve
maximizing submodular functions, e.g., summarizing text, image
collection summarization, or selecting sensors to minimize uncer-
tainty about a hidden variable. Formally, given a ground set X =
{1, 2 . . . n}, a set function F : 2X → R, is submodular if for every
AM ⊆ AN ⊆ X and i ∈ X \ AN , ∆F (i|AM ) ≥ ∆F (i|AN ),
where ∆F (i|A) = F (A∪i)−F (A) is the marginal gain of adding
i toA. Typically, the aim is to find anA∗ that maximizes F subject
to certain constraints. Here, we consider a constraint on A∗’s size:
A∗ = arg maxA∈A+ F (A), where A+ = {A ⊆ X : |A| ≤ k}.

As n increases, the
(
n
k

)
possibilities forA∗ grow rapidly, render-

ing naive maximization intractable. Instead, greedy maximization
finds an approximate solution AG faster by iteratively adding to
a partial solution the element that maximizes the marginal gain.
Nemhauser et. al. [4] showed that the value obtained by greedy
maximization is close to that of full maximization, i.e., F (AG) ≥
(1− e−1)F (A∗), if F is submodular, non-negative and monotone.
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Most of the existing methods [3] assume it is computationally
feasible to exactly compute F , and thus the marginal gain. In many
settings, this is not the case. For example, consider a surveillance
task [6] in which an agent aims to minimise uncertainty about a hid-
den state by selecting a subset of sensors that maximise information
gain. Computing information gain is computationally expensive,
especially when the hidden variable can take many values, as it in-
volves an expectation over the entropy of posterior beliefs about the
hidden variable. When surveilling large areas like shopping malls,
exactly computing the entropy of a single posterior belief becomes
infeasible, let alone an expectation over them.

In this paper, we present a new algorithm called probably ap-
proximately correct greedy maximization. Rather than assuming
access to F itself, we assume access only to confidence bounds on
F that are cheaper to compute than F and are anytime, i.e., we can
tighten them by spending more computation time, e.g., by gener-
ating additional samples. Our method uses confidence bounds to
prune elements, thereby avoiding the need to further tighten their
bounds. We provide a PAC analysis that shows that, with high prob-
ability, our method returns an approximately optimal set.

Given an unbiased estimator of F , it is possible to use concen-
tration inequalities like Hoeffding’s inequality to obtain the con-
fidence bounds needed by PAC greedy maximization. Unfortu-
nately, many applications, such as sensor placement and decision
tree induction require information-theoretic definitions of F such
as information gain that depend on computing entropy over pos-
terior beliefs, which are impossible to estimate in unbiased way
[5]. The absence of an unbiased estimator makes it hard to obtain
computationally cheap confidence bounds on conditional entropy
[2]. Therefore, in this paper, we propose novel, cheap confidence
bounds on conditional entropy.

Finally, we apply PAC greedy maximization with these new con-
fidence bounds to a real-life dataset collected a multi-camera track-
ing system employed in a shopping mall. Our empirical results
demonstrate that our approach performs comparably to greedy and
lazier greedy maximization, but at a fraction of the computational
cost, leading to much better scalability.

2. METHOD & ANALYSIS
In this section, we propose probably approximately correct greedy

maximization. We assume U and L be set functions such that for
A ∈ A+, with probability 1 − δu, U(A) ≥ F (A) and for each
A ∈ A+, with probability 1 − δl, F (A) ≥ L(A). The main idea
is to use U and L to prune elements that with high probability do
not maximize marginal gain.

PAC greedy maximization works by initializing a partial solu-
tion AP as ∅ and adding at each iteration the element iP , which
maximizes the marginal gain for that iteration to AP until |AP |
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equals k. Algorithm 1 shows the main subroutine for finding iP .
Algorithm 1 maintains a queue of unpruned elements prioritized by
their upper bound. In each iteration of the outer while loop, the al-
gorithm examines each of these elements and prunes it if its upper
bound is not at least ε1 greater than the max lower bound found
so far. In addition, the element with the max lower bound is never
pruned. If an element is not pruned, then its bounds are tightened.

Algorithm 1 pac-max(U,L,AP , ε1, t)

iP ← 0 % element with max lower bound
for i ∈ X \ AP do

ρ.enqueue(i, U(AP ∪ i)) % initialize priority queue
iP ← arg maxj∈{i,iP } L(AP ∪ j)}

end for
while ρ.length() > 1 ∨ change in U & L is > t do

ρ′ ← empty queue
while ¬ρ.empty() do

i← ρ.dequeue()
if i = iP ∨ U(AP ∪ i) >= L(AP ∪ iP ) + ε1 then

tighten(AP ∪ i)
iP ← arg maxj∈{i,iP } L(AP ∪ j)
ρ′.enqueue(i, U(AP ∪ i))

end if
end while
ρ← ρ′

end while
return iP .

Assumption 1. pac-max always terminates with ρ.length() = 1.

In other words, we assume that U and L can be tightened enough
to disambiguate iP . Using this assumption we show that PAC
greedy maximization with high probability achieves the same guar-
antees as regular greedy maximization minus a constant term.

Theorem 1. If F is non-negative, monotone and submodular in X
and if Assumption 1 holds then, with probability 1− δ,

F (AP ) ≥ (1− e−1)F (A∗)− ε, (1)

where AP is the solution returned by PAC greedy maximization,
A∗ = arg maxA∈A+ F (A), δ = k(δu + δl), and ε = kε1.

Proof. See [7].

Our main focus is on settings where F has information-theoretic
definitions like information gain, entropy or conditional entropy,
for which computationally cheap upper and lower bounds are not
easy to find in absence of an unbiased estimator. In the sensor se-
lection task, given a set of n sensors X , the aim is to find A∗ =
arg maxA∈A+ [−HAb (s|z)]. Here s denotes a hidden variable, b(s)
denotes the prior probability distribution over s, z = 〈z1, z2 . . . zn〉
denotes the observation vector, zi stands for the observation about
s from sensor i and HAb (s|z) = Ez|b,A[HbAz

(s)] is the conditional
entropy [5] of s given z, which is the expected value for the entropy
HbAz

(s) [5] of the posterior probability distribution bAz (s).
The upper bound on F (A) = −HAb (s|z) can be obtained by

simply approximating the entropy of bAz ,HbAz
(s) with its maximum

likelihood estimatesHb̂Az
(s), that is, U(A) = −Ez|b,A[Hb̂Az

(s)]+

η [7]. The lower bound, which is rather difficult to find, is obtained
by using r = 〈r1, r2 . . . , rn〉 in place of z, which is a crude ap-
proximation of z, e.g., obtained by clustering zi into d clusters de-
terministically and ri denotes the cluster zi belongs to. L(A) is

defined as L(A) = −[HA
b̂

(s|r) + η + log(1 + 1
M

(ψb(s)− 1))],
where ψb(s) is the support of b(s). [7] provides the proofs and
details that show, with probability 1 − δu, U(A) ≥ F (A) and
with probability 1 − δl, L(A) ≤ F (A) with exact definitions of
δu, δl, η and M . The following theorem ties our results together
to show that for F (A) = −HAb (s|z), PAC greedy maximization
with above definitions of U and L, computesAP such that F (AP )
has bounded error with respect to F (A∗), and achieves the same
guarantees as greedy maximization minus a constant term.

Theorem 2. For the above described definitions of F , U and L, if
Assumption 1 holds and if z is conditionally independent given s,
then with probability 1− δ, (1) is true.

Proof. See [7].

3. EXPERIMENTS & RESULTS
We evaluated PAC greedy maximization on the problem of track-

ing multiple people using a multi-camera system. The problem was
extracted from a real-world dataset [1] collected in a shopping mall
using 13 CCTV cameras for over 4 hours. To evaluate a given al-
gorithm, a trajectory was sampled randomly. The goal is to select a
subset of cameras at each time step that induce a low-entropy belief
about the person’s location that can be used to predict those loca-
tions. As a baseline, we tested against greedy maximization which
simply uses an approximation based on the MLE estimates of pos-
terior beliefs and lazier greedy maximization [3] which, in each
iteration, samples a subset of size R from X and selects i from R
that maximizes marginal gain.

0 0.5 1 1.5 2 2.5

x 10
4

0

50

100

150

200

250

Time taken (in seconds)

T
o

ta
l 
c
o

rr
e

c
t 

p
re

d
ic

ti
o

n
s

 

 

Greedy maximization, M=30

Lazier greedy max., M=50,R=12

Lazier greedy max., M=30,R=15

PAC greedy max, eps=0.37

PAC greedy max, eps=0.47

Figure 1: Multi-person
tracking for n = 20 and
k = 3.

Figure 1 shows the number
of correct predictions (y-axis)
against the runtime (x-axis) of
each method. Thus, the top
left is the most desirable re-
gion. PAC greedy maximization
performs nearly as well as the
greedy maximization and lazier
greedy maximization but does

so at lower computational cost leading to much better scalability.
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