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ABSTRACT
The present study focuses on a family of Boolean games
whose agents’ interactions are defined by a social network.
The task of finding social-welfare-maximizing outcomes for
such games is NP-hard. Moreover, such optimal outcomes
are not necessarily stable. Therefore, our aim is to devise a
procedure that finds stable outcomes with an as high as pos-
sible social welfare. To this end, we construct a quadratic-
time procedure, by which any initial outcome of a game in
this family can be transformed into a stable solution by the
use of side payments. The resulting stable outcome is en-
sured to be at least as efficient as the initial outcome. Con-
sidering the fact that this procedure applies for any initial
state, one may use good search heuristics to find an outcome
of high social welfare, and then apply the procedure to it.
This naturally leads to a scalable process that finds desirable
efficient and stable solutions.
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1. INTRODUCTION
One of the major research challenges in Boolean games [1],

as well as in game theory in general, is stabilization, i.e.,
securing the existence of a pure-strategy Nash equilibrium
(PNE). However, a stable outcome from which no agent
wants to unilaterally deviate, is not necessarily an efficient
outcome. Herein, we relate to social welfare, which is a
common notion of efficiency representing the sum of agents’
utilities. In that sense, an outcome that maximizes social
welfare is considered efficient.

In this study we address the problematic tradeoff between
stability and efficiency in the context of a family of Boolean
games, in which the interactions of agents are defined by
some underlying social network. This family of Boolean
games is inspired by the well-studied class of network games
known as “best-shot” public goods games [2, 3]. There, the
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action that each agent takes (or avoids) is associated with
an investment in some local public good (e.g., buying a book
or some other product that is easily lent from one agent to
another). Each agent wants that the action will be taken
by at least one agent in its neighborhood, including itself.
However, there is a cost associated with taking the action, so
if any of its neighbors take the action then the agent prefers
to avoid taking it.

Contemplating on the tradeoff between stability and effi-
ciency, it is important to note that finding a social-welfare-
maximizing outcome is equivalent in our settings to finding
a minimal dominating set, which is known to be NP-hard.
Moreover, such optimal solutions are not necessarily PNEs.
Therefore, our objective is to reach efficient (yet not nec-
essarily optimal) and stable solutions, while still remaining
scalable. For this purpose we construct a quadratic-time
procedure that works on any initial arbitrary outcome of
the games at focus. We use the side payments mechanism [5]
in order to ensure stability. However, not necessarily every
outcome can be transformed to a stable state by the use of
side payments [4]. Thus, we move, if needed, to a different
outcome that can be stabilized using side payments. The
new outcome is ensured to be at least as efficient as the
original outcome. Finally, the new outcome is transformed,
if needed, to a PNE by the use of side payments.

Considering the fact that the above procedure applies for
any arbitrary state, one may use good search heuristics to
find a state with some desirable properties. Using a run-
time-efficient heuristic in the initial stage, combined with
the quadratic-time procedure that follows, leads to a scalable
process that finds desirable efficient and stable solutions.

2. PUBLIC GOODS BOOLEAN GAMES
A public goods Boolean Game (PGBG) is defined accord-

ing to some underlying graph that describes the agents’ in-
teractions network. Each vertex represents an agent i ∈ A
in the corresponding Boolean game, and edges represent the
interaction structure of the game. The set of i’s neighbors
is denoted by Ni; these are the agents whose actions may
impact i’s payoff (by enabling/disabling i’s ability to achieve
its personal goal). The neighborhood of i is the set {i}∪Ni.

This study assumes that each agent i possesses a single
Boolean variable ai ∈ Φ, which denotes i’s chosen strategy:
ai = > (for performing an action), or ai = ⊥ (for avoiding
it). The personal goal γi of agent i is a disjunction of all
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Boolean variables possessed by agents in i’s neighborhood.
This definition of personal goal implies that each partici-
pant’s primary aim is that at least one agent in its neigh-
borhood will perform an action. Consequently, each agent
can ensure the achievement of its personal goal by perform-
ing the action. The strategic nature of the game comes from
the fact that performing the action involves costs. More for-
mally, the cost function c : Φ× B → R≥ defines a zero cost
for choosing ⊥ (∀i ∈ A : c(ai,⊥) = 0), and some positive
cost Ci > 0 for choosing > (∀i ∈ A : c(ai,>) = Ci).

Given an outcome of the game v ∈ V , the possible states
of an agent i ∈ A, denoted by State(i, v), can be divided
into the next four distinct types:

1. TT: v(ai) = > and ∃j ∈ Ni : v(aj) = >
2. TF: v(ai) = > and ∀j ∈ Ni : v(aj) = ⊥
3. FT: v(ai) = ⊥ and ∃j ∈ Ni : v(aj) = >
4. FF: v(ai) = ⊥ and ∀j ∈ Ni : v(aj) = ⊥

We say that agent i depends on agent j under outcome
v, denoted by ilv j, if the achievement of i’s personal goal
depends only on j’s choice at outcome v.

3. SIDE PAYMENTS
Side payments enable Boolean games to be transformed

from the inside, by endowing agents with the possibility of
sacrificing part of their payoff in order to convince other
agents to play a certain strategy. This incentive mechanism
inherently fits the PGBG scenario, since it is in the best
interest of an agent to sacrifice part of its payoff in order
to convince one of its neighbors in the network to take the
action (invest in the public good). We adopt the Boolean
transfer functions βi : V ×A→ R≥ of Turrini [5].

Since the use of side payments is mainly motivated by the
attempt to secure a stable state (PNE) with certain prop-
erties, it is required to differentiate between outcomes that
can be transformed to a PNE and those that can not.

Definition 1. An outcome v in a Boolean game G is side
payments enforceable (SPE) if there exists a transfer func-

tion β, such that: ∀i ∈ A,∀v′i ∈ Vi : uβi (vi, v−i) ≥ uβi (v′i, v−i),

where uβi (v) denotes the utility of agent i from outcome v
under transfer function β.

4. STABILITY ENFORCING PROCEDURE
Starting from an initial outcome v, the first stage of the

procedure finds an improved outcome v∗ that is guaranteed
to be SPE. The second stage applies the side payments mech-
anism to transform the improved outcome to a stable one.
We restrict our attention to cases where all costs (Ci) are
identical, namely all costs equal C.

First Stage. The first stage consists of two loops, each of
which deals with one unstable state (FF or TT). Starting
at some outcome v, the first loop ensures that no agent will
stay in state FF, by changing the choice of each such agent
from ⊥ to >. After the first loop, each agent is in one of
three states: TF, FT or TT. The second loop ensures that
each agent in state TT will have at least one other agent
that depends on it, or otherwise the agent changes its choice
from > to ⊥. Such dependence enables compensating the
agent by the use of side payments, and thus stability can be
enforced. Applying these loops results in outcome v∗.

Proposition 1. For every outcome v ∈ V it holds that
v∗ is side payments enforceable.

Proposition 2. For every outcome v ∈ V , the utility of
any agent in v∗ is not lower than its utility in v.

All proofs are omitted due to space limitation. Since
Proposition 2 ensures that the utility of every agent is non-
decreasing, then so is the sum of all agents’ utilities.

Corollary 3. For every outcome v ∈ V , the social wel-
fare of v∗ is greater than or equal to that of v.

Second Stage. Here we apply a transfer function β that
incentivizes only agents in state TT and only in outcome v∗:

βj(v
∗, i) :=

{
C

di(v∗)
, if State(i, v∗) = TT ∧ j lv

∗
i

0, otherwise
(1)

where di(v
∗) denotes the number of agents in A that depend

on i in outcome v∗. Note that for all other outcomes v′ 6= v∗

no payments are transferred (i.e., ∀j, i ∈ A : βj(v
′, i) = 0).

Proposition 4. The stability enforcing procedure runs in
quadratic time.

5. CONCLUSIONS
We have introduced a stability enforcing procedure. Ap-

plying it on an initially efficient outcome, e.g., of maximal
social welfare, results in an efficient equilibrium, as desired.
However, finding an outcome of maximal social welfare is
NP-hard, thus it is applicable only for relatively small net-
works. A more widely applicable approach would be to use a
heuristic in order to find an initial outcome v with relatively
high (yet not necessarily optimal) social welfare, and then
apply the stability enforcing procedure to it. Using a run-
time-efficient heuristic, combined with the quadratic run-
time complexity of the procedure (Proposition 4), results in
a scalable process for securing an efficient equilibrium. To
conclude, the process consists of the following stages:

1. Applying a heuristic that returns an initial outcome v.

2. Transforming v to v∗ according to the first stage.

3. Securing stability using the β transfers of Equation 1.
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