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ABSTRACT
We propose a new, core task abstraction (CTA) approach to
learning the relevant transition functions in model-based hi-
erarchical reinforcement learning. CTA exploits contextual
independences of the state variables conditional on the task-
specific actions; its promising performance is demonstrated
through a set of benchmark problems.
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1. INTRODUCTION
In hierarchical reinforcement learning (HRL), a complex

problem is solved by recursively decomposing the problem
into smaller subtasks at different levels of details. Most
model-based methods derived from the benchmark MAXQ
framework [2] solve HRL problems by learning the indi-
vidual task transition dynamics in a task hierarchy of the
problem space. We propose a new learning algorithm that
can efficiently compute the task transition functions in the
hierarchy. For instance, Figure 1 shows the MAXQ task
hierarchy for a taxi problem, where the objective for the
agent is to pick up and deliver a passenger to the destina-
tion. The root problem is decomposed into the Get and
Put tasks, which can be further decomposed into naviga-
tion subtasks and primitive actions. Recent improvements
to MAXQ include integrating directed exploration [4], us-
ing Bayesian priors [1] and Monte-Carlo simulation [6]. One
major problem of the MAXQ based methods is that many
similar subtasks that potentially share the same transition
dynamics are created. For example, in Figure 1 there are
four navigation subtasks, one for each possible destination.
These subtasks are independent, hence more exploration is
needed to learn a good policy. Our approach aims to avoid
the redundant work by reusing the common “knowledge”.

We introduce the concept of fragments (partial structures
shared across tasks) that supports simultaneously learning
multiple task transition functions. For example, all the nav-
igation subtasks in Figure 1 that share the same transition
dynamics but differ in terminal states and local reward func-
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tions can be captured using a single navigation fragment.
We also exploit the contextual independences of state vari-
ables conditional on the action executed, i.e. the state vari-
ables will have different sets of parents, depending on the
action executed.

Our method assumes given information on safe state ab-
straction (i.e. ignoring the features that do not affect the
values of the states), as in current MAXQ based methods.
Based on our algorithm, however, an agent’s experience in
learning one task would help speed up learning all the other
tasks with similar features. This leads to better empirical
performance as compared with existing methods. Such ab-
straction information can be interactively or automatically
learned in future.

2. CORE TASK ABSTRACTION
Consider the hierarchy in Figure 1. Each non-leaf node

in this hierarchy is a task. A “task” is a unit of execution,
similar to an option [5]. It has an input set I and terminat-
ing states G. It is a well-defined factored Markov decision
process (MDP) representation of a single problem— it has
a set of state variables or features F , a set of actions A, a
transition function T and a reward function R. Here, F and
A are given, T and R are to be learned.

Definition 1. A fragment j is a tuple 〈Fj , Aj , Tj〉 where
Fj is the set of relevant features, Aj is the set of applicable
actions and Tj is the local transition function.

Unlike a task, a fragment does not have an input set, ter-
minating states and a local reward function, and thus is not a
well-defined MDP. A fragment corresponds to multiple simi-
lar tasks that share the same transition dynamics, but differ
in the terminating states and local reward functions. Learn-
ing a fragment allows the agent to perform well in all the
tasks by sharing the learned knowledge across tasks. We can
redefine the MAXQ hierarchy in Figure 1 using fragments
for navigation, which is common to both Get and Put. For
simplicity of exposition, we use the term node to refer both
task and fragment. We use N to denote the set of all non-
root nodes and X to denote a subset of N .

To obtain the transition function using CTA, we identify
the features unique to a subset of nodes under considera-
tion. We define a unique function to do this as follows.
Uni(

⋂
i∈X Fi) =

⋂
i∈X Fi−

⋃
j∈X Fj , where the first term is

a set of features relevant to X, and the second term is not.

Theorem 1. Let Xa = {i|i ∈ N ∧ a ∈ Ai} represent the
set of nodes where action a is applicable. The transition
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Figure 1: Task hierarchy for the taxi
problem. There are four navigation
subtasks, which can be represented us-
ing a single fragment.
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Figure 2: Results on MAXQ taxi.
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Figure 3: Results on fickle taxi.

model for node i is given by,

P (F ′i |Fi, a) =
∏

Y :Y⊆N∧i∈Y
P

Uni(
⋂
j∈Y

F ′j) |
⋂

j∈Xa∩Y
Fj , a


The theorem states that the transition function is a product
of factors where, the parent set of Uni(

⋂
j∈Y F

′
j) depends on

the action being executed. This is captured in the relation⋂
j∈Xa∩Y Fj .
The direct outcome of the theorem is a reduced feature set

for learning. We combine the safe state abstraction informa-
tion and contextual independence to eliminate the maximum
number of features from the parent set to improve the learn-
ing efficiency.

We introduce the CTA-FRmax algorithm by combining
efficient transition function learning in Theorem 1 with Rmax
style exploration in factored spaces [3]. CTA-FRmax main-
tains an exploration count on each factor in Theorem 1. If
the count is smaller than a threshold, the agent transits to
a fictitious state and receives maximum reward.

3. RESULTS
We test the performance of CTA-FRmax in the original

MAXQ taxi and the fickle taxi benchmark problems [2]. The
experimental setup involves a 5 × 5 grid-world with four
landmarks. The passenger location and destination must
be one of the landmarks. There are six actions: navigate
along the four directions, pickup and putdown as shown in
Figure 1. In the fickle taxi variant the passenger may change
the destination with probability 0.3. The episode ends if
passenger reaches the destination or 1000 time steps elapse.

CTA-FRmax computes the transition function for both
Get and Put, and executes Get when the passenger is not on
board and Put otherwise. Navigation is modeled as a frag-
ment. We compare the performance of CTA-FRmax against
R-maxq [4], Factored Rmax [3] and Factored ε-greedy. The
latter two methods are given the full dynamic Bayesian net-
work (DBN) representation of the transition functions for
both the Get and Put. We set the exploration threshold m
to be 1 for both CTA-FRmax and Factored Rmax. Since
R-maxq does not converge with m = 1, we use m = 5 like
other methods [4, 1].

As shown in Figure 2 and Figure 3, CTA-FRmax outper-
forms all the other methods. In terms of number of episodes,
CTA-FRmax converges in about 50 episodes whereas R-
maxq takes about 500 episodes to converge due to the de-
layed exploration—it is unable to explore putdown unless it
completes the current navigation task. Also, R-maxq fails
to converge to the optimal policy in the fickle taxi experi-
ment, since it treats each subtask like a primitive action; it
cannot immediately react to a change of destination until
its current subtask completes. CTA-FRmax also has better
cumulative reward than Factored Rmax, despite that it only
requires the relevant features for each task to be specified,
while Factored Rmax requires the complete DBN structure
of task transition dynamics.
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