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ABSTRACT
People often interact repeatedly: with relatives, through file
sharing, in politics, etc. Many such interactions are recipro-
cal: reacting to the actions of the other. In order to facili-
tate decisions regarding reciprocal interactions, we analyze
the development of reciprocation over time. To this end, we
propose a model for such interactions that is simple enough
to enable formal analysis, but is sufficient to predict how
such interactions will evolve. Inspired by existing models of
international interactions and arguments between spouses,
we suggest a model with two reciprocating attitudes where
an agent’s action is a weighted combination of the others’
last actions (reacting) and either i) her innate kindness, or
ii) her own last action (inertia). We analyze a network of
repeatedly interacting agents, each having one of these atti-
tudes, and prove that their actions converge to specific lim-
its. Convergence means that the interaction stabilizes, and
the limits indicate the behavior after the stabilization. For
two agents, we describe the interaction process and find the
limit values. For a general connected network, we find these
limit values if all the agents employ the second attitude, and
show that the agents’ actions then all become equal. In the
other cases, we study the limit values using simulations. We
discuss how these results predict the development of the in-
teraction and constitute the first step towards helping agents
decide on their behavior.
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1. INTRODUCTION
Interaction is central in life, e.g., at school, on the road,

and in politics. We aim to facilitate decision support to peo-
ple and applications that interact, such as a self-driving car.
To this end, we need to predict interaction. Instead of being
economically rational, people tend to adopt other ways of
behavior [6]. Furthermore, people tend to reciprocate, i.e.,
react on the past actions of others [2]. Some extant work
studies how reciprocation has emerged. For example, Axel-
rod [1] shows that (discrete) reciprocity is rational to egoists,
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while [3] reasons that people sometimes exhibit irrational
reciprocity, and gave explanations of it. Reciprocity seems
to be intrinsic [7]. On another avenue, given the reciprocal
tendencies, several works analyze why they make interac-
tions develop in certain ways. For instance, [2, 5] define a
game where utility depends on reciprocal behavior. Since no
analysis considers non-discrete lengthy interactions, caused
by reciprocation, we ask how reciprocal interactions evolve
with time. This will facilitate decision making by predicting
what approach will benefit the agents more.

Consider an interaction network where vertices stand for
agents N , and two agents interact if and only if they are
neighbors. We model an action by a single number, which
represents the value of that action to the recipient. This
number is defined to be a convex combination between the
inner self and outer influence. Every agent i has her kindness
ki, representing the default value of her action, and a direct
and a social reciprocation coefficient, ri and r′i, respectively,
representing her inclination to react to a given agent and
to all the agents she interacts with, respectively. Denote
the action of agent i on j at time t by xi,j(t), and the set
of the neighboring agents of i by N(i). We assume that
all the agents act on times T = {0, 1, . . .}. We define two
reciprocation attitudes. In the fixed attitude, the action of
agent i on j at time t is defined by the kindness, the reaction
to the other’s action, and the reaction to the average of the
actions of the neighbors:

(1− ri − r′i) · ki + rixj,i(t− 1) + r′i

∑
j∈N(i) xj,i(t− 1)

|N(i)| ,

In the floating attitude, the first term is own action, namely:

(1− ri − r′i) · xi,j(t− 1) + rixj,i(t− 1) + r′i

∑
j∈N(i) xj,i(t− 1)

|N(i)| .

Defining action or state by a linear combination of the other
side’s actions and own actions and qualities is also used to
analyze arms race [8] and spouses’ interaction [4] (piecewise
linear in this case). This model defines an infinite sequence
of actions for every agent, and predicting this process would
allow setting up efficient reciprocation.

2. PAIRWISE INTERACTION
When only a pair of agents interact, assume w.l.o.g. that

r′1 = r′2 = 0. We prove convergence as time approaches
infinity. Convergence means that the interaction stabilizes
with time. When both agents are fixed, they converge in
an oscillating manner (see Figure 1), and limt→∞ xi,j(t) =
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Figure 1: Simulation of actions for r1+r2 < 1, r2 = 0.5
on the left, and r1+r2 > 1, r2 = 0.9 on the right. It is a
fixed - fixed reciprocation, with k1 = 1, k2 = 2, r1 = 0.3.

(1−ri)ki+ri(1−rj)kj

1−rirj
. When at least one agents is floating,

they converge to a common limit. If both are floating, the
limit is r2

r1+r2
k1 + r1

r1+r2
k2; if i is fixed and j is floating, the

limit is ki, and if r1 + r2 ≤ 1, the convergence is monotonic
from some moment on. The limits imply that if you consider
your kindness while reciprocating (fixed), then, asymptoti-
cally, your actions values get closer to your kindness than if
you consider it only at the outset. Thus, persistence makes
the interaction go your way. Another interesting result is
that always ki ≤ kj ⇒ limt→∞ xi,j(t) ≤ limt→∞ xj,i(t).

3. MULTI-AGENT INTERACTION
For multiple agents, we employ the Perron-Frobenius the-

orem. When all r′i are positive, we prove a geometrically fast
convergence. We also prove that when at least one agent is
fixed, every limt→∞ xi,j(t) is a positive combination of the
kindnesses of the fixed agents. If all the fixed agents have
the same kindness k, this is also the (common) limit. If all
the agents are floating, we show that the actions of all the
agents converge to a common limit, which is∑

i∈N

(
|N(i)|
ri+r′i

· ki
)

∑
i∈N

(
|N(i)|
ri+r′i

) . (1)

The convergence partially explains personal styles of behav-
ior. The commonality alludes to the formation of organiza-
tional (sub)cultures. The limit being a combination of the
kindness values of certain agents means that the kindness of
an agent has either no influence, or it constitutes a linear
term. Observe that when all the agents are floating, the in-
fluence of an agent on the common limit is proportional to
the number of agents on whom she may act, and inversely
proportional to her tendency to reciprocate, which may be
called stability. This explains that persistence makes an
agent more influential on the actions in the interaction.

An interesting example is a regular interaction network,
where |N(i)| is the same for all i. This holds, for instance, for
cliques, modeling small groups of people or countries, and for
cycles, modeling circular computer networks. In this case,

Eq. (1) becomes

∑
i∈N

(
ki

ri+r′
i

)
∑

i∈N

(
1

ri+r′
i

) . Another interesting example

is a star network, modeling a supervisor of separate entities.
Assume w.l.o.g. that agent 1 is the center, and the common

limit becomes

|N|−1

r1+r′1
·k1+

∑
i∈N\{1}

(
ki

ri+r′
i

)
|N|−1

r1+r′1
+
∑

i∈N\{1}

(
1

ri+r′
i

) .

We show that to maximize the limit value of the actions by
setting her ri (or r′i), an agent needs an extreme value of her
ri (or r′i). When all the agents are floating, Eq. (1) implies

that the dependency of the limits on the extent of reciproca-
tiveness ri (or on r′i) is monotonic, so maximizing the limits
requires being either completely reciprocal or not at all. To
study this when we do not know the limit, we simulate the
interaction, obtaining plots like those in Figure 2. In all
the considered cases, this dependency is monotonic. For the
dependency on r′i, the obtained graphs are also monotonic.
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Figure 2: The simulated limits of actions as func-
tions of r1, for r2 = 0.1, r3 = 0.6, r′1 = 0.1, r′2 = 0.4, r′3 =
0.1, k1 = 3, k2 = 1, k3 = 5. On the left, agent 1 and 2
are the only fixed agents, while on the right, 1 is the
only floating agent.

To advise more constructively about what agents’ parame-
ters and attitude are useful, defining utilities and considering
choosing one’s parameters, so as to maximize own utility is
very promising for future work. To summarize, we analyze
the interaction process, in order to predict reciprocal inter-
action and thereby, to facilitate decisions regarding how to
reciprocate.

The full version, named “Towards Decision Support in
Reciprocation”, includes the non-synchronous case and the
proofs and appears at http://arxiv.org/abs/1601.07965.
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