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ABSTRACT 
Through gathering information, acting autonomously, learning, 
and behaving socially, intelligent agents provide useful interfaces 
between complex systems and human users. For example, agents 
can interact with people to discover their preferences, skills, and 
expertise, then find suitable tasks that exploit the users’ abilities.  
We describe modeling environmental openness and human learn-
ing in a multiagent system for a human collaborative task assign-
ment problem.  

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– intelligent agents, multiagent systems 

General Terms 
Performance, Design, Experimentation, Human Factors. 

Keywords 
Collaborative Task Assignment; Openness; Human Learning; 
Emergent Behavior 

1. INTRODUCTION 
Human collaborative task assignment occurs in environments 
where there exist human users and tasks that require multiple 
people to combine their individual skills and expertise to work 
together towards a common (possibly temporary) goal.  As moti-
vation, each participant earns a share of a joint reward if the task 
is accomplished successfully.  For example, the assignment could 
be used to (1) form temporary teams of freelance workers (e.g., 
independent software developers or artists) to satisfy contracts 
from companies lacking the internal expertise to accomplish tasks 
(e.g., developing particular pieces of software or graphic design), 
(2) combine the expertise and skills of office workers across divi-
sions within large companies to accomplish tasks needed by the 
company, or (3) match students to peer-based learning tasks in 
computer-aided education.   

In such a problem, software agents are valuable in assisting hu-
man users in identifying appropriate tasks (or subtasks) to com-
plete, as well as in securing such tasks (or subtasks) for their hu-
man users.  Such agents can first model the abilities of their as-
signed users, then find and acquire tasks that best benefit their 
users, with the emergent behavior that the overall system benefits 
from the task assignment.  When modeling a human user, an agent 
should take into account the impacts of human learning on its 

human user’s expertise and skills, especially so when deciding on 
which tasks to pursue.  This consideration is non-trivial, as the 
task providing the most immediate reward might not simultane-
ously provide the greatest opportunity for learning that would 
improve a human user’s expertise and skills and ultimately lead to 
greater future rewards. Therefore, an agent faces a difficult 
tradeoff when selecting tasks for its learning-capable human user. 

Furthermore, when the environment is open where existing human 
users may leave while new human users may enter, or existing 
tasks may disappear and new tasks may appear, modeling human 
learning and leveraging that in an agent’s reasoning become more 
complicated.  In this paper, we focus on modeling openness and 
human learning in human collaborative task assignment as a first 
key step towards a solution approach to address this human col-
laborative task assignment problem. 

2. MODELING OPENNESS 
We consider two types of openness: (1) agent openness and (2) 
task openness.  Our definition of task openness follows from Chen 
et al. [3] while that of agent openness is a slight variant from [3]. 

Agent openness represents the phenomenon that human users 
(who are also intelligent, non-artificial agents) join and leave the 
environment over time. For example, in a freelance software de-
velopment environment, individual developers might leave soft-
ware companies to do independent freelance work instead, where-
as others might switch from being freelance workers to working 
solely for a software company. Likewise, in an office worker en-
vironment, the company might hire new employees and let others 
go over time. As a result of agent openness, various agents (with 
the number of agents determined by the degree of agent openness) 
will leave and/or join the environment over time. Thus, the set of 
human users ܪ  (and their corresponding software agents ܣ ) is 
non-stationary and changes over time. To closely model many 
real-world scenarios, we assume that agents do not necessarily 
know their peers around them at any point in time, nor how many 
peers they have.  Note that new expertise entering the environ-
ment would be helpful for completing collaborative tasks. How-
ever, as existing agents leave the environment, they will take their 
expertise with them, potentially creating a void in important skills 
or expertise, making it more difficult for collaborative tasks to be 
completed. This exodus could especially hurt the system since 
human users’ capabilities do improve due to learning over time, 
so the amount of overall expertise leaving the system due to 
openness could exceed the amount of expertise joining the system. 

Task openness represents the phenomenon that the set of tasks that 
require collaboration to solve could also change. For example, in a 
freelance software development environment, changes in pro-
gramming paradigms and the types of software needed by clients 
would cause different collaborative tasks to exist over time.  
Moreover, in an office worker environment, different seasonal 
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activities of the company could require different tasks over time. 
As a result of task openness, a number of tasks will disappear 
from the environment, while new batches of tasks might be intro-
duced for human users to work on (again, with the numbers of 
changing tasks being determined by the degree of task openness). 
Given that different expertise and capabilities are required of us-
ers to solve their tasks, task openness will affect the ability of 
agents to acquire tasks for their users. That is, as easier tasks be-
come available, more users would be qualified to complete tasks, 
increasing the competition among them. On the other hand, as 
tasks become more difficult, it would be more difficult for an 
agent to find a suitable task for its assigned user. Furthermore, 
new tasks requiring different skills could bring previously unmet 
opportunities for users to leverage their capabilities.  

Of note, our work on agent and task openness within a problem 
model is similar to and builds upon prior research by Jumadinova 
et al. [5]. In particular, their research explored the impacts of 
agent and task openness when agents work together in ad hoc 
teams under the assumption of simple rules for forming teams 
based on agent capabilities. Here we add principled computational 
models of human learning based on an extensive literature review 
to improve how agents reason about the benefits of task accom-
plishment for human users.  

3. MODELING HUMAN LEARNING  
Human learning is especially important in the presence of agent 
and task openness within the collaborative task assignment prob-
lem because learning enables human users to gain expertise and 
skills needed both (1) to replace expertise leaving the environment 
due to agent openness, as well as (2) to perform a wider range of 
tasks encountered due to task openness. In particular, we model 
learning as increases in user capabilities ܿܽ݌௛,௞ א ሾ0,1ሿ (where ݄ 
references a particular human user and ݇ represents a particular 
skill or knowledge).  We focus on two particular learning para-
digms: (1) learning by doing and (2) learning by observation.   

Learning by Doing.  One way that humans learn is through expe-
rience gained by directly performing tasks.  Here, a user ݄ gains 
capability ܿܽ݌௛,௞ in the skill or knowledge ݇ it uses while partici-
pating in a task.  To model learning by doing, we propose consid-
ering experience curve effects [4] to derive the learning gain func-
tion for a human user performing learning by doing. Different task 
types may have different learning curves (e.g., power law, expo-
nential, sigmoidal) [6, 7]. For example, Leibowitz et al. [6] out-
line an exponential learning equation for success-based learning: 

௡݌                               ൌ ஶ݌ െ ሺ݌ஶ െ ଴ሻ݌ · ݁ିఈ·ௌ೙         (1) 

where p measures a user’s performance, n counts the learning 
episode such that ݌ஶ  is the maximum infinite-horizon perfor-
mance achievable, ݌଴ is the initial performance, ܵ௡ is the accumu-
lated sum of all previous performances preceding the n-th episode, 
and ߙ is a constant rate coefficient. The change in performance, or 
learning gain, according to Leibowitz et al. [6], is: 

ሶ݌                                       ൌ ݌ߙ · ሺ݌ஶ െ  ሻ        (2)݌

The constant rate coefficient ߙ caps the amount of learning gain at 
each episode. The general shape of this curve is a (concave 
downward) parabola: when a user’s expertise is low, it learns a 
little; as its expertise grows, it starts to learn faster up to a peak 
rate; after it peaks, its learning slows back down. Thus, for a us-
er’s gain via learning by doing with a learning curve capped by 
 :௛,௞, we have݌ܽܿ ௗ௢, using its capabilityߙ

௛,௞݌ௗ௢ܿܽ߂            ൌ ௛,௞ሶ݌ܽܿ ൌ ௗ௢ߙ · ௛,௞݌ܽܿ · ൫1 െ  ௛,௞൯       (3)݌ܽܿ

Learning By Observation. To model learning by observation, we 
look to Bandura’s social cognitive learning theory [1, 2] contain-
ing four stages involved in observational learning: attention, re-
tention or memory, initiation or reproduction, and motivation.   In 
human collaborative task assignment, attention implies that a user 
݄ learns about ܿܽ݌௛,௞  from observing other users using skill or 
knowledge ݇ only when they are in the same team collaboratively 
solving a task. To ensure retention (or memory), each user up-
dates its capability after task execution, using Eqs. 4-5 as de-
scribed later. Initiation (or reproduction) requires that “observers 
must be physically and intellectually capable of producing the 
act.” [2]. That is, when a user ݄ observes another user performing 
݇, ݄ can only learn if its skill is relatively close to what it is ob-
serving in order to improve ݄’s capability.  As a result, we model 
the learning gain function of user ݄ observing a teammate per-
forming skill or knowledge ݇ as follows: 

௛,௞݌௢௕௦ܿܽ߂                        ൌ ൜  
ሶ݌ 0 ൑ ௞ݏܾ݋ െ ௜,௞݌ܽܿ ൏ ߚ
0 ݁ݏ݅ݓݎ݄݁ݐ݋

        (4) 

where ݏܾ݋௞ is the observed production of ݇ by the teammate, ߚ is 
the threshold under which ܿܽ݌௛,௞ is close enough to ݏܾ݋௞  for 
learning by observation to take place, and ݌ሶ  for observational 
learning is modeled similarly from Eqs. 1-2 above: 

ሶ݌          ൌ ௢௕௦ߙ · ൫ݏܾ݋௞ െ ௛,௞൯݌ܽܿ · ቀߚ െ ൫ݏܾ݋௞ െ  ௛,௞൯ቁ       (5)݌ܽܿ

where ߙ௢௕௦ refers to the cap for the corresponding learning curve 
for observational learning for that capability. In summary, gain 
from learning by observation is zero if a user observes a ݇ being 
performed that is either (1) too much greater than her current ca-
pability (൒ -ሻ, or (2) if the user is more capable that the perforߚ
mance it observes. Finally, we assume that learning-aware human 
users are always motivated to learn, and thus we assume learning 
by observation to be of no cost to human users.  
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