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ABSTRACT
Generalized Second Price (GSP) mechanism is widely used
in ad auctions and reserve price is an effective tool for rev-
enue maximization. The optimal reserve price depends on
bidders’ value distribution, which, however, is generally un-
known to auctioneers. A common practice for auctioneers is
to first collect information about the value distribution by
a sampling procedure and then apply the reserve price esti-
mated with the sampled bids to the following auctions. In
order to maximize his/her total revenue over finite GSP ad
auctions, it is important for the auctioneer to find a proper
sample size to trade off between the cost of the sampling
procedure and the optimality of the estimated reserve price.
We first propose the revenue bounds during and after sam-
pling. Then we formulate the problem of finding the optimal
sample size that maximizes the auctioneer’s worse-case total
revenue as an constrained optimization problem, the solu-
tion of which is independent of the value distribution.
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1. INTRODUCTION
Ad auctions have become a major monetization channel

for Internet economy, including sponsored search auctions [9]
and realtime bidding (RTB) [2]. In sponsored search, when a
user issues a query1 to a search engine, in addition to a list of
relevant webpages, a selective set of ads related to the query
will also be shown to the user. A position auction is used to
determine which ads to show and how much to charge the
corresponding advertisers. In RTB for display advertising,
when a user visits a publisher’s website, an ad impression
with related information will be sent to the advertisers (or ad
networks) through an ad exchange. Then the bids from the
advertisers are collected and an auction is used to determine
which ad to show and how much to charge the advertiser. In
these applications, GSP is the most popularly used auction

1For simplicity, we only consider the exact match between
queries and keywords.
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mechanism and has attracted a lot of research attention in
recent years [4, 11].

When bidders’ value distribution is known, the auction-
eer can compute the optimal reserve price based on the
Myerson’s theory [7]. However, in the real world, bidder-
s’ valuations are private information and are invisible to the
auctioneer. In practice, auctioneers usually need to collect
information about the value distribution using the auction
mechanism with a heuristically set reserve price. With the
sampled data, the auctioneer can infer the optimal reserve
price and use it in the future auctions. Existing works have
neglected the revenue loss during the sampling period. Ob-
viously, more rounds of sampling will lead to a more accurate
estimation of the optimal reserve price. However, the sam-
pling process usually cannot achieve the optimal revenue by
itself, i.e., there is a “cost” of sampling. On the other hand,
fewer samples will make lower revenue loss during the sam-
pling period but lead to worse estimation of the optimal
reserve price. In the real world, the auctioneer usually cares
for his/her revenue in finite auctions, e.g., one month, one
quarter, or one year. Hence, the auctioneer need to deter-
mine how many rounds should be used for sampling in order
to maximize the overall revenue.

In this paper, we study the trade-off between the cost of
sampling and the optimality of the estimated reserve price
for revenue maximization, in the context of finite-horizon
GSP auctions. Specifically, we first consider the revenue loss
for two phases: the sampling period and the period after
sampling. Then we formulate the trade-off problem as a
constrained optimization problem, which aims to maximize
the auctioneer’s worse-case total revenue. We show that the
optimal sample size is independent of the value distribution.

2. GSP MECHANISM AND OPTIMAL RE-
SERVE PRICE

There are N bidders competing for K ad slots (K <
N). Each ad slot has a corresponding click-through-rate
(CTR). Let vi denote the value of bidder i’s ad and v =
(v1, v2, . . . , vN ) represent the value profile. Bidders’ values
are usually assumed to be independent and identically dis-
tributed (i.i.d.) with cumulative distribution function F
(probability density function f), which is common knowl-
edge to bidders but unknown to the auctioneer [3, 8].

In the theory of revenue maximization, it is usually as-
sumed that bidders were playing the lowest-revenue envy-
free (LREF) equilibrium for GSP [4, 5, 8, 11], which is an
efficient Nash Equilibrium. Then according to [6, 7], the
auctioneer’s expected revenue with respect to the reserve
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price r can be written as

R(r) = Ev{
N∑
i=1

ψ(vi)x
r
i (v)},

where ψ(vi) = vi− 1−F (vi)
f(vi)

is called the virtual value function

and xri (v) is the CTR bidder i can receive given v and r. The
optimal reserve price r∗ satisfies that [7]

ψ(r∗) = 0.

3. PROBLEM FORMULATION
We realistically consider that bidders’ value distribution

is unknown to the auctioneer who aims to maximize his/her
overall revenue for M rounds . The first τ rounds are used
for sampling and the reserve price is set as zero in this period
in order to observe complete (i.e., non-truncated) value dis-
tribution. Note that the auctioneer can only observe bids of
the advertisers but not their values. We assume that bidders
were playing the LREF equilibrium and compute the values
from bids according to the method in [11]. Then we make
an estimation of the optimal reserve price, represented as r,
with the sampled data and set it for the remaining M − τ
rounds. The total revenue the auctioneer will get is

τ ·R(0) + (M − τ) ·R(r).

The revenue loss is thus

M ·R(r∗)− (τ ·R(0) + (M − τ) ·R(r)),

which is equal to

M ·R(r∗)(1− (
τ

M
· R(0)

R(r∗)
+ (1− τ

M
) · R(r)

R(r∗)
)).

Then minimizing the total loss means that

max
τ

τ

M
· R(0)

R(r∗)
+ (1− τ

M
) · R(r)

R(r∗)
, (1)

s.t. τ ∈ {1, 2, . . . ,M}.

4. OPTIMAL SAMPLE SIZE
Further analysis shows that both R(0)

R(r∗) and R(r)
R(r∗) are re-

lated to the density function f(·) . As a result, the solution
of the problem is a function of f(·). Since the priori f(·) is
unknown to the auctioneer, we need to find a solution that
is independent of f(·) and has good performance on opti-
mality at the same time. Specifically, inspired by [1] and [3]
which proposed the distribution-independent lower bound-

s of R(0)
R(r∗) and R(r)

R(r∗) respectively for a simple mechanism

where winners pay the same minimal price, we can derive
the corresponding bounds for the GSP mechanism. We use

l1 to denote the lower bound of R(0)
R(r∗) . Since more samples

will lead to a better estimation of the optimal reserve price,

the lower bound l2(τ) of R(r)
R(r∗) is a function with respect to τ .

Based on this result, we can re-formulate the optimization
problem with l1 and l2(τ) as follows:

max
τ
R̂(τ) =

τ

M
l1 + (1− τ

M
)l2(τ), (2)

s.t. τ ∈ {1, 2, . . . ,M}. (3)

Since both l1 and l2(τ) do not relay on f(·), the optimal
sample size τ∗ of the problem defined in Eqs. (2) and (3),
which aims to maximize the auctioneer’s worse-case total
revenue, is robust against any distribution.

5. EXTENSIONS AND FUTURE WORK
This paper is based on the unweighted GSP, but the model

can be extended to the weighted GSP [10]. First note that
the LREF equilibrium also works in weighted GSP. Then we
can follow [10] to assume that si = viei is drawn from an
i.i.d. regular distribution F , where ei is bidder i’s ad quality.
The optimal reserve price for bidder i is modified as s∗/ei,
where s∗ satisfies ψ(s∗) = 0. All the equations still hold if
we replace vi with viei. Thus the model can be extended to
the weighted GSP.

The model can also be applied to VCG auctions. It is
known that bidders’ payments are the same for the (dom-
inant) truth-telling equilibrium with VCG mechanism and
the LREF equilibrium with GSP mechanism. Hence, if we
assume bidders in VCG auctions to have i.i.d. values and
bid truthfully, the model can be directly extended to VCG.

In future work, we will derive the tight bounds for R(0)
R(r∗)

and R(r)
R(r∗) and propose efficient algorithms to solve the op-

timization problem.
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