
Using Automatic Failure Detection for
Cognitive Agents in Eclipse

Vincent J. Koeman
Delft University of Technology

Mekelweg 4, 2628CD
Delft, The Netherlands

v.j.koeman@tudelft.nl

Koen V. Hindriks
Delft University of Technology

Mekelweg 4, 2628CD
Delft, The Netherlands

k.v.hindriks@tudelft.nl

Catholijn M. Jonker
Delft University of Technology

Mekelweg 4, 2628CD
Delft, The Netherlands

c.m.jonker@tudelft.nl

1. INTRODUCTION
In order to reduce debugging effort and enable automated

failure detection, we proposed an automated testing frame-
work for cognitive agent programs that provides support for
detecting frequently occurring failure types in [14]. Auto-
mated testing yields a reduction in the effort needed to de-
tect a failure and is more effective than manual code inspec-
tion methods [16].

A failure is an event in which a system does not perform a
required function within specified limits [10]. Failures thus
are manifestations of undesired behaviour. They are caused
by a fault, an incorrect step, process, or data definition in a
program [10] or mistake in a program [17]. Upon detecting
a failure, a programmer needs to locate and correct the fault
that causes the failure.

We introduced a test language based on two basic tempo-
ral operators, and use this language to specify test templates
for detecting failure types. These test templates refine a
failure taxonomy introduced previously in [17]. A test ap-
proach has also been specified that explains how to instan-
tiate test templates and derive test conditions for specific
failure types. The main steps of this approach are (i) to de-
fine success in terms of functional requirements, (ii) to test
cognitive state updating, and (iii) to classify failures that
concern actions and goals.

2. MAIN PURPOSE: THE AUTOMATED
TESTING OF COGNITIVE AGENTS

In general, different techniques for detecting failures of
program code are available, ranging from inspection of source
code and logs to automated testing tools [16]. The need for
debugging techniques and test approaches for agent-oriented
programming has been broadly recognized [2, 4, 5]. Tech-
niques for agent-oriented programming need to be based on
the underlying agent paradigm [15, 18]. However, this is a
significant challenge, as they should for example take into
account that agents execute a specific decision cycle and op-
erate in non-deterministic environments [1, 3, 9].

The developed testing framework provides a systematic
approach for detecting failures in cognitive agent programs
by using test templates that target specific types of failures

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in the taxonomy, and a systematic method for using these
templates for testing. Table 1 lists information resources
that are particularly useful for testing.

Source Type of Information
Agent program (comments) Clues for reasons & design
Agent trace (screen, logs) Observable behaviour
Agent design & specification Functional requirements
Environment (documentation) Percepts, actions available

Table 1: Information sources for testing

3. DEMONSTRATION: TESTING GOAL
AGENTS IN THE ECLIPSE IDE

As we have implemented the automated testing frame-
work for Goal [8], we will use the Goal agent program-
ming plug-in1 for Eclipse in our demonstration. This plug-
in provides a full-fledged development environment for agent
programmers, integrating all agent and agent-environment
development tools in a single well-established setting [13].
The Eclipse platform is based on an open architecture that
allows for building on top of well-known existing frameworks
[6]. By using Eclipse and the DLTK framework [7], for ex-
ample, a state-of-the-art editor for Goal has been created,
which forms a solid foundation for further tools. The Goal
language itself has been recently updated to use a more mod-
ular approach, i.e., better facilitating re-use. In addition, a
source-level debugger for agents has been fully implemented
in the plug-in based on the work in [12].

The Goal plug-in for Eclipse contains a fully implemented
version of the automated testing framework for Goal agents.
This implementation has been integrated into the source-
level debugger, facilitating for example the inspection of an
agent’s state as soon as a test condition has failed, as illus-
trated in Figure 1. The new modular approach of the Goal
agent programming language also better facilitates the test-
ing of individual, separate pieces of functionality.

Tests are programs that we write in a test language. The
test language is built on top of the Goal programming lan-
guage and re-uses parts of that language. The test language
provides support for two main tasks: setting up a test and
specifying which test conditions should be evaluated.

In a test we can execute only part of an agent and even
make the agent do things it would not otherwise do. The tes-
tactions that are specified in the test program are performed

1See http://goalhub.github.io/eclipse for a demonstra-
tion(video) of the testing framework implementation and in-
structions on how to install Goal in Eclipse.

1507



Figure 1: A partial illustration of how test failures are displayed in the source-level agent debugger.

when the test is run. Test actions can be preparatory ac-
tions for, e.g., initializing an agent’s state, but they can can
also be instructions to execute a module. Test conditions are
built on top of the cognitive state queries that are used in
program rules, like querying the beliefs or goals of an agent.
In addition to this, a condition done(action) can be used to
test whether some action has just been performed. A test
condition is a temporal condition that expresses that some-
thing (i.e. a state query) should happen always, never, even-
tually, or when some other condition has been true before.
Test conditions are associated with a module, and evaluated
whilst this module is executed. It is possible to associate a
pre-condition, a post-condition, and an in-condition with a
module test. The pre-condition of a module is a state condi-
tion that should hold when a module is entered. Similarly,
a post-condition is a state condition that should hold when
a module is exited. An in-condition is a set of temporal
test conditions that specify which behaviour is expected of
a module while it is executed.

The examples we will use to demonstrate this test frame-
work are some of the educational environments2 that are de-
veloped alongside the Goal language, like the Blocks World
for Teams (BW4T) [11]. In our demonstration, we will show
that something we want to happen eventually actually never
happens (i.e. detect a failure). For example, an agent should
move a block in order to achieve its goal, but it does not do
that. We thus want our test to fail. But to show that some-
thing will never happen takes a long time. We can instead
use a time out to ensure termination of the test after a spec-
ified time. A time out is global and specifies how much time
(in seconds) is allowed to pass before the entire test should
be completed. If a time out happens, the test is aborted.

In this example, we want to check whether our agent will
move a specific block at some point in time during the exe-
cution of its main module (stackBuilder). More precisely, we
want to know whether at some point in time the agent will
perform the action move(b8,table). We can use the eventu-

ally operator for this. As temporal conditions are specified
as in-conditions, and we want to evaluate the stackBuilder
module, we get the following module test example:

Note that tests should be repeated sufficiently often as
states generated will differ per run, if only because environ-
ments are more often than not non-deterministic. When a
failure is detected, i.e., when running a test it fails at some
point, the corresponding fault in the agent program must be
located. The program location where the agent is at when
the test failed is indicated by the testing framework (when
using the debugger). Although it is often the case, it is not

2All (educational) agent environments are freely available
at https://github.com/eishub. Most of these projects in-
clude an assignment for (novice) agent programmers.

use BlocksWorld as mas.
use stackBuilder as module.
timeout = 1.

test stackBuilder with
in{ eventually done(move(b8,table) ). }

stackBuilderAgent {
do stackBuilder.

}

Figure 2: An example of a test that determines
whether the stackBuilderAgent moves b8 to the table
at least once in the stackBuilder module.

always true that this location also is the fault location, i.e.,
the place of the actual error in the code. If the fault is
not located immediately additional debugging is needed. In
particular, faults related to actions that are performed but
should not have been performed are usually more difficult
to locate, as we will show as well.

In this way, we will demonstrate how in practice our test
approach (i.e. of [14]) can be used to automatically detect
failures and eventually resolve the faults that cause them. In
this way, the implementation details of the automated test-
ing framework for Goal agents will be highlighted, together
with the source-level debugger in which it is integrated.

4. CONCLUSION
The main goal of our demonstration, is to show how an

automated testing framework for cognitive agents facilitates
the detection of failures and aids in the localization of faults.
In [14], we have proposed an automated testing framework
for cognitive agents and an associated test approach based
on test templates for frequently occurring failure types. By
using a concrete implementation of the testing framework
for the Goal agent programming language, an integration
with the existing source-level debugger was created within
the Eclipse environment, thus fully implementing the design
within a state-of-the-art setting. This implementation and
its source are publicly available, and used in our demonstra-
tion in order to illustrate concrete examples of its use, and
provide insight into practical implementation details that
may be valuable for the adaptation into other agent pro-
gramming languages.

1508



REFERENCES
[1] R. Bordini, M. Dastani, and M. Winikoff. Current

Issues in Multi-Agent Systems Development. In
Engineering Societies in the Agents World VII,
volume 4457, pages 38–61. 2007.

[2] R. H. Bordini, L. Braubach, J. J. Gomez-sanz, G. O.
Hare, A. Pokahr, and A. Ricci. A survey of
programming languages and platforms for multi-agent
systems. Informatica, 30:33–44, 2006.

[3] G. Caire, M. Cossentino, and A. Negri. Multi-agent
systems implementation and testing. In Proc. of the
4th From Agent Theory to Agent Implementation
Symposium, AT2AI-4, 2004.

[4] M. Dastani. Programming multi-agent systems. The
Knowledge Engineering Review, 30:394–418, 9 2015.

[5] J. Dix, K. V. Hindriks, B. Logan, and W. Wobcke.
Engineering Multi-Agent Systems (Dagstuhl Seminar
12342). Dagstuhl Reports, 2(8):74–98, 2012.

[6] D. Geer. Eclipse becomes the dominant java ide.
Computer, 38(7):16–18, July 2005.

[7] S. Gomanyuk. An approach to creating development
environments for a wide class of programming
languages. Programming and Computer Software,
34(4):225–236, 2008.

[8] K. V. Hindriks. Programming rational agents in goal.
In A. El Fallah Seghrouchni, J. Dix, M. Dastani, and
R. H. Bordini, editors, Multi-Agent Programming:
Languages, Tools and Applications, pages 119–157.
Springer US, 2009.

[9] Z. Houhamdi. Multi-Agent System Testing: A Survey.
International Journal of Advanced Computer Science
and Applications, 2(6):135–141, 2011.

[10] ISO. ISO/IEC/IEEE 24765:2010 systems and software
engineering - vocabulary. Technical report, Institute of
Electrical and Electronics Engineers, Inc., 2010.

[11] M. Johnson, C. Jonker, B. van Riemsdijk, P. J.
Feltovich, and J. M. Bradshaw. Joint activity testbed:
Blocks world for teams (bw4t). In H. Aldewereld,
V. Dignum, and G. Picard, editors, Engineering
Societies in the Agents World X, volume 5881 of
Lecture Notes in Computer Science, pages 254–256.
Springer Berlin Heidelberg, 2009.

[12] V. J. Koeman and K. V. Hindriks. Designing a
source-level debugger for cognitive agent programs. In
Q. Chen, P. Torroni, S. Villata, J. Hsu, and
A. Omicini, editors, PRIMA 2015: Principles and
Practice of Multi-Agent Systems, volume 9387 of
Lecture Notes in Computer Science, pages 335–350.
Springer International Publishing, 2015.

[13] V. J. Koeman and K. V. Hindriks. A fully integrated
development environment for agent-oriented
programming. In Y. Demazeau, K. S. Decker,
J. Bajo Pérez, and F. de la Prieta, editors, Advances
in Practical Applications of Agents, Multi-Agent
Systems, and Sustainability: The PAAMS Collection,
volume 9086 of LNCS, pages 288–291. Springer
International Publishing, 2015.

[14] V. J. Koeman, K. V. Hindriks, and C. M. Jonker.
Automating failure detection in cognitive agent
programs. In Proceedings of the 2016 International
Conference on Autonomous Agents and Multi-agent
Systems, AAMAS ’16. International Foundation for
Autonomous Agents and Multiagent Systems, 2016.

[15] C. D. Nguyen, A. Perini, C. Bernon, J. Pavón, and
J. Thangarajah. Testing in Multi-Agent Systems. In
Agent-Oriented Software Engineering X, volume 6038,
pages 180–190. Springer Berlin Heidelberg, 2011.

[16] P. Runeson, C. Andersson, T. Thelin, A. Andrews,
and T. Berling. What do we know about defect
detection methods? Software, IEEE, 23(3):82–90, May
2006.

[17] M. Winikoff. Novice programmers’ faults & failures in
goal programs. In Proceedings of the 2014
International Conference on Autonomous Agents and
Multi-agent Systems, AAMAS ’14, pages 301–308,
Richland, SC, 2014. International Foundation for
Autonomous Agents and Multiagent Systems.

[18] Z. Zhang, J. Thangarajah, and L. Padgham. Model
based testing for agent systems. Software and Data
Technologies, 22:399–413, 2008.

1509




