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ABSTRACT
Centrality indices aim to quantify the importance of nodes or edges
in a network. A number of new centrality indices have recently
been proposed to try and capture the role of nodes in connecting
the network. While these indices seem to deliver new insights, to
date not enough is known about their theoretical properties. To ad-
dress this issue, we propose an axiomatic approach. Specifically,
we prove that there exists a unique centrality index satisfying some
intuitive properties related to network connectivity. This new index,
which we call Attachment Centrality, is equivalent to the Myerson
value of a particular graph-restricted coalitional game. Building
upon our theoretical analysis, we show that our Attachment Cen-
trality has certain computational properties that are more attractive
than the Myerson value for an arbitrary game.

General Terms
Measurement, Theory
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1. INTRODUCTION
In many social networks, certain nodes play more important roles
than others. For example, popular individuals with frequent so-
cial contacts are more likely to spread a disease in the event of
an epidemic [8]; airport hubs such as Heathrow or Schiphol con-
centrate intercontinental passenger traffic [1]; and certain parts of
the brain’s neural network may be indispensable for breathing or
to perform other vital activities [11]. Consequently, the concept
of centrality index, which aims at identifying the key nodes in the
network, has been extensively studied in the literature [12, 7]. Ar-
guably, the most well-known such indices are: Degree, Closeness,
and Betweenness centralities [9]. In particular, Degree Centrality
quantifies the power of a node by the number of its incident edges.
In contrast, Closeness Centrality promotes nodes that are close to
all other nodes in the network. Betweenness Centrality counts the
shortest paths between any two nodes in the network, and ranks
nodes according to the number of the shortest paths they belong to.
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More recently, a number of new centrality indices have been pro-
posed in an attempt to reflect the following fundamental property of
nodes: the role they each play in connecting the network [10, 3, 4].
Typically, such measures are built upon the well-known coalitional-
game model of Myerson [16], where cooperation is restricted to
connected coalitions (i.e., connected subgraphs of the network).
Within this general framework, different centrality indices are ob-
tained by manipulating the function that assigns the payoff from
cooperation in each connected coalition.

Unfortunately, although these recent indices offered new insight,
they were only evaluated empirically. The lack of a theoretical un-
derpinning not only makes it difficult to choose among them, but
also hinders the development of efficient algorihtms to compute
them, especially given the inherent computational difficulty of My-
erson’s model [22].

To address this issue, we propose an axiomatic approach built
around five basic requirements. The first two, namely (1) Locality
and (2) Normalization, seem to be reasonable requirements for any
centrality index (indeed, all three standard centrality indices satisfy
them). Other requirements that we focus on are (3) Monotonicity
and (4) Gain-loss—two somewhat-opposing views of how adding
an edge affects other nodes (i.e., nodes that are not part of the edge).
In a nutshell, when an edge is added, Monotonicity requires that the
indices of other nodes do not decrease, whereas Gain-loss implies
that they do not increase. More precisely, Gain-loss requires that
the gain of a node always results in the loss of another. The fi-
nal requirement is (5) Fairness, requiring that the addition of an
edge equally affects the two nodes connected by it. Arguably, this
requirement seems reasonable when an edge is considered to be
equally owned by both nodes. That is to say, both nodes have an
equal say in whether the edge is formed or disbanded (e.g., both
sides of a relationship must consent to, and can break, the relation).
From this point of view, it seems “fair” that both nodes equally
benefit from their edge, since they both equally own it.1

Building upon these axioms, we prove that Degree Centrality is
the unique index satisfying Normalization, Locality, Fairness and
Monotonicity. Furthermore, we prove that replacing Monotonicity
with Gain-loss leads to yet another unique index, which we call:
Attachment Centrality; this is the first axiomatized centrality index
focusing on connectivity in the literature. Finally, to compute our
index, we propose a dedicated algorithm and test it on a relatively
large, real-life social network.

1Of course one can think of many alternative ways to interpret
“fairness”. We do not argue that ours is necessarily the best way,
but rather that it seems to be a reasonable way.
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2. PRELIMINARIES
Since our work falls at the interface of graph theory and coalitional
game theory, this section provides the necessary background and
notation from both sides.

Graph theory: A graph, or a network, is a pair, G = (V,E),
where V is the set of n = |V | nodes, and E is the set of edges. We
sometimes write |G| instead of |V | to denote the number of nodes
in G. An edge {v, u} ∈ E is said to be incident to nodes v and u.
The degree of a node v, denoted by degreeG(v), is the number of
edges incident to v, i.e.:

degreeG(v) =
∣∣{{v, u} ∈ E : u ∈ V

}∣∣.
When there is no risk of confusion, we will often omit the G from
the notation, and simply write degree(v) instead of degreeG(v).
Nodes u, v ∈ V are said to be neighbors if they are connected by
an edge. If degree(v) = 0, we say that v is isolated.

A path, p = (v1, . . . , vk), is a sequence of nodes in which every
two consecutive nodes are connected by an edge, i.e., {vi, vi+1} ∈
E, ∀i ∈ {1, . . . , k − 1}. The length of a path is the number of
edges in it (i.e., the number of nodes in it minus 1). We write v ∈ p
if v is one of the nodes in p. The distance between any two nodes,
v, u ∈ V , is denoted by dist(v, u), and is defined as the length of
a shortest path between them. If there exists no path between u and
v, we assume that dist(v, u) =∞.

Next, we introduce the concept of a minimal path. In particular,
a path, p, between v and u is said to be minimal if there exists no
shorter path between v and u that can be obtained by removing
nodes from p (see Figure 1 for an example). The set of all shortest
paths between v and u is denoted by Πs(v, u), and the set of all
minimal paths between v and u is denoted by Πm(v, u). Note that
every shortest path between u and v is a minimal path between u
and v, i.e., Πs(v, u) ⊆ Πm(v, u).

Nodes v, u ∈ V are said to be connected if there exists a path
between them. A graphG is said to be connected if every two nodes
in it are connected. For any subset of nodes, S ⊆ V , the subgraph
induced by S is denoted by G[S] and is defined as a graph whose
nodes are S and whose edges are those in G that connect some
node in S with some other node in S. Formally:

G[S] = (S, {{v, u} ∈ E : v, u ∈ S}).

Any subset of nodes, S ⊆ V , is said to be connected if the subgraph
induced by S is connected. If G is not connected, we denote by
K(G) the partition of V into disjoint sets of nodes that each induce
a maximal connected subgraph in G.

The set of all possible graphs with nodes V is denoted by GV .
Two special graphs are cliques and stars. Specifically, a graph is a
clique if every two nodes in it are connected by an edge:

(V, {{v, u} : v, u ∈ V }).

On the other hand, a graph is a star if there exists a node v (called
the center of the star) such that every node u ∈ V \{v} is connected
to v and not connected to any other node. That is:

(V, {{v, u} : u ∈ V \ {v}}).

Centrality indices: A centrality index, F : GV → RV , is a func-
tion that assigns to every node a number reflecting its importance.
Typically, the higher this number, the more important or central
the node. Arguably, the most well-known centrality indices are the
following (we will refer to them the standard centrality indices):

• Degree Centrality (Dv) is simply the degree of a node, i.e.,

Dv(G) = degreeG(v);

Figure 1: Out of all three paths between v and u, only Path 1
and Path 2 are minimal paths. Furthermore, out of those two
minimal paths, only Path 1 is a shortest path between v and u.

• Closeness Centrality (Cv) is the sum of of the inverses of dis-
tances to other nodes (under the assumption that 1

∞ = 0):2

Cv(G) =
∑

u∈V \{v}

1

dist(v, u)
;

• Betweenness Centrality (Bv) is the average percentage of short-
est paths between any two other nodes that goes through the node
under consideration. More formally, if we denote by Kv(G) the
connected component containing v in G, then:

Bv(G)=
1∣∣Kv(G)

∣∣−2

∑
s,t∈Kv(G)

s6=v 6=t

|{p ∈ Πs(s, t) :v ∈ p}|
|Πs(s, t)| .

Note that the above formula of Betweenness Centrality is normal-
ized to ensure that it yields the same range of values as Degree and
Closeness centralities, i.e., [0, n− 1].

Coalitional game theory: A game is a pair (N, f), whereN is the
set of players and f : 2N → R is the characteristic function, which
assigns a real number to each subset of players (with the only as-
sumption being that f(∅) = 0). Any subset of players, S ⊆ N , is
called a coalition, and f(S) is called the value of coalition S. In
contrast, “a value of a game” is a function that assigns a payoff to
each player v ∈ N , i.e., ϕ : (2N → R)→ RN . This payoff tradi-
tionally represents v’s share out of the value of the grand coalition,
i.e., the coalition of all players. Alternatively, the payoff of v can
be interpreted as an assessment of the importance of v in the game.
Thus, a value of a game plays the same role as a centrality index of
a network; the former ranks players whereas the latter ranks nodes.

Shapley [21] was the first to propose an axiomatic approach to
the problem of payoff division. In particular, Shapley proved that
there exists a unique “value” satisfying some intuitive and desirable
properties (also known as “axioms”). This value—now known as
the Shapley value—is denoted for player v by SVv(f), defined as:

SVv(f) =
∑

S⊆N\{v}

β(S,N)
(
f(S ∪ {v})− f(S)

)
, (1)

where β(S,N) = |S|!(|N | − |S| − 1)!/|N |!. Here, the expression
f(S∪{v})−f(S) is known as the marginal contribution of player
v to coalition S; it is the difference that v makes when joining S.

Myerson [16] considered a model under which the cooperation
of players is restricted by a communication graph, G. Specifically
in this model, only connected coalitions, i.e., coalitions in which
all players can communicate (either directly or indirectly through

2In the classical definition [20], the summation sign is in the de-
nominator. However, we consider the well-respected version for
graphs which do not have to be strongly connected [5].
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intermediaries) can generate value added from cooperation. As for
any disconnected coalition, its value equals the sum of the values
of its connected components. As such, Myerson’s model is de-
fined by a graph, G, and a function, f , that specifies the value of
every connected subgraph of G. Over the past decades, this be-
came widely accepted as the canonical model of restricted cooper-
ation. Myerson also proposed a value—now known as the Myerson
value—which is denoted for player i by MVi(f,G); this value is
simply the Shapley value of the restricted game (N, f/G) whose
characteristic function is defined as follows:

f/G(S) =
∑

C∈K(G[S])

f(C), for every S ⊆ N . (2)

To put it differently, we have:
MVv(f,G) = SVv(f/G). (3)

3. ATTACHMENT CENTRALITY
Our aim in this section is to define a new centrality index that re-
flects connectivity, by following an “axiomatic approach”. That is,
we want to identify a set of requirements, and then prove that there
exists exactly one possible centrality index that satisfies all of those
requirements, or “axioms”. This way, the axioms would serve as
a theoretical foundation for the centrality index that they uniquely
define. Ideally, those axioms should be as intuitive and desirable as
possible, to justify the use of the resulting index. In reality, how-
ever, any such set of axioms would probably be more suitable and
intuitive for some settings, and less so for others. Still, identifying
such a set of axioms would serve as a important step towards better
understanding how centrality can be tailored to reflect or capture
connectivity.

To this end, we propose five requirements, namely Locality, Nor-
malization, Fairness, Monotonicity, and Gain-loss. Starting with
Locality, this requirement is defined as follows, where Kv(G) is
the connected component containing v in G.

Locality: For every graph G = (V,E) and every node v ∈ V ,
the centrality of v depends solely on G[Kv(G)]. That is,

Fv

(
G
)

= Fv

(
G[Kv(G)])

)
.

As centrality indices are typically defined for connected graphs,
the Locality requirement can be interpreted as a natural extension
to disconnected graphs. Note that all four standard indices satisfy
this requirement.

As for Normalization, it is inspired by the observation that De-
gree, Closeness, and normalized Betweenness all return a minimum
value of 0, and a maximum value of n − 1. Moreover, they are all
minimized when the node is isolated, and maximized when the node
is the center of a star. Normalization generalizes this observation.

Normalization: For every G = (V,E) and v ∈ V , we have:

• Fv(G) ∈ [0, n− 1];
• Fv(G) = 0 when v is isolated in G;
• Fv(G) = n− 1 when G is a star, center of which is v.

The remaining three requirements are concerned with the impact
of adding an edge; Fairness focuses on how this addition affects
both ends of the edge, whereas Monotonicity and Gain-loss focus
on how this addition affects every node other than the two ends of
the edge. Next, we explain each requirement in more detail.

Fairness: For every G = (V,E) and every v, u ∈ V , adding
the edge e = {u, v} affects the centrality of u and v equally:

Fv

(
(V,E∪{e})

)
−Fv

(
(V,E)

)
=Fu

(
(V,E∪{e}

)
−Fu

(
(V,E)

)
This notion of Fairness was first proposed by Myerson [16]. Ar-

guably, this seems to be a reasonable requirement when the two
ends of the edge are considered to be equally responsible for it.
This is perhaps more evident in settings where the formation of an
edge requires the consent of both ends, and where the edge can be
broken at any time by either end, such as friendship relationships
for example. Interestingly, Closeness and Betweenness centralities
do not satisfy the Fairness requirement. As mentioned earlier, this
requirement is clearly not the only possible interpretation of a “fair”
centrality index. However, we choose to call it “Fairness” because,
at least in some settings, it seems to be reasonably fair.

Moving on to the final two requirements, namely Monotonic-
ity and Gain-loss; these reflect somewhat-opposing views of how
adding an edge affects the indices of the remaining nodes. In a
nutshell, Monotonicity requires that these indices do not decrease,
whereas Gain-loss implies that they do not increase. Next is a for-
mal definition of the two requirements, followed by a discussion of
the intuition behind each.

Monotonicity: For every graph, G = (V,E), adding an edge
to E does not decrease the index of any node in V . That is, for
every v, u, w ∈ V :

Fv

(
(V,E ∪ {u,w})

)
≥ Fv

(
(V,E)

)
.

Gain-loss: For every connected graph, G = (V,E), and every
pair of nodes, u,w ∈ V , adding the edge {u,w} to E does not
affect the sum of indices, i.e.:∑

v∈N

Fv

(
(V,E ∪ {{u,w}})

)
=
∑
v∈N

Fv

(
(V,E)

)
.

Arguably, from the connectivity point of view, Gain-loss makes
more sense compared to Monotonicity. To see why this is this case,
consider a situation in which the removal of a node, v, breaks a
connected graph, G, into two components, G1 and G2. Here, v
obviously plays an important role in terms of connectivity, since its
presence is necessary to connectG1 withG2. Now suppose that the
edge {u,w}was added toG, where u belongs toG1 andw belongs
to G2. With this addition, it seems reasonable to claim that the role
played by u and w grows more important, whereas the role played
by v diminishes, since its presence is no longer necessary to con-
nect G1 with G2. From this perspective, the Gain-loss requirement
seems reasonable, whereas Monotonicity seems rather unintuitive,
since it assumes that the connectivity role of v remains unchanged,
or even grows more important, after the addition of {u,w}.

Note that the Gain-loss requirement only deals with the addition
of an edge to an already-connected graph. As for disconnected
graphs, if we add an edge that connects some of its components,
then the Gain-loss requirement places no assumptions or restriction
on how this would affect the centrality of nodes across the graph.

Having described the necessary five requirements, we are now
ready to introduce one of our main results.

THEOREM 1. There exists a unique centrality index that satis-
fies Locality, Normalization, Fairness, and Monotonicity; this index
is Degree Centrality.

PROOF. We begin by showing that Degree Centrality satisfies
the four requirements listed in the statement of the theorem. To this
end, for any graph, G = (V,E), and any node, v ∈ V :

• degree(v) depends solely on the connected component con-
taining v in G, meaning that Locality is met;

• degree(v) = 0 when v is isolated, and degree(v) = n − 1
when G is a star center of which is v. It also holds that:
0 ≤ degree(v) ≤ n− 1. Thus, Normalization is met;
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• degree(v) does not decrease by adding an edge {u,w} for
some u,w ∈ V \ {v}, meaning that Monotonicity is met;

• Adding an edge, {v, u} for any u ∈ V \ {v} increases the
degree of both u and v by 1. Therefore, Fairness is met.

It remains to prove that Degree Centrality is the only possible cen-
trality index satisfying the above four requirements. To put it dif-
ferently, assuming that F is a centrality index satisfying those re-
quirements, it remains to prove that Fv(G) = Dv(G) for any graph
G = (V,E) and any node v ∈ V . We will do so by first proving
that Fv(G) ≥ Dv(G) and then proving that Fv(G) ≤ Dv(G).

Step 1: In this step, we will prove that:

Fv(G) ≥ Dv(G), ∀v ∈ V. (4)

Let us fix a node, v ∈ V , and remove all the edges from G except
those connecting v to its neighbors. In so doing, we obtain a new
graph, G′, such that Kv(G′) forms a star center of which is v, and:
|Kv(G′)| = Dv(G) + 1. Since v is the center of the star G′(v),
then based on Normalization: Fv(G′[Kv(G′)]) = |Kv(G′)| − 1.
Next, we know from Locality that: Fv(G′) = Fv(G′[Kv(G′)]).
Finally, we know from Monotonicity that: Fv(G) ≥ Fv(G′) which
concludes the proof of correctness of (4).

Step 2: In this step, we will prove that:

Fv(G) ≤ Dv(G), ∀v ∈ V. (5)

To this end, for any set of nodes, V , and any v ∈ V , let G†v(G)
denote the set of all possible graphs whose set of nodes is V , and
whose set of edges,E, includes every pair in V \{v}, meaning that
all nodes in V \{v} form a clique. We will prove that the following
holds for all G ∈ G†v(G):

Fv(G) = Dv(G). (6)

We will prove this by induction over the degree of v. Specifically,
for any graph, G ∈ G†v(G), if degreeG(v) = 0 then v is isolated,
implying that (6) holds based on Normalization. Now, assuming
that (6) holds for all G ∈ G†v(G) : degreeG(v) ≤ d for some
positive integer d < n − 1, we will prove that (6) also holds for
every graph G ∈ G†v(G) : degreeG(v) = d + 1. Let G′ be one
such graph, i.e., a graph in G†v(G) such that the degree of v in
G′ equals d + 1. Furthermore, let u ∈ V be a neighbor of v in
G′. Then, if we remove the edge {u, v} from G′, we obtain a new
graph,G′′ ∈ G†v(G), in which the degree of v equals d. This means
that Fv(G′′) = Dv(G′′) based on the aforementioned assumption.
Now observe that:

• Du(G′) = n−1. This is because u is connected to v inG′ (since
u and v are neighbors) and connected to every other node in G′

(since V \ {v} forms a clique). Thus, based on Normalization
and (4), it holds that: Fu(G′) = n− 1;

• Du(G′′) = n − 2. This is because Du(G′) = n − 1, and G′′

is identical to G′ except that u and v are no longer neighbors.
Thus, from Normalization and (4): n− 2 ≤ Fu(G′′) ≤ n− 1.

The above two observations imply that, with the addition of {v, u}
to G′′, the centrality of u increases by at most 1. That is,

Fu(G′)− Fu(G′′) ≤ 1. (7)

Now let us turn our attention back to node v. So far, we know that
Fv(G′′) = Dv(G′′) and that Dv(G′) = Dv(G′′) + 1. We also
know from (4) that Fv(G′) ≥ Dv(G′). Thus:

Fv(G′)− Fv(G′′) ≥ 1. (8)

Based on (7) and (8), as well as the Fairness requirement, we con-
clude that: Fv(G′) − Fv(G′′) = 1, implying that Fv(G′) =
Dv(G′). This concludes our proof of the correctness of (6).

Let us now move back to our original goal in Step 2—proving
the correctness of (5). Here, we have two possibilities:

• If V \ {v} happened to form a clique in G, then we know from
(6) that Fv(G) = Dv(G), implying that (5) holds;

• If V \ {v} did not form a clique in G, then we can add every
missing edge between pairs of nodes in V \{v}. In so doing, we
end up with a new graph, G∗, in which V \ {v} forms a clique.
Thus, based on (6), we have:

Fv(G∗) = Dv(G∗). (9)

Furthermore, based on Monotonicity, we know that:

Fv(G) ≤ Fv(G∗). (10)

Finally, since none of the added edges involved v:

Dv(G∗) = Dv(G). (11)

Taken together, (9), (10) and (11) imply that (5) holds.

Thus, we have proved that (5) always holds, which is what we want
to show in Step 2. This concludes our proof of Theorem 1.

Next, we will introduce our Attachment Centrality, and then
prove that it is the unique index satisfying Locality, Normalization,
Fairness and Gain-Loss.

DEFINITION 1. Attachment Centrality is the centrality index
defined for every graph, G = (V,E), and every node, v ∈ V , as:

Av(G) =
∑

S⊆V \{v}

2β(S, V )(|K(G[S])|− |K(G[S∪{v}])|+1),

(12)
where β(S, V ) = |S|!(|V |−|S|−1)!/|V |!, andK(G[S]) denotes
the partition of S into disjoint sets of nodes that each induce a
maximal connected subgraph in G[S].

In the above definition, for any S ⊆ V (connected or otherwise),
the expression |K(G[S])|−|K(G[S∪{v}])|+1 equals the number
of components in G[S] that node v connects.

The intuition behind the Attachment Centrality is as follows. If
we were to remove nodes from the graph one by one in a random
order, then the Attachment Centrality of v ∈ V would be the ex-
pected number of components created from the removal of v, mul-
tiplied by 2 for normalization purposes.

By comparing the definition of the Attachment Centrality with
Equation (1)—the definition of the Shapley value—we find that:

Av(G) = SVv(f∗G), (13)

where

f∗G(S) = 2(|S| − |K(G[S])|). (14)

To put it in words, the Attachment Centrality is equivalent to the
Shapley value of the game (V, f∗G). Importantly, if we now write
f∗G(S) differently as follows:

f∗G(S) =
∑

C∈K(G[S])

2(|C| − 1),

we obtain an equation similar to (2)—the equation defining f/G—
except that f(C) is now replaced with 2(|C|−1). This observation,
together with (3) and (13), imply that:

Av(G) = MVv(f∗, G), (15)
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where f∗ is computed for every connected coalition, S, as:

f∗(S) = 2(|S| − 1). (16)

To put it in words, the Attachment Centrality is equivalent to the
Myerson value under the model of restricted cooperation defined
by the communication graph G and the evaluation function f∗.

THEOREM 2. There exists a unique centrality index that satis-
fies Locality, Normalization, Fairness, and Gain-loss; this index is
the Attachment Centrality.

PROOF. We begin by recalling a crucial result of Myerson [16],
who proved that for an arbitrary game (V, f), there exists a unique
function ϕ : GV → RV satisfying the following two properties:
(1) Fairness—defined exactly as in our paper—and (2) Component
Efficiency—a property defined for game (V, f) as follows:

Component Efficiency (for game (V, f)): For every graph, G,
and every connected component C ∈ K(G) of a graph:∑

v∈C

ϕv(G) = f(C).

Myerson proved that this unique function is actually the Myerson
value under the model of restricted cooperation defined by the com-
munication graph G and the evaluation function f .

Having recalled this result of Myerson, we are now ready to
prove that the Attachment Centrality satisfies all four requirements
listed in the statement of Theorem 2. In particular, Myerson’s re-
sult, as well as (15) and (16), imply that the Attachment Centrality
satisfies Fairness, and that for every graph G and every connected
component C ∈ K(G) we have:∑

v∈C

Av(G) = 2(|C| − 1). (17)

This implies that adding an edge between two nodes in a connected
component C ∈ K(G) does not affect the sum of the Attachment
Centrality of every node in that component. This, in turn, implies
that the Attachment Centrality satisfies the Gain-loss requirement.

Moving on to Normalization; we need to show that the Attach-
ment Centrality satisfies the three conditions outlined in the defini-
tion of Normalization. To this end, for every v ∈ V :

• If v is isolated in G, then v forms a connected component by
itself, and (17) implies that Av(G) = 0.
• If G is a star center of which is v, then we need to show that
Av(G) = n − 1. To this end, for every S ⊆ V \ {v}, the
induced subgraph G[S] consist of |S| connected components,
whereas the subgraph G[S ∪ {v}] consists of a single connected
component. Thus,

|K(G[S])| − |K(G[S ∪ {v}])|+ 1 = |S|.

This fact, together with (12), imply that:

Av(G) =
∑

S⊆V \{v}

2β(S, V )|S| =
n−1∑
s=0

2s

n
=

n−1∑
s=0

= n− 1.

(18)
• Finally, we need to prove that Av(G) ∈ [0, n− 1]. Note that the

expression |K(G[S])|−|K(G[S∪{v}])|+1 is always between 0
and |S| (simply because the number of components in G[S] that
are connected by v is between 0 and |S|). Furthermore, if this
expression equals |S| thenAv(G) = n−1; see (18). In contrast,
if this expression equals 0, then Av(G) = 0. This implies that
Av(G) ∈ [0, n− 1].

The above three points imply that the Attachment Centrality satis-
fies the Normalization requirement.

Next, we prove that the Attachment Centrality satisfies Locality.
In other words, given a graph, G = (V,E), and a node, v ∈ V ,
we prove thatAv(G) = Av(G[Kv(G)]), whereKv(G) is the con-
nected component containing v in G. To this end, let us denote by
mc∗v(S) the marginal contribution of v to S in the (V, f∗G), i.e.,

mc∗v(S) = 2(|K(G[S])| − |K(G[S ∪ {v}])|+ 1).

Observe that mc∗v(S) is basically the number of components from
S that node v connects, multiplied by 2. This number is not in-
fluenced by any of the nodes lying outside Kv(G)—the connected
component containing v in G. Thus, for every S ⊆ V \ {v}:
mc∗v(S) = mc∗v(S ∩Kv(G)). Next, we rewrite (12) as follows:

Av(G) =
∑

P⊆V \Kv(G)

∑
S⊆Kv(G)\{v}

β(S ∪ P, V )mc∗v(S).

Simple calculations show that for every S ⊆ Kv(G) we have:∑
P⊆V \Kv(G)

β(S ∪ P, V ) = β(S,Kv(G)).

Thus, Av(G) = Av(G[Kv(G)]), i.e., the Attachment Centrality
satisfies Locality.

It remains to prove that the Attachment Centrality is the only
possible centrality index satisfying all four requirements listed in
Theorem 2. To put it differently, given a centrality index, F , that
satisfies those requirements, it remains to prove that Fv(G) =
Av(G) for any graphG = (V,E) and any node v ∈ V . We will do
so by showing that the sum of the F index of every node belonging
to the same connected component S equals: f∗(S) = 2(|S| − 1).
In so doing, we show that F satisfies Component Efficiency for
game (V, f∗). Since F also satisfies Fairness, then based on My-
erson’s result, this index is unique.

Let G = (V,E) be a star with node v being the center, and let u
be an arbitrary node in V \ {v}. Normalization implies that:

Fv(G) = n− 1.

Next, we show that Fu(G) = 1. To this end, consider the graph
G′ = (V,E \ {{v, u}}) obtained from G by removing the edge
{v, u}. Since u is now isolated in G′, Normalization implies that:

Fu(G′) = 0,

and from Locality, we know that:

Fv(G′) = Fv(G′[V \ {u}]) = n− 2.

Now since the Fairness requirement implies that the removal of
{v, u} affects the centrality indices of both v and u equally, then:

Fu(G) = Fu(G′) + (Fv(G)− Fv(G′)) = 1.

As node uwas chosen arbitrarily from the set V \{v}, we conclude
that every node other than the center of the star has a centrality
index of 1. Thus, the sum of indices in a star equals 2(n − 1). As
every connected graph can be obtained from a star by adding and/or
removing edges, the Gain-loss requirement implies that the sum
of indices in any connected graph with n nodes equals 2(n − 1).
Finally, Locality implies that the sum of indices in any connected
component S equals 2(|S| − 1).

Note that Theorems 1 and 2 imply that there exist no value that
satisfies all five axioms: Locality, Normalization, Fairness, Mono-
tonicity, and Gain-loss.
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4. PROPERTIES
In this section, we discuss some key properties of Attachment Cen-
trality, and show that it is closely related to the notion of minimal
paths between nodes. The following theorem constitutes the cor-
nerstone of our analysis.

THEOREM 3. Adding an edge {v, u} to a graphG affects only
the Attachment Centrality of nodes lying on a minimal path between
v and u.

PROOF. Recall that the value of a coalition, S, in the game
(V, f∗G) depends solely on the number of the nodes in S and the
number of connected components in S (see Equation (14)). Now,
let G = (V,E) be an arbitrary, incomplete graph, and let v, u ∈ V
be two nodes such that {v, u} /∈ E. Finally, let G′ be the graph
that results from adding {v, u} to G, i.e., G′ = (V,E ∪{{v, u}}).
Next, we analyse how the marginal contribution of some node w ∈
V \ {v, u} to a coalition S differs between G and G′:

• Suppose that {v, u} 6⊆ S, or that {v, u} ⊆ S and both v and u
belong to the same component in G[S]. Either way, edge {v, u}
does not affect the value of S and S∪{w}: f∗G(S) = f∗G′(S) and
f∗G(S ∪ {w}) = f∗G′(S ∪ {w}). So, the marginal contribution
of w in G is the same as in G′;

• On the other hand, suppose that {v, u} ⊆ S and that v and u
belong to different component in G[S], namely Cv and Cu. In
this case, we have two possibilities: Either w is connected to
both Cv and Cu or not. If it is not connected to both, then:

f∗G′(S∪{w})−f∗G′(S) = (f∗G(S∪{w})+2)−(f∗G(S)+2)

= f∗G(S ∪ {w})− f∗G(S),

meaning that the marginal contribution of w in G is the same
as in G′. In contrast, if w was connected to both Cv and Cu,
then w would unite the two in G[S ∪ {w}] but not in G′[S ∪
{w}], because in G′ the nodes in S are sufficient to unite the
two components; they no longer need w to do that.

To summarize, we have shown that the marginal contribution of w
in G can be different than in G′ only when all of the following
three conditions are met: (1) {v, u} ⊆ S; (2) v and u belong to
different components in G[S]; (3) w is connected to both Cv and
Cu. Importantly, however, if those three conditions are met, then
w must be on some minimal path between v and u. To see why this
is case, consider a minimal path p1 between v and w in Cv , and
another minimal path p2 between u and w in Cu. Since Cv and
Cu are not connected in G, merging p1 and p2 results in a minimal
path between v and u that goes through w.

So far, we have shown that the marginal contribution of w in G
can be different than in G′ only when w is on some minimal path
between v and u. Finally, from (1) and (13), we know that the
Attachment Centrality of w is a weighted average of the marginal
contributions ofw in the game (V, f∗G). Thus, by adding {v, u}, the
Attachment Centrality of w may change only when w is on some
minimal path between v and u. This concludes the proof.

The above theorem leads to a series of corollaries that provide
additional insights on how the Attachment Centrality measures the
role of a node in connecting the network. We divide our analysis
into two parts: the first focuses on nodes with high connectivity
(such as cut vertices), whereas the second part focuses on nodes
with low connectivity (such as leafs).

High connectivity: Given a cut vertex, v ∈ V (i.e., a node that
connects disjoint parts of the graph), we will show that the Attach-
ment centralities of the nodes in each part are not influenced by the

other parts. This, in turn, implies that the Attachment Centrality of
v is simply the sum of its Attachment Centrality computed for each
part separately.

THEOREM 4. LetG be a connected graph, and let v be a node
removal of which breaks G into k disjoint components consisting
of the following sets of nodes: C1, . . . , Ck. Then,

Av(G) =
∑

i∈{1,...,k}

Av(G[Ci ∪ {v}]).

Furthermore, for every i ∈ {1, . . . , k}, and every u ∈ Ci:

Au(G) = Au(G[Ci ∪ {v}]).
PROOF. First, let us focus on an arbitrary node u ∈ Ci for some

i ∈ {1, . . . , k}. Now let us remove from G an edge {w,w′} ∈ E
such that w,w′ ∈ Cj ∪ {v} for some j 6= i. Note that a minimal
path between w and w′ cannot contain nodes from Ci. Based on
this, Theorem 3 implies that the removal of {w,w′} from G does
not affect the Attachment Centrality of node u. By removing ev-
ery such edge one by one, we eventually end up removing from G
every edge outside G[Ci ∪ {v}] without affecting the Attachment
Centrality of node u. Based on this, as well as Locality, we have
that Au(G) = Au(G[Ci ∪ {v}]).

Now, let us turn our attention to node v, and let us start by com-
puting the Attachment centrality of v in each of the following sub-
graphs separately: G[Ci ∪ {v}] : i ∈ {1, 2, . . . , k}; we find that:

Av(G[Ci ∪ {v}]) = 2|Ci| −
∑
u∈Ci

Au(G[Ci ∪ {v}]).

Since we already proved thatAu(G[Ci∪{v}]) = Au(G) for every
u ∈ Ci, we get:∑
i∈{1,...,k}

Av(G[Ci∪{v}]) = 2(|C|−1) −
∑

u∈C\{v}

Au(G) = Av(G)

which concludes the proof.

The next corollary concerns bridges, i.e., edges the removal of
which increases the number of connected components in the graph.
The corollary follows from Theorem 4 and it is based on the obser-
vation that both ends of a bridge are cut vertices.

COROLLARY 1. Removing a bridge decreases the Attachment
Centrality of both its ends by 1, and does not affect the Attachment
Centrality of other nodes.

Interestingly, according to the above corollary, the connectivity
role played by a bridge is attributed solely to is two ends. Further-
more, the fact that a node v is an end of a bridge does not influence
in any way the Attachment centralities of the nodes connecting v to
the rest of the network.

Whereas Corollary 1 focuses on edges whose removal increases
the number of connected components, Theorem 5 focuses on
cliques whose removal increases the number of connected com-
ponents (such cliques are known as cut cliques).

THEOREM 5. Let G be a connected graph. If a set of nodes
K ⊆ G forms a clique in G, and the removal of K breaks G into
k disjoint components consisting of the sets of nodes: C1, . . . , Ck,
then for every v ∈ K:

Av(G) =
∑

i∈{1,...,k}

Av(G[Ci ∪K])− (k − 1)Av(G[K]).

Furthermore, for every i ∈ {1, . . . , k} and every u ∈ Ci:

Au(G) = Au(G[Ci ∪K]). (19)
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PROOF. First, let us focus on an arbitrary node u ∈ Ci for some
i ∈ {1, . . . , k}. Analogously to the proof of Theorem 4, we argue
that any edge between two nodes in Cj ∪K for some j 6= i does
not affect the Attachment Centrality of u. This, in turn, implies the
correctness of (19).

Now let us turn our attention to an arbitrary node v ∈ K, and
let us analyse the marginal contribution of this node to an arbitrary
coalition S ⊆ V \ {v}. Without loss of generality, let K(G[S]) =
{C1, . . . , Cl} be the components of S, and assume that v is con-
nected to the firstm components, where 1 ≤ m ≤ l. Following the
definition of f∗G (i.e., Equation (14)) the marginal contribution of v
to S equals 2m. Every connected component Ci for i ≤ m either
contains all elements K ∩ S or is a subset Cj for some j. Thus,
whenever S contains at least one element of K, then node v gets
2 for this component k times instead of 1. S contains at least one
element of K with the probability 1 − 1

|K| . With the same proba-
bility node v has non-zero (and equal 2) marginal contribution in a
clique of nodes K. This concludes the proof.

Low connectivity: This part focuses on nodes with almost no con-
nectivity role. The first corollary concerns leafs.

COROLLARY 2. The Attachment Centrality of a leaf equals 1.
Furthermore, removing a leaf decreases the Attachment Centrality
of its neighbor by 1, and does not affect the Attachment Centrality
of any other node in the graph.

PROOF. Let v be a leaf, and let u be its only neighbor. Further-
more, let S ⊆ V be the set of nodes comprising the component that
contains both v and u. The presence of the edge {v, u} increases
the “profit” of S∪{v} by 2, since f∗(S∪{v})−f∗(S)−f∗(v) =
2(|S|) − 2(|S| − 1) − 0 = 2. Furthermore, since we know from
the proof of Theorem 2 that the Attachment Centrality satisfies the
Component Efficiency requirement, we know that the profit of 2
must be divided wholly among the nodes of the graph. However,
according to Theorem 3, the edge {v, u} only affects the Attach-
ment Centrality of nodes lying on a minimal path between v and u,
and since v is a leaf, the edge {v, u} only affects the Attachment
Centrality of v and u. In other words, the profit must be divided
wholly between v and u. Finally, according to Fairness, this profit
must be divided equally between v and u. This implies the correct-
ness of the theorem and concludes the proof.

So far, we discussed a type of nodes that plays a relatively-small
connectivity role, namely a leaf. The following theorem focuses
on yet another such type—a node whose set of neighbors forms a
clique. The reason such a node, v, plays a relatively-small connec-
tivity role is that v does not appear on any minimal path between
any two nodes u,w ∈ V \ {v}.

THEOREM 6. Given a node, v, whose set of neighbors, K,
forms a clique, the Attachment Centrality of v equals 2|K|

|K|+1
. Fur-

thermore, removing v decreases the Attachment Centrality of each
of its neighbors by 2

|K|(|K|+1)
, and does not affect the Attachment

Centrality of any other node in the graph.

PROOF. Let G = (V,E) be a graph in which a node, v ∈ V ,
has a set of neighbors, K, that forms a clique. It suffices to prove:

Au(G) =


2|K|
|K|+1

if u = v,

Au(G[V \ {v}]) + 2
|K|(|K|+1)

if u ∈ K,
Au(G[V \ {v}]) otherwise.

Node v has non-zero marginal contribution to coalition S, equal 2,
if and only if S contains at least one of its neighbors. Based on

the permutation interpretation of the Shapley value, this happens
with the probability |K|

|K|+1
→ 1. All his neighbors benefit in a

marginal contribution from v (have a greater marginal contribution
to coalition with v, than without him) only if S does not contain
any other neighbor. Such marginal contribution happens with the
probability 1

|K|(|K|+1)
. Since other nodes do not appear on the

minimal path between v and his neighbors in G′, all edges of v can
be removed without the change in their value.

5. ALGORITHM AND APPLICATION
As an application, we focus on the identification of key terrorists
in covert organisations. In particular, we analyse of the terrorist
network responsible for the 2004 attacks on Madrid trains. The
reasons behind our choice of the application and the network are
twofold. Firstly, it has been recently argued that connectivity plays
a crucial role in identifying the key members of terrorist networks
[13, 15]. Secondly, the Madrid network is relatively big and, thus
far, has never been analysed with a centrality index of this kind.

The Madrid network consists of 70 nodes and 243 edges. The
size of the network makes it impractical to compute the existing
connectivity-based centrality indices. In more detail, the computa-
tion involves enumerating all induced connected subgraphs of the
network. Unfortunately, even the state-of-the-art algorithm for this
purpose [22] takes over 100 seconds to compute the Myerson value
for sparse network with only 36 nodes. Furthermore, the running
time grows exponentially with the size of the network; every ad-
ditional node nearly doubles it. To address this challenge, we use
techniques introduced in the previous section to narrow down the
set of nodes for which the Myerson value has to be calculated.

The original Madrid network [18] contains 6 isolated nodes.
From Normalization, we know that the Attachment Centrality of
each of these nodes is 0. We also know from Locality that those
6 nodes can be removed without affecting the Attachment Central-
ity of others. Furthermore, we observe that the Madrid network
contains 8 leaf nodes. From Corollary 2, we know that every such
node has an Attachment Centrality of 1, and can easily be removed
from the network (since the corollary specifies the impact of this
removal). Moreover, from Theorem 6 we know that every node
whose set of neighbors, K, forms a clique has an Attachment Cen-
trality of 2|K|

|K|+1
, and can easily be removed from the network (since

the theorem specifies the impact of this removal on the Attachment
Centrality of other nodes). Note that removing nodes results in a
chain reaction, meaning that the above rules can be applied repeat-
edly (e.g., by removing a leaf, some other node might become a
leaf, which can then be removed, and so on).

Our algorithm carries out the above process systematically, by
finding the cut-clique decomposition of a graph. In a nutshell, the
cut-clique decomposition of a graph G is a binary tree in which ev-
ery node t is labeled with a subset S ⊆ V . If subgraph G[S] has
a cut-clique, then for a (possibly one of many) cut-clique K both
his children are labeled according to the decomposition ofG[S] us-
ing K. Specifically, children l and r are labeled with two subsets
L,R ⊆ S such that L ∩ R = K, and there exists no edge be-
tween L \K and R \K. Theorem 5 allows for considering those
subgraphs independently. By using the algorithm proposed by Tar-
jan [23], which utilizes the simple elimination ordering [19], we
know that only one child can be further decomposed. This simpli-
fies our algorithm (see Algorithm 1 for the pseudocode).

The results of our analysis are summarized in Table 1. As can
be seen, the Attachment Centrality significantly differs from the
standard centrality indices. For instance, let us consider two nodes
with the highest number of edges – 1 and 3 – which are positioned
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Figure 2: Madrid network. The node size reflects the Attach-
ment Centrality (the larger the node the greater its centrality).
To highlight the differences even further, the node color is set to
reflect the node size (the larger the node the darker the color).

top by Degree and Closeness Centralities. Interestingly, Between-
ness Centrality also gives them very high (the second and the third)
positions while Attachment Centrality ranks node 1 as the tenth
and node 3 even lower. Such a substantial difference between Be-
tweenness and Attachment centralities is quite surprising, given
that nodes that connect different parts of the network are more
likely to belong to shortest paths than other nodes. However, nodes
1 and 3 have so many neighbors that they are very often parts of
the shortest paths in the network, more often than nodes important
from the connectivity perspective.

The running time of our algorithm depends on the topology of
the graph. In the case of the Madrid network, the largest subgraph
for which the Myerson value had to be calculated in line (11) was
a subgraph consisting of 26 nodes. The running time on the entire
network was 15.01 seconds on a standard desktop PC.

Our analysis revealed a previously unknown aspect of the Madrid
network. In particular, we identified several overlapping parts of
the network that are almost fully connected, i.e., each part is al-
most a clique, except for very few missing edges. This new insight
confirms the existing belief, that terrorist networks consist of rather
sparsely-connected, highly-dense parts [24].

6. RELATED WORK
A number of game-theoretic centrality indices have been recently
proposed in the literature. In particular, Suri and Narahari [17]
proposed an extension of degree centrality defined as the Shapley
value of the game f(S) = |

⋃
v∈S neighbors(v)|. Michalak et al.

Algorithm 1: Algorithm for the Attachment Centrality
Input: Graph G = (V,E)
Output: Attachment Centrality Av for every v ∈ V

1 find the simple elimination ordering π;
2 create a cut-clique decomposition T of graph G from π;
3 f ← function defined as f(C) = 2(|C| − 1);
4 t← root of T;
5 while t has children do
6 (l, r)← children of t (left one without children);
7 (L,R)← labels of l, r;
8 K ← L ∩R;
9 foreach v ∈ L do

10 calculate MVv(f,G[L]);
11 Av ← Av +MVv(f,G[L]);
12 if v ∈ K then Av ← Av − 2 + 2

|K| ;
13 t← r;
14 return Av for every v ∈ V ;

Rank Av Bv Cv Dv

1st 7 (Imad Eddin Barakat) 63 1 1
2nd 63 (Semaan Gaby Eid) 1 3 3
3rd 19 (Abderrahim Zbakh) 3 41 7
4th 61 (Mohamed El Egipcio) 40 7 11
5th 24 (Naima Oulad Akcha) 7 31 41
6th 11 (Amer Azizi) 31 40 18
7th 6 (Mohamed Chedadi) 24 24 24

Table 1: The seven highest ranked nodes in the Madrid net-
work, according to different centrality indices.

[14] considered a number of generalizations of this game. All these
measures do not satisfy Fairness and Normalization. Also, if we
consider their normalized version then they do not satisfy Locality.

To expose the connectivity role of a node, several authors pro-
posed indices that are based on the Myerson value. Skibski et al.
[22] considered several characteristic functions (e.g., f(S) = |S|2
or f(S) = number of edges in G[S]) combined with the graph-
restrictions from Myerson’s model. Depending on the function
used, the resulting centrality measures do not satisfy Normalization
nor Fairness (note that when the function f used in the Myerson
value is based on the graph, Fairness may be violated).

A slightly different model (compared to Myerson’s) was pro-
posed by Amer and Gimenez [2], whereby the centrality of a node
is the Shapley value of the following function: f(S) = 1 if G[S]
is connected and f(S) = 0 otherwise. This was later expanded by
Lindelauf et al. [13] to an arbitrary f(S) when G[S] is connected.
The resulting centrality measure does not satisfy Locality, since all
centrality indices equal zero in a network with two disjoint parts.

7. CONCLUSIONS
While there were some attempts in the literature to provide theoret-
ical foundations to the standard centrality indices [20, 12, 6], our
analysis is the first in the literature that proposes an axiomatization
of an index focusing on connectivity.
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