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ABSTRACT

Hedonic games are coalition formation games where players only

specify preferences over coalitions they are part of. We introduce

and systematically study local fairness notions in hedonic games by

suitably adapting fairness notions from fair division. In particular,

we introduce three notions that assign to each player a threshold

coalition that only depends on the player’s individual preferences.

A coalition structure (i.e., a partition of the players into coalitions)

is considered locally fair if all players’ coalitions in this structure

are each at least as good as their threshold coalitions. We relate our

notions to previously studied concepts and show that our fairness

notions form a proper hierarchy. We also study the computational

aspects of finding threshold coalitions and of deciding whether fair

coalition structures exist in additively separable hedonic games. At

last, we investigate the price of fairness.

Keywords

Coalition formation; hedonic games; fairness; game theory

1. INTRODUCTION
Coalition formation plays a crucial role in multiagent systems

when agents have to cooperate. A commonly studied model of

coalition formation is the model of hedonic game. These are coali-

tion formation games with nontransferable utility, which were first

studied by Drèze and Greenberg [21] and later on by Banerjee et

al. [8] and Bogomolnaia and Jackson [11]. A key feature of hedo-

nic games is that the players’ preferences depend only on coalitions

they are part of. Since players specify their preferences over an

exponential-size domain (in the number of players), various com-

pact representations have been proposed, which either are fully ex-

pressive but may still have an exponential size in the worst case or

restrict the preference domain [7, 24, 11, 20, 3, 30, 17]. Most of

these studies are concerned with stability issues. Intuitively, they

capture incentives of (groups of) players to deviate by joining a

different coalition so as to increase their individual utility values.

Thus stability-related questions address a decentralized aspect of

hedonic games.

A more recent approach to hedonic games is welfare maximiza-

tion [14, 4, 5]. This idea is different because welfare maximization

usually presupposes a central authority guiding the maximization

process by eliciting preferences and suggesting or enforcing an op-
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timal solution. This enforcement may be necessary because the

optimality of a solution is determined by a global criterion, such as

utilitarian or egalitarian social welfare, and may affect some play-

ers’ utility values negatively compared with the status quo.

In this paper we will focus on the concept of local fairness. Fair-

ness is an important aspect besides stability and efficiency (see the

related work section and, e.g., [19] for a discussion of fairness

in multiagent systems and [12, 31] for fair division of indivisible

goods). The only work that we are aware of considering fairness

in hedonic games is due to Bogomolnaia and Jackson [11], Aziz et

al. [4], Wright and Vorobeychik [38], and Peters [34, 35]. Fairness

is related to both centralized approaches and stability issues. On the

one hand, the center may want to ensure a certain utility level for

each player. This goal can be achieved by a global fairness condi-

tion. However, fairness does not per se presuppose the existence of

a center. On the other hand, players may not consider their current

coalition fair, given their individual preferences. While we agree

with Bogomolnaia and Jackson [11] that stability has a “ ‘restricted

fairness’ flavor,” we add that one can also take the complementary

view that lack of fairness can be a major cause of instability.

To make this more concrete, consider a situation where all play-

ers except a single player in some coalition consider this coalition

their favorite one, yet for that single player this coalition is actu-

ally only marginally better than being alone. However, because

everyone else prefers this coalition and thus is much better off than

that player, she rejects this coalition. This can be considered an

unfair situation and is comparable to an ultimatum game situation,

where the proposal is very imbalanced and the second player (re-

sponder) rejects the proposal because it is below her fair share (see,

again, [19]). Note that we would have to contrast the single player’s

utility to the other players’ utility values in order to explain the

predicament. This approach of balanced utility values and inequal-

ity reduction requires either a center that knows all players’ utility

values or that players look at coalitions (and even other players’

well-being) outside of their own. To some extent, however, this

is at odds with the idea of hedonic game because players in such

games should only be interested in their own coalition.

The traditional fairness notion of envy-freeness requires play-

ers to inspect other coalitions. If there is a large number of coali-

tions, that is something we would like to avoid. Therefore, we

propose and study notions of local fairness—restricted fairness no-

tions with the additional constraint that players only compare their

current coalition to some bound that solely depends on their indi-

vidual preferences.1 We feel that this is in the general spirit of the

decentralized aspect of hedonic games.

1In case of envy-freeness the bound would also depend on the
whole coalition structure.
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Contribution: In order to achieve this goal of local fairness crite-

ria, we introduce new fairness notions for hedonic games that are

inspired by ideas from the field of fair division of indivisible goods.

Our main contributions are the following:

1. We introduce the idea of local fairness and three specific such

fairness notions in hedonic games. We show that these con-

cepts form a (strict) hierarchy and relate them to previously

studied concepts. Surprisingly, the hierarchy strikingly dif-

fers from the scale proposed by Bouveret and Lemaître [13]

in the context of fair division of indivisible goods.

2. We systematically study the complexity of finding “threshold

coalitions” and of determining whether a fair coalition struc-

ture exists in an additively separable hedonic game. We also

find that two of our notions coincide in such games.

3. We initiate the study of price of fairness in hedonic games. In

addition, we strengthen a result by Brânzei and Larson [14]

on coalition structures maximizing social welfare in symmet-

ric additively separable hedonic games.

Related Work: Surveys and book chapters on hedonic games are,

for example, due to Aziz and Savani [6], Elkind and Rothe [23],

and Hajdukova [26]. Bogomolnaia and Jackson [11] already men-

tion envy-freeness in their work, but they focus on studying sta-

bility notions. Aziz et al. [4] study the complexity of determining

the existence of stable coalition structures in additively separable

hedonic games. They also consider the welfare maximization ap-

proach and the notion of envy-freeness. The work by Wright and

Vorobeychik [38] is related to ours. They study hedonic games

under the perspective of mechanism design and propose mecha-

nisms for solving the team formation problem. A key difference

is that they consider additively separable hedonic games with non-

negative values only. Since in this case the grand coalition is most

preferred by every player, Wright and Vorobeychik introduce car-

dinality constraints on feasible coalition sizes. They also consider

envy bounded by a single teammate, which for the aforementioned

reasons is not suitable for our goals. In addition, they introduce

the maximin share guarantee for team formation, which is based

on the idea of replacing players. This, however, leads to a provably

different notion than ours (see Theorem 6). More recently intro-

duced stability notions include strong Nash stability, proposed by

Karakaya [28], and strictly strong Nash stability, due to Aziz and

Brandl [2]. Brânzei and Larson [14] study social welfare maxi-

mization and core stability in additively separable hedonic games.

Moreover, they consider the so-called stability gap. Bilo et al. [9,

10] study similar notions in fractional hedonic games.

Pareto optimality can be considered a notion of stability [32] as

well. Elkind et al. [22] investigate the price of Pareto optimality in

various representations of hedonic games. Peters and Elkind [36]

give conditions on when certain classes of hedonic games admit in-

tractable problems regarding the existence of stable coalition struc-

tures. Peters [35] considers restrictions of hedonic games that ad-

mit fast algorithms and he models allocating indivisible goods as

hedonic game.

Fair division of indivisible goods and hedonic games are closely

related because both fields deal with partitions of sets. In fair divi-

sion, a set of goods needs to be partitioned into n subsets, where n

is the number of agents. Usually, it is assumed that goods cannot be

shared. This is a departure point from hedonic games because the

number of coalitions in a partition is only bounded above by n. The

no-externality assumption, however, is prevalent (or even defining)

in both fields where an agent’s utility depends only on the subset of

goods that they receive (fair division) or the coalition that they are

part of (hedonic games).

Surveys and book chapters on fair division are due, for example,

to Chevaleyre et al. [18], Nguyen et al. [33], Lang and Rothe [31],

and Bouveret et al. [12]. Inspired by the cut-and-choose proto-

col from cake cutting, Budish [15] introduced the max-min fair-

share criterion. Since then, it has been studied by Procaccia and

Wang [37], Kurokawa et al. [29], Amanatidis et al. [1], and Heinen

et al. [27]. Bouveret and Lemaître [13] introduce min-max fair

share and propose a scale of even more demanding fairness criteria.

Caragiannis et al. [16] study the price of fairness in fair division.

Organization of the Paper: In Section 2, we formally define he-

donic games and relevant notions of stability. In Section 3, we

introduce our notions of fairness and relate them to other stability,

fairness, and optimality concepts. In Section 4, we study our no-

tions in additively separable hedonic games under computational

aspects. The price of fairness is considered in Section 5, followed

by a discussion of our findings and the conclusions in Section 6.

2. PRELIMINARIES
We denote by N = {1, . . . ,n} the set of players. A coalition is

a subset of N and a coalition structure π is a partition of N. The

set of all coalition structures over N is Π(N). We denote by π(i)
the unique coalition with player i in coalition structure π and by

Ni = {C ⊆ N | i ∈ C} all coalitions that player i is part of. Ev-

ery player i has a weak and complete preference order �i over Ni.

For A,B ∈ Ni, we write A �i B if player i weakly prefers coali-

tion A to B; we write A ≻i B if player i (strictly) prefers coali-

tion A to B, i.e., A �i B but not B �i A; and we write A ∼i B if

A �i B and B �i A (i.e., i is indifferent between A and B). Let

� be the collection of all �i, i ∈ N. A hedonic game is a pair

(N,�). It is an additively separable hedonic game (ASHG) if for

every i ∈ N, there is a valuation function vi : N → Q such that

∑ j∈A vi( j) ≥ ∑ j∈B vi( j) ⇐⇒ A �i B. We write (N,v) for an ad-

ditively separable hedonic game, where v is the collection of all vi,

i ∈ N. We assume normalization of the valuation functions, that is,

vi(i) = 0. We overload the notation to mean vi(A) = ∑ j∈A vi( j) for

each coalition A ∈ Ni.

Now we define previously studied notions of stability that are rel-

evant for this work. We distinguish, as is common, between group

deviations, individual deviations, and other notions.

We consider the following notions of group deviations:

(1) A nonempty coalition C ⊆ N blocks a coalition structure π if

every i ∈C prefers C to π(i). A coalition structure π is core-stable

(CS) if no coalition blocks π .

(2) A coalition C ⊆ N weakly blocks a coalition structure π if

every i ∈ C weakly prefers C to π(i) and there is some j ∈ C that

prefers C to π( j). A coalition structure π is strictly core-stable

(SCS) if no coalition weakly blocks π .

(3) Given a coalition H ⊆ N, coalition structure π ′ is reachable

from coalition structure π 6= π ′ by coalition H if for all i, j ∈ N \H,

we have π(i) = π( j) ⇐⇒ π ′(i) = π ′( j). A nonempty coalition

H ⊆N weakly Nash-blocks coalition structure π if there exists some

coalition structure π ′ that is reachable from π by coalition H such

that every i∈H weakly prefers π ′(i) to π(i) and there is some j ∈H

that prefers π ′( j) to π( j). We say π is strictly strong Nash-stable

(SSNS) if there is no coalition that weakly Nash-blocks π .

As to individual deviations, we need the following definitions:

(1) A coalition structure π is Nash-stable (NS) if every i ∈ N

weakly prefers π(i) to C∪{i} for every C ∈ π ∪{ /0}.

(2) A coalition structure π is contractually individually stable

(CIS) if for every i∈N, the existence of a coalition C ∈ π∪{ /0} with
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C∪{i} ≻i π(i) implies that there exists some j ∈C such that C ≻ j

C∪{i} or there exists some k ∈ π(i) such that π(k)≻k π(k)\{i}.

Of the remaining notions we need the following:

(1) A coalition structure π is perfect if every i∈N weakly prefers

π(i) to C for every C ∈Ni. We refer to this property by PERFECT.

(2) A coalition structure π ′ Pareto-dominates coalition structure

π if every i∈N weakly prefers π ′(i) to π(i) and there is some j ∈N

that prefers π ′( j) to π( j). A coalition structure π is Pareto-optimal

(PO) if no coalition structure Pareto-dominates it.

(3) A coalition structure π is envy-free by replacement (EF-R) if

π(i)�i (π( j)\{ j})∪{i} for every i, j ∈ N.

(4) A coalition C ∈ Ni is acceptable for i ∈ N if C �i {i}. A

coalition structure π is individually rational (IR) if π(i) is accept-

able for every i ∈ N.

The following notions are defined only for ASHGs (N,v): A

coalition structure π ∈ Π(N) maximizes

(1) utilitarian social welfare (USW) if for every π ′ ∈ Π(N),
∑i∈N vi(π(i))≥ ∑i∈N vi(π

′(i));
(2) egalitarian social welfare (ESW) if for every π ′ ∈ Π(N),

mini∈N vi(π(i))≥ mini∈N vi(π
′(i)).

For the last two definitions we make the common assumption

(see, for example, [4, 14]) in coalition formation that values are

interpersonally comparable.

We also say that a coalition structure π satisfies some notion X if

π is X or maximizes X .

Figure 1 shows the relationships between these notions. We refer

to the surveys, book chapters, and papers mentioned in the related

work section for more explanations of these definitions and their

interrelations. The notions are chosen such that our separation re-

sults in the next section also apply to intermediate notions such as

contractual strict core stability and individual stability.

3. FAIRNESS IN HEDONIC GAMES
We now introduce our fairness criteria, starting with the weakest

one. Individual rationality is the most basic notion of stability. It is

also the weakest fairness criterion. Similarly to the example in the

introduction, a player who is in a coalition not acceptable to her is

exploited by the other players in that coalition if this coalition is ac-

ceptable to them. In other words, this player has to be in a disliked

coalition just for other players to benefit. In this case, a coalition

structure consisting of singletons is more preferable for this player.

Lowering the bound of acceptable coalitions would make the situ-

ation even worse. Note that individual rationality and perfectness

are examples of local fairness criteria that only propose a threshold

coalition a player has to be part of. In a sense, we look for crite-

ria situated between these two notions. Because all fairness criteria

have to satisfy individual rationality necessarily, we consider such

fairness criteria only. Following the definition of envy-freeness by

replacement [11], it is not immediately clear which players to re-

place in the criteria that we will propose and how to motivate this.

Therefore, we will focus on definitions that are based on players

joining coalitions (without replacing any players). This is also an-

other reason for why we do not consider the well-known fairness

notion of envy-freeness (based on joining) because it coincides with

Nash stability. Similarly, the maximin share guarantee for team for-

mation by Wright and Vorobeychik [38] is defined in terms of re-

placing a player (and, therefore, is different from max-min fairness

considered here).

3.1 Min-Max Fairness
Before we formally define the min-max threshold, we illustrate

it with the following situation: A player is arriving late and all

other players have already formed a coalition structure without her

(where the specific form of the coalition structure is irrelevant for

this argument). Because the player could not participate in the

coalition formation process, the player is allowed to join any coali-

tion. Clearly, this player joins her most preferred coalition. This

describes a fairness criterion because someone who was neglected

should be allowed to adapt to the situation in the best possible way.

Definition 1. The min-max threshold of i ∈ N is defined as

MinMaxi = min
π∈Π(N\{i})

max
C∈π∪{ /0}

C∪{i},

where minimization and maximization are with respect to �i. A

coalition structure π satisfies min-max fairness (MIN-MAX) if

π(i)�i MinMaxi

for every i ∈ N.

This notion is the hedonic-games variant of min-max fair share,

originally proposed by Bouveret and Lemaître [13] in fair division.

We relate min-max fairness to previously known notions of sta-

bility. By definition, min-max fairness satisfies individual ratio-

nality. Clearly, since USW is not IR, it cannot satisfy min-max

fairness. Similarly, EF-R, PO, and CIS cannot imply min-max fair-

ness. Later (in Section 3.3 on max-min fairness) we will see that

min-max fairness is independent of most stability notions in the

sense that it does not imply them. Now, we check which stability

notions except for perfectness imply min-max fairness.

PROPOSITION 1. A strictly core-stable coalition structure does

not necessarily satisfy min-max fairness.

PROOF. Consider Example 2 in [11]:

{1,2} ≻1 {1} ≻1 {1,2,3} ≻1 {1,3},

{1,2} ≻2 {2} ≻2 {1,2,3} ≻2 {2,3},

{1,2,3} ≻3 {2,3} ≻3 {1,3} ≻3 {3}.

We compute each player’s min-max threshold coalition. Player 1

considers coalition structures π = {{2},{3}} and π ′ = {{2,3}}.

The best acceptable coalition for player 1 with respect to π is {1,2}
and with respect to π ′ it is {1}. Thus MinMax1 = {1}. Analo-

gously, MinMax2 = {2} and MinMax3 = {2,3}.

Overall, coalition structure {{1,2},{3}} is SCS but does not sat-

isfy min-max fairness.

COROLLARY 1. An individually rational or core-stable coali-

tion structure does not necessarily satisfy min-max fairness.

On the other hand, Nash stability does imply min-max fairness.

THEOREM 1. Every Nash-stable coalition structure satisfies

min-max fairness.

PROOF. Let π be a Nash-stable coalition structure and i ∈ N.

Then π(i)�i C∪{i} for every C ∈ π∪{ /0}. Since MinMaxi is a best

coalition in a worst coalition structure for i, π(i)�i MinMaxi.

The following example shows that min-max fair coalition struc-

tures do not always exist (which is to be expected from any rea-

sonable notion of fairness; envy-freeness is a classic fairness con-

dition in fair division of indivisible goods, but in conjunction with

completeness or Pareto optimality such partitions do not always ex-

ist either). This also shows that coalition structures that maximize

egalitarian social welfare do not necessarily satisfy min-max fair-

ness.

Example 1. Consider the following additively separable hedonic

game, defined via the values vi( j):

234



PERFECT

ESW EF-R MAX-MIN SSNS USW

GC NS SCS

MIN-MAX CS PO

CIS

IR

Figure 1: Relations between notions. A line from notion A to a lower notion B means that every coalition structure that is A is also B.

For example, every strictly core-stable (SCS) coalition structure is core-stable (CS) and Pareto-optimal (PO).

i

j
1 2 3

1 0 −10 15

2 −100 0 20

3 10 20 0

The individual min-max thresholds are MinMax1 = 5, MinMax2 =
0, and MinMax3 = 20. Therefore, player 1 has to be in coalition

{1,3} or {1,2,3}, player 2 in {2} or {2,3}, and player 3 in {2,3}
or {1,2,3}. Hence, there is no min-max fair coalition structure.

3.2 Grand-Coalition Fairness
Bogomolnaia and Jackson [11] proposed the grand coalition as

a notion of fairness. We recover their idea in the context of local

fairness. It can be seen as a special variant of proportionality in the

setting of hedonic games.

Definition 2. The grand-coalition threshold of i ∈ N is defined

as

GCi = max{{i},N},

where we maximize with respect to �i. A coalition structure satis-

fies grand-coalition fairness (GC) if

π(i)�i GCi

for every i ∈ N.

Grand-coalition fairness is a notion of fairness because the grand

coalition can be interpreted as an average: Every player has to

face both her friends and her enemies. Note that a proportional-

ity threshold is typically defined as the ratio of the valuation for

the whole to the number of players. Since players “share” their

coalitions, it is not clear which number the valuation of the whole

should be compared to. Comparing to the number of coalitions

in a coalition structure, however, violates our locality requirement:

thresholds that should only depend on a player’s own preference.

First, we show that grand-coalition fairness is strictly stronger

than min-max fairness.

THEOREM 2. Every grand-coalition fair coalition structure sat-

isfies min-max fairness, yet a min-max fair coalition structure does

not necessarily satisfy grand-coalition fairness.

PROOF. Let i ∈ N. Every coalition structure serves as an upper

bound of MinMaxi. Consider the coalition structure {N}. Then

max{{i},N} �i MinMaxi.

Conversely, consider the following hedonic game:

{1,2} ≻1 {1} ≻1 {1,2,3} ≻1 {1,3},

{1,2,3} ≻2 {2,3} ≻2 {1,2} ≻2 {2},

{1,2,3} ≻3 {2,3} ≻3 {1,3} ≻3 {3}.

The players’ min-max threshold coalitions are MinMax1 = {1},

MinMax2 = {2,3}, and MinMax3 = {2,3}. Thus {{1},{2,3}}
satisfies min-max fairness but not grand-coalition fairness.

It follows that a coalition structure that satisfies USW, ESW, EF-

R, PO, or CIS does not necessarily satisfy grand-coalition fairness

(otherwise it would satisfy min-max fairness). Later we will see

that grand-coalition fairness is independent of all other considered

notions except for perfectness. For now we show that these notions

do not imply grand-coalition fairness.

PROPOSITION 2. A strictly strong Nash-stable coalition struc-

ture does not necessarily satisfy grand-coalition fairness.

PROOF. Consider the following hedonic game:

{1,2} ≻1 {1,3} ≻1 {1} ≻1 {1,2,3},

{1,2,3} ≻2 {1,2} ≻2 {2,3} ≻2 {2},

{2,3} ≻3 {3} ≻3 {1,2,3} ≻3 {1,3}.

Coalition structure {{1,2},{3}} is SSNS but is not grand-coalition

fair.

COROLLARY 2. An individually rational, Nash-stable, core-

stable, or strictly core-stable coalition structure does not neces-

sarily satisfy grand-coalition fairness.

3.3 Max-Min Fairness
We motivate the next fairness notion with the following situation:

Suppose some player is allowed to partition all players excluding

herself but does not know which coalition she will be part of in the

end. Since she had the right to choose a partition, she has to live

with all possible consequences. In other words, she could end up in

any of these coalitions, even the worst. Therefore, a player would

partition all remaining players so that the worst coalition among

them is as good as possible for her.

Definition 3. The max-min threshold of i ∈ N is defined as

MaxMini = max
π∈Π(N\{i})

max{{i},min
C∈π

C∪{i}},
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where maximization and minimization are with respect to �i. A

coalition structure π satisfies max-min fairness (MAX-MIN) if

π(i)�i MaxMini

for every i ∈ N.

Note that we cannot include the acceptability constraint into the

minimization because then the definition would be weaker than IR.

Max-min fairness is the hedonic-games variant of max-min fair

share due to Budish [15]. We show that max-min fairness is strictly

stronger than grand-coalition fairness.

THEOREM 3. Every max-min fair coalition structure satisfies

grand-coalition fairness, yet a grand-coalition fair coalition struc-

ture does not necessarily satisfy max-min fairness.

PROOF. Let i ∈ N. The coalition structure π consisting of the

grand coalition without i is the one where maxC∈π∪{ /0}C∪{i} and

max{{i},minC∈π C ∪ {i}} become equal. Since every coalition

structure gives a lower bound for MaxMini and an upper bound

for MinMaxi, we have

MaxMini �i GCi �i MinMaxi.

Conversely, consider the following hedonic game:

{1,2} ≻1 {1,3} ≻1 {1,2,3} ≻1 {1},

{1,2,3} ≻2 {1,2} ≻2 {1,3} ≻2 {2},

{2,3} ≻3 {1,2,3} ≻3 {3} ≻3 {1,3}.

Coalition structure {{1,2,3}} satisfies grand-coalition fairness but

not max-min fairness because player 1’s max-min threshold coali-

tion is {1,3}.

Theorems 2 and 3 give additional motivation of grand-coalition

fairness: It is strictly between max-min and min-max fairness. It

follows that a USW, ESW, EF-R, PO, or CIS coalition structure

does not necessarily satisfy max-min fairness.

Max-min fairness is independent of all other considered notions

except for perfectness.

PROPOSITION 3. A max-min fair coalition structure does not

necessarily satisfy contractually individual stability or core stabil-

ity.

PROOF. Consider the following hedonic game:

{1,2} ≻1 {1} ≻1 {1,3} ≻1 {1,2,3},

{1,2} ≻2 {2} ≻2 {2,3} ≻2 {1,2,3},

{1,3} ≻3 {3} ≻3 {2,3} ≻3 {1,2,3}.

The max-min threshold coalitions are MaxMini = {i}, i ∈ {1,2,3}.

Thus coalition structure {{1},{2},{3}} satisfies max-min fairness

but neither CIS nor CS.

COROLLARY 3. 1. A grand-coalition fair or min-max fair

coalition structure does not necessarily satisfy contractually

individual stability or core stability.

2. A max-min fair, grand-coalition fair, or min-max fair coali-

tion structure does not necessarily satisfy Nash stability,

Pareto optimality, strictly strong Nash stability, strict core

stability, utilitarian social welfare, or perfectness.

PROPOSITION 4. A max-min fair coalition structure does not

necessarily satisfy envy-freeness by replacement or egalitarian so-

cial welfare.

PROOF. For EF-R, consider the following hedonic game:

{1,2} ≻1 {1} ≻1 {1,2,3} ≻1 {1,3},

{1,2} ≻2 {2} ≻2 {1,2,3} ≻2 {2,3},

{2,3} ≻3 {3} ≻3 {1,2,3} ≻3 {1,3}.

Coalition structure {{1,2},{3}} satisfies max-min fairness but is

not envy-free by replacement.

For ESW, consider the following additively separable hedonic

game, defined via the values vi( j):

i

j
1 2 3 4

1 0 10 −20 0

2 10 0 −20 0

3 −10 −10 0 10

4 −10 −10 10 0

Coalition structure {{1,2},{3},{4}} satisfies max-min fairness but

does not maximize egalitarian social welfare (coalition structure

{{1,2},{3,4}} has a higher egalitarian social welfare).

COROLLARY 4. A grand-coalition fair or min-max fair coali-

tion structure does not necessarily satisfy envy-freeness by replace-

ment or egalitarian social welfare.

From Proposition 2 we have the following corollary.

COROLLARY 5. An individually rational, Nash-stable, core-

stable, strictly strong Nash-stable, or strictly core-stable coalition

structure does not necessarily satisfy max-min fairness.

See Figure 1 for a summary of the results of this section.

4. LOCAL FAIRNESS IN ASHGS
In this section we study the existence of fair coalition structures,

the complexity of computing fairness thresholds and of deciding

whether a hedonic game admits a fair coalition structure. Since

additively separable hedonic games are a well-studied (see [6] and

the references therein) class of hedonic games, we will focus on this

class. In addition, it will be easier to compare our complexity re-

sults to some results in fair division with additive utility functions.

We begin with min-max fairness.

4.1 Min-Max Fairness
We start by computing min-max fairness thresholds. Since we

have valuation functions in ASHGs, we can compare to the value of

threshold coalitions. In particular, we consider the decision prob-

lem MIN-MAX-THRESHOLD: Given a set N of players, a player

i’s valuation function v, and a rational number k, does it hold that

MinMaxi ≥ k?

By considering coalition structures consisting of either the grand

coalition or only of singletons, we have the following observations

that show that MIN-MAX-THRESHOLD is easy to solve for certain

restricted valuation functions.

OBSERVATION 1. If vi(N)≤ 0, then MinMaxi = 0.

OBSERVATION 2. If vi( j)≥ 0 for every j ∈N, then MinMaxi =
max j∈N v( j).

For general valuation functions, however, we have this result:

THEOREM 4. MIN-MAX-THRESHOLD is coNP-complete.
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PROOF. We consider the complementary problem, which for the

same input asks whether MinMaxi < k holds. Membership of this

problem in NP follows from guessing a coalition structure π and

comparing the maximum value of a coalition in π to k.

To show NP-hardness, we reduce from a restricted variant of

PARTITION that contains no input numbers of value 1. This prob-

lem can be shown to be NP-hard by reducing from the original

PARTITION problem and multiplying all values by 2.

The reduction works as follows. Let b1, . . . ,bn ∈N be a restricted

PARTITION instance. We consider valuation function vi defined as

follows: vi( j) = b j and vi(n+ 1) = vi(n+ 2) = −(L− 1), where

∑
n
j=1 b j = 2L. Thus N = {1, . . . ,n, i,n+ 1,n+ 2} with i different

from 1, . . . ,n,n+1,n+2. In addition, we set the bound k to 2.

We show that there is a partition if and only if MinMaxi < k.

From left to right: Suppose (A,B) is a partition of the numbers

b1, . . . ,bn. Consider the coalition structure π = {A∪{n+ 1},B∪
{n + 2}}. We have maxC∈π∪{ /0} vi(C ∪ {i}) = max{1,1,0} = 1.

Therefore, MinMaxi ≤ 1 < 2 = k.

From right to left: Suppose for every partition (A,B) we have

∑ j∈A b j > L or ∑ j∈B b j > L. Note that for the grand coalition we

have maxC∈{N\{i}}∪{ /0} vi(C∪{i}) = max{2L−2(L−1),0}= 2.

For every coalition structure consisting of two nonempty coali-

tions A′,B′ with A′∪B′ =N \{i,n+1,n+2}, we have, without loss

of generality, vi(A
′∪{i})≥ L+1 and vi(B

′∪{i})≤ L−1. Adding

players n+ 1 and n+ 2 to A′ would give a maximum of at least

2 because B′ is nonempty and b j ≥ 2 by assumption. Adding both

players to B′ would give a maximum of at least L+1. Since the par-

tition instance has at least two numbers of value 2, L≥ 2. Assigning

these players to separate coalitions we have vi(A
′∪{i}∪{n+1})≥

L+1−L+1 = 2. Thus the maximum is at least 2.

For all coalition structures consisting of ℓ > 2 nonempty coali-

tions, we have that the maximum value is at least 2 because all

numbers of the partition instance are at least 2 and there are only

two players with a negative value. Thus there is always a coalition

that is valued at least 2.

Since all coalition structures have a coalition which is valued at

least 2, we have MinMaxi ≥ 2 = k.

Coming now to the question of existence of fair coalition struc-

tures, we first define the decision problem that we study. The input

of the problem MIN-MAX-EXIST consists of an additively separa-

ble hedonic game. The question is whether a min-max fair coalition

structure exists. We start with a simple observation.

OBSERVATION 3. If vi( j)≥ 0 for every i, j ∈N, then {N} satis-

fies min-max fairness, i.e., min-max fair coalition structures always

exist.

We say an additively separable hedonic game is symmetric if

vi( j)= v j(i) for every i, j ∈N. Since there always exist Nash-stable

coalition structures in symmetric ASHGs [11], we have

COROLLARY 6. Symmetric ASHGs always admit min-max fair

coalition structures.

For general additively separable hedonic games, we have NP-

hardness as a lower bound and membership in Σ
p
2 (the second level

of the polynomial hierarchy) as an upper bound. We use a modified

version of the game in Example 1 as a gadget.

THEOREM 5. MIN-MAX-EXIST is NP-hard and in Σ
p
2 .

PROOF. We reduce from MONOTONE-ONE-IN-THREE-3SAT

(see, e.g., the comment of Garey and Johnson [25, p. 259], on ONE-

IN-THREE-3SAT): Given a boolean formula ϕ that contains only

clauses with three positive literals, does there exist a satisfying as-

signment such that each clause has exactly one true literal?

Now we describe the reduction. Let ℓ1, . . . , ℓn be the variables,

C1, . . . ,Cm the clauses of ϕ , and ri the number of distinct clauses

ℓi appears in. For every variable ℓi that appears in some clause,

we introduce three variable players, ai, bi, and ci, and for every

clause Ck, we add three clause players, Dk, Ek, and Fk.

The valuation functions are defined as follows:

Variable players of type 1, ai, 1 ≤ i ≤ n, value every other vari-

able player except for bi and ci with −3m−1. They value bi with

3ri, ci with 0, all clause players Dk, Ek, and Fk for which ℓi ∈ Ck

with −1, and all remaining players with 0. Variable players of

type 2, bi, 1 ≤ i ≤ n, value ci with 3ri, all clause players Dk, Ek,

and Fk for which ℓi ∈ Ck with 1, and all remaining players with 0.

Variable players of type 3, ci, 1 ≤ i ≤ n, value every clause player

with −1 and all remaining players with 0.

Clause players of type 1, Dk, 1 ≤ k ≤ m, value Ek with −10, Fk

with 15, and all remaining players with 0. Clause players of type 2,

Ek, 1 ≤ k ≤ m, value Dk with −20, Fk with 21, all ai for which

ℓi ∈ Ck with 20, and all remaining players with 0. Clause players

of type 3, Fk, 1 ≤ k ≤ m, value Dk with 10, Ek with 20, and all

remaining players with 0.

We compute the min-max thresholds before showing the required

equivalence. The min-max threshold of type-1 variable players ai

is 0, of type-2 variable players bi is 3ri, of type-3 variable players

ci is 0, of type-1 clause players Dk is 5, of type-2 clause players Ek

is 20 (consider the coalition structure where Dk and Fk are together

and all remaining players are in single coalitions), and of type-3

clause players Fk is 20. We show that the given formula is satisfied

by an assignment with exactly one true literal per clause if and only

if there is a coalition structure satisfying min-max fairness.

From left to right: Suppose there is a satisfying assignment τ

with the above property. Denote by ℓ1, . . . , ℓo all variables which

are true under τ and by ℓo+1, . . . , ℓn all remaining variables. Denote

by T (ℓi) the set of clauses that become true under τ via ℓi and let

C (ℓi) = {Dk,Ek,Fk |Ck ∈ T (ℓi)}. Consider the following coalition

structure: π = {C (ℓ1)∪{a1,b1},{c1}, . . . ,C (ℓo)∪{ao,bo},{co},
{ao+1,bo+1,co+1}, . . . ,{an,bn,cn}}. In words, for each clause sat-

isfied by some literal, we put into one coalition the correspond-

ing type-1 and type-2 variable players and all three correspond-

ing clause players. In this case, the corresponding type-3 variable

player stays alone. If a variable satisfies no clause, then the cor-

responding variable players are in a coalition that only consists of

them. Since each clause is satisfied by exactly one literal, no player

is in multiple coalitions simultaneously.

We compute every player’s value. Type-1 clause players Dk are

in the same coalition as Ek and Fk. Therefore, they have a value

of 5. Similarly, type-3 clause players Fk have a value of 30. For

variables ℓi that are true under τ , since type-1 variable players ai

never share coalitions with other variable players except for bi and

all clause players corresponding to clauses that contain ℓi, these ai

have a value of −3ri+3ri = 0. For the same reason, type-2 variable

players bi have a value of 3ri and type-2 clause players Ek have a

value of −20+21+20 = 21. Type-3 variable players ci are alone

and, hence, have value 0. For variables ℓ j that are false under τ , the

coalition consisting of all variable players corresponding to such a

variable gives the corresponding type-1 and type-2 variable players,

a j and b j , a value of 3r j and the corresponding type-3 variable

player c j a value of 0. Overall, every player achieves her min-max

threshold, so coalition structure π satisfies min-max fairness.

From right to left: Suppose there is some coalition structure π

satisfying min-max fairness. Let Fk be the type-3 clause player for

some clause Ck. Since vFk
(π(Fk))≥ 20, Ek ∈ π(Fk). Because Fk ∈
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π(Fk) and vDk
(π(Dk))≥ 5, Dk ∈ π(Fk). Thus {Dk,Ek,Fk}⊆ π(Fk).

Because vEk
(π(Fk)) ≥ 20, some variable player ai corresponding

to a literal occurring in clause Ck has to be in π(Fk); otherwise,

vEk
(π(Fk)) = 1. If variable players different from bi or ci are in

π(Fk), no such variable player can satisfy the min-max threshold.

Since variable player ai joins {Dk,Ek,Fk}, bi ∈ π(Fk). Because

vbi
(π(Fk))≥ 3ri, all clause players that are valued positively by bi

are in π(Fk). Otherwise, ci ∈ π(Fk), but then uci
(π(Fk)) < 0 be-

cause clause players are in π(Fk). If clause players that are valued

0 by ai are in the same coalition, other variable players have to

be in that coalition as well, but then min-max fairness is not satis-

fied. Therefore, every π(Fk) contains exactly one ai. Then we can

construct a satisfying assignment with the one-in-three property by

making all variables ℓi true where ai is in a coalition with clause

players.

4.2 Grand-Coalition & Max-Min Fairness
In this section, we can consider grand-coalition and max-min

fairness at the same time because of the following result:

THEOREM 6. In additively separable hedonic games, for every

i ∈ N we have

MaxMini = GCi.

PROOF. It remains to show max{0,vi(N)} = GCi ≥ MaxMini

because of Theorem 3.

If vi(N) < 0, suppose there is some π such that minC∈π vi(C ∪
{i}) > 0. Then vi(C ∪ {i}) > 0 for every coalition C ∈ π . This,

however, implies vi(N) = ∑C∈π vi(C∪{i})> 0.

If vi(N) ≥ 0, suppose there is some π such that minC∈π vi(C ∪
{i}) > vi(N). Then vi(C∪{i}) > vi(N) for every coalition C ∈ π ,

which would imply vi(N) = ∑C∈π vi(C∪{i})> vi(N).

Define the threshold and existence problems for grand-coalition

and max-min fairness analogously to MIN-MAX-THRESHOLD and

MIN-MAX-EXIST. Since computing the value of the grand coali-

tion is easy in additively separable hedonic games, we have

COROLLARY 7. MAX-MIN-THRESHOLD and GRAND-COA-

LITION-THRESHOLD are in P.

However, checking whether there exists a grand-coalition fair or

max-min fair coalition structure is hard.

THEOREM 7. The problems GRAND-COALITION-EXIST and

MAX-MIN-EXIST are NP-complete.

PROOF. Membership in NP follows from guessing and check-

ing. Checking works in polynomial time because of Corollary 7.

We reduce from PARTITION. Let b1, . . . ,bn be a PARTITION in-

stance with ∑
n
i=1 bi = 2L.

We construct the following additively separable hedonic game:

N = {1, . . . ,n,n+ 1,n+ 2,n+ 3,n+ 4,n+ 5} with vn+1(n+ 2) =
−1, vn+2(n+1) =−1, vn+3(n+1) = vn+3(n+2) = vn+4(n+1) =
vn+4(n+2)= L, vn+3(i)= vn+4(i)=−bi, vi(n+3)= vi(n+4)= 1,

vi(n+ 5) = −1 for every i, 1 ≤ i ≤ n. All other values are 0. The

threshold is 1 for player i, 1 ≤ i ≤ n, and 0 for the remaining play-

ers. We show that there is a partition if and only if there is a coali-

tion structure satisfying grand-coalition (and thus, equivalently in

ASHGs, max-min) fairness.

From left to right: Suppose (A,B) is a partition. Then the coali-

tion structure {{n+1,n+3}∪A,{n+2,n+4}∪B,{n+5}} satis-

fies grand-coalition fairness: Player n+1 is not with player n+ 2.

Players n+ 3 and n+ 4 receive 0 value. Each i, 1 ≤ i ≤ n, gets a

value of 1. Player n+5 gets 0.

From right to left: Suppose π satisfies grand-coalition fairness.

Then players n+ 1 and n+ 2 are not in the same coalition. Since

each i, 1≤ i≤ n, needs to get at least a value of 1, every such player

is with players n+3 or n+4. Let Ck contain all i, 1 ≤ i ≤ n, that are

with player n+ k, k ∈ {3,4}. Then C3 ∩C4 = /0; otherwise, n+ 3

and n+4 are in the same coalition with nonnegative values, which

means that n+ 1 and n+ 2 are in the same coalition as well. We

also have C3 6= /0 (otherwise, all i, 1 ≤ i ≤ n, are in C4: vn+4(π(n+
4)) ≤ −2L+L < 0). Since vn+3(π(n+ 3)) ≥ 0, and players n+ 1

and n+ 2 are the only players valued positively by n+ 3, players

n+1 or n+2 are in π(n+3). Both of them cannot be in π(n+3)
because then player n+4 would have a negative value. Therefore,

L ≥ ∑i∈Ck
bi, k ∈ {3,4}. Since ∑i∈C3

bi +∑i∈C4
b j = 2L, we have

∑i∈C3
bi = L = ∑i∈C4

b j.

5. PRICE OF FAIRNESS
Now we study the price of fairness in additively separable he-

donic games. Informally, the price of fairness captures the loss

in social welfare of a worst (best) coalition structure that satisfies

some fairness criterion. We denote by SWG(π) the utilitarian social

welfare of coalition structure π in an additively separable hedonic

game G = (N,v), that is, SWG(π) = ∑i∈N vi(π(i)). We omit G

when it is clear from the context.

Definition 4. Let G = (N,v) be an additively separable hedonic

game and let π∗ denote a coalition structure maximizing utilitarian

social welfare. Define the maximum price of min-max fairness by

Max-PoMMF(G) = max
π∈Π(N),π is min-max fair

SW(π∗)

SW(π)

if there is some min-max fair π ∈ Π(N) and SW(π) > 0 for all

min-max fair π ∈ Π(N); by Max-PoMMF(G) = 1 if SW(π∗) = 0

and SW(π) = 0 for some min-max fair π ∈ Π(N); and by setting

Max-PoMMF(G) = +∞ otherwise.

Define the minimum price of min-max fairness (Min-PoMMF)

analogously.

Note that we have SW(π∗)≥ 0 and SW(π)≥ 0, where π∗ max-

imizes utilitarian social welfare and π is min-max fair.

Because the grand coalition maximizes utilitarian welfare under

nonnegative valuation functions, the minimum and maximum price

of grand-coalition fairness is one. Since this bound is not really in-

formative, we now make some suitable assumptions to strengthen

our results. Elkind et al. [22] argue that these notions are only sensi-

ble if the set of coalition structures that we consider is large enough.

Because of that we only consider min-max fairness, the weakest

fairness notion, in order to constrain the set of feasible coalition

structures as least as possible. In addition, Elkind et al. [22] focus

on Pareto optimality because such coalition structures always exist.

Similarly, we restrict our study to symmetric additively separable

hedonic games so as to guarantee the existence of min-max fair

coalition structures.

Unfortunately, the maximum price of min-max fairness is not

bounded by a constant value even for nonnegative valuation func-

tions.

THEOREM 8. Let G= (N,v) be a symmetric ASHG of n players

with vi( j)≥ 0 for every i, j ∈ N. Then

Max-PoMMF(G)≤ n−1.

In addition, this bound is tight.

PROOF. If SW(π∗) = 0, then Max-PoMMF(G) = 1. Otherwise,

there are i, j ∈ N, i 6= j, such that vi( j) > 0. We can upper-bound
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SW(π∗) by ∑i∈N vi(N). By Observation 2, we can lower-bound the

value of every player i by max j∈N vi( j). Thus

Max-PoMMF(G)≤
∑i∈N vi(N)

∑i∈N max j∈N vi( j)

≤
∑i∈N(n−1)max j∈N vi( j)

∑i∈N max j∈N vi( j)

= n−1.

To see that this bound is tight, consider a game with n players, n

even. Every player values every other player with a > 0. Thus the

min-max threshold of every player is a. Therefore, the coalition

structure that consists of n/2 pairs satisfies min-max fairness and

has minimum utilitarian social welfare of na among all min-max

fair coalition structures. The coalition structure consisting of the

grand coalition that maximizes utilitarian social welfare, however,

has a utilitarian social welfare of n(n−1)a.

To obtain a meaningful bound in the above result, we need the

existence of a min-max fair coalition structure, which is guaranteed

in symmetric ASHGs. We need the following result before we can

turn to Min-PoMMF.

THEOREM 9. Let G = (N,v) be a symmetric ASHG. Then ev-

ery coalition structure π that maximizes utilitarian social welfare

satisfies min-max fairness.

PROOF. Suppose, for the sake of contradiction, that there is

some i ∈ N with vi(π(i)) < MinMaxi. By a result of Brânzei and

Larson [14], we know that every coalition structure maximizing

utilitarian social welfare satisfies individual rationality. On the other

hand, considering π with respect to MinMax, we have

0 ≤ vi(π(i))< MinMaxi ≤ max
C j∈π

vi(C j ∪{i}). (1)

Because of the strict inequality π(i) 6=Cℓ, where Cℓ is a maximizer

of maxC j∈π vi(C j ∪{i}), we have vi(π(i)) < vi(Cℓ ∪{i}). Since π

is a maximizer of utilitarian social welfare, the social welfare of π

should not be lower than the coalition structure where i joins Cℓ:

∑
k∈π(i)

vk(π(i))+ ∑
k∈Cℓ

vk(Cℓ)≥

∑
k∈π(i), k 6=i

vk(π(i)\{i})+ ∑
k∈Cℓ

vk(Cℓ)+2vi(Cℓ∪{i}).

Using symmetry, this is equivalent to the contradiction

vi(π(i))≥ vi(Cℓ∪{i}),

which completes the proof.

Since min-max fairness is strictly stronger than individual ratio-

nality, Theorem 9 strengthens the result by Brânzei and Larson [14]

that we used in the proof. Note that the above theorem also implies

that we have an alternative proof of Corollary 6 (that every sym-

metric additively separable hedonic game admits a min-max fair

coalition structure) that does not depend on the guaranteed exis-

tence of Nash-stable coalition structures but on the guaranteed ex-

istence of coalition structures maximizing utilitarian social welfare.

From Theorem 9 we immediately have the following corollary.

COROLLARY 8. Let G be a symmetric ASHG. Then

Min-PoMMF(G) = 1.

6. DISCUSSION & CONCLUSION
We have introduced three new notions of fairness in hedonic

games and studied the connection with previously studied notions.

Our notions themselves form a strict hierarchy: Every max-min fair

coalition structure is grand-coalition fair (but not vice versa), and

every grand-coalition fair coalition structure is min-max fair (but

not vice versa). Although our fairness criteria are inspired from

the field of fair division, our results are very different. Bouveret

and Lemaître’s scale of fairness criteria for additive utility func-

tions [13] says that an envy-free partition of goods satisfies min-

max fair share, which in turn implies proportionality, which in turn

implies max-min fair share. So our strongest notion of fairness is

the weakest notion in fair division of indivisible goods (according

to this scale). In addition, in additively separable hedonic games,

we have seen that grand-coalition fairness and max-min fairness

coincide. This is not the case in fair division (if one equates grand-

coalition fairness with proportionality). Also note that Nash stabil-

ity (or, equivalently, a definition of envy-freeness based on joining)

implies min-max fairness but none of the stronger notions. In the

setting of indivisible goods, envy-freeness even implies min-max

fair share. So it is one of the strongest notions there. We consider

these results surprising, as the intution from fair division of indi-

visible goods is no longer valid in this different context. The main

reasons are the already mentioned difference between the num-

ber of allowed subsets of a partition and that players can “share”

coalitions. This missing intuition is also a reason of why we have

checked in detail whether any known stability notions imply one of

our fairness notions.

Then we have studied the complexity of computing threshold

coalitions and deciding whether an additively separable hedonic

game admits a fair coalition structure. Although nearly all of these

problems are intractable, our fairness criteria still have some mean-

ing. They give additional motivation to notions of stability, such

as Nash stability. Moreover, in a decentralized setting the hard-

ness of a problem can be “distributed” (of course, the intractability

cannot disappear). Giving players a yardstick for fairness that only

depends on their own preferences reduces the amount of commu-

nication that is necessary to check whether a coalition structure is

fair. Our complexity results are also comparable to the results by

Bouveret and Lemaître [13] and Heinen et al. [27] with the excep-

tion that no lower bound is known for deciding whether a max-min

fair-share allocation exists, whereas in ASHGs we know that the

corresponding problem is NP-complete. Also note that with min-

max fairness we have found a notion that is strictly stronger than

individual rationality, but is still satisfied by every coalition struc-

ture maximizing utilitarian social welfare in symmetric additively

separable hedonic games. At last, we have initiated the study of

price of fairness in hedonic games. Our results here are unsatis-

factory in the sense that either the price is unbounded or not very

informative.

Therefore, we consider finding suitable restrictions to players’

valuation functions such that the maximum price of min-max fair-

ness is bounded by a nontrivial constant an interesting research

question for the future. Interesting future work would also be iden-

tifying (other) sufficient conditions that imply the existence of a fair

coalition structure, determining the complexity of searching for a

min-max fair coalition structure in symmetric additively separable

hedonic games, and showing Σ
p
2 -hardness of MIN-MAX-EXIST.
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