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ABSTRACT
Hedonic games are coalition formation games in which players
have preferences over the coalitions they can join. All models
of representing hedonic games studied so far are based upon self-
ish players only. Among the known ways of representing hedonic
games compactly, we focus on friend-oriented hedonic games and
propose a novel model for them that takes into account not only
a player’s own preferences but also her friends’ preferences under
three degrees of altruism. We study both the axiomatic properties
of these games and the computational complexity of problems re-
lated to various stability concepts.
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1. INTRODUCTION
Hedonic games, proposed by Drèze and Greenberg [17] and later

formally modelled by Bogomolnaia and Jackson [10] and Banerjee
et al. [8], are coalition formation games in which players have pref-
erences over coalitions (subsets of players) they can be part of. In
the context of decentralized coalition formation, several stability
concepts and representations have been studied from an axiomatic
and a computational complexity point of view; see Woeginger’s
survey [33] on this topic and the book chapters by Aziz and Sa-
vani [6] and Elkind and Rothe [18] for an overview.

Dimitrov et al. [16] proposed a model that allows for compact
representation of hedonic games, namely, the friend-and-enemy en-
coding of the players’ preferences, where each player divides the
set of players into friends and enemies. Based on such a network
of friends, they suggest two models of preference extensions: ap-
preciation of friends and aversion to enemies. In friend-oriented
hedonic games, a coalition A is preferred to another coalition B if A
contains either more friends than B or the same number of friends
as B but fewer enemies than B. This setting corresponds to a net-
work of players represented as a graph. Since we study symmetric
friendship relations for stability reasons, this graph is undirected.
For example, suppose there are four players, 1, 2, 3, and 4, and let
1 be friends with 2 but neither with 3 nor with 4, while 2 and 3 are
friends with each other but not with 4. The corresponding network
is displayed in Figure 1.

Now, in the friend-oriented extension model player 2 prefers
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Figure 1: Example of a network of friends

teaming up with 1 and 3 to forming a coalition with 1 and 4. Player
1, on the other hand, is indifferent between coalitions {1,2,3} and
{1,2,4}. Intuitively, however, 1 would have an advantage from be-
ing in a coalition with 2 and 3, since 2 and 3—being friends—can
be expected to cooperate better than 2 and 4. Also, 1 can be ex-
pected to care about her friend 2’s interests and thus might prefer a
coalition in which 2 is satisfied ({1,2,3}) to one in which 2 is less
satisfied ({1,2,4}). In order to model these kinds of preferences
we will introduce several degrees of altruism, starting from friend-
oriented hedonic games. Taking friends’ preferences into account
does not contradict the idea of hedonic games: In hedonic games
player i’s utility function depends only on the coalitions that con-
tain i. Since player i is also interested in her friends’ satisfaction
(with varying degrees), we incorporate this notion into player i’s
utility function. Note that player i’s utility is still a function of the
coalitions containing her, which in addition takes her friends’ pref-
erences that are in the same coalition as player i into account.
Our Contribution and Related Work: Focusing on the friend-
oriented encoding of preferences and taking the idea of players
caring about their friends’ preferences into account, we propose
hedonic games with altruistic influences. In particular, we define
three degrees of altruism, from being selfish first, over aggregating
opinions of a player and her friends equally, to altruistically letting
one’s friends decide first. The latter is the most altruistic case, as
we assume that from a player’s perspective only friends can be con-
sulted, while agents further away (such as a friend’s friend that is
one’s enemy) cannot be communicated with or cannot be trusted.
In a social network, for example, the whole set of players other
than friends might not even be known. The proposed games are
compactly representable but not fully expressive. However, they
can express other hedonic games than those representable by pop-
ular compact representations in the literature. We study both the
axiomatic properties of these games and the computational com-
plexity of problems related to common stability concepts.

From a noncooperative game-theoretic point of view, the inter-
ests of not only selfish, but altruistic agents have been modelled and
studied by, for example, Hoefer and Skopalik [24], Chen et al. [14],
Apt and Schäfer [2], and Rahn and Schäfer [30]. Salehi-Abari
and Boutilier [31] study social choice with empathetic preferences.
Their local empathetic model is related to our model. Altruism has
also been studied in (experimental) economics [27]. Brânzei and
Larson [12] study social distance games: In contrast to degrees of
altruism as proposed here, a player’s opinion on her friends (players
of distance one) has the highest weight while her opinion on play-
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ers farther away counts less. This is similar (but not equivalent) to
our selfish-first model to be defined in Section 3.2.

Furthermore, the study of other agents’ influence on opinions
has gained increasing interest in collective decision making [22,
23]. In the context of voting scenarios, preference extensions and
their properties have been studied by Endriss [20]. An overview of
axiomatic properties of preference orders can be found, e.g., in the
book chapters by Barberà et al. [9] and Lang and Rothe [26]. The
work by Darmann et al. [15] combines aspects of voting theory and
the theory of coalition formation games: They define a model for
selection scenarios for a number of group activities that can also
be represented by hedonic games and they study the complexity of
stability concepts in this model. Aziz et al. [5] provide a survey
of known results for additively separable hedonic games; in partic-
ular, two impressive complexity results—NPNP-completeness for
the existence of (strictly) core-stable coalition structures—are due
to Woeginger [34] and Peters [28]. The concept of Pareto optimal-
ity has been studied by Aziz et al. [3] for a number of encodings of
hedonic games, while recent work of Brandl et al. [11] is concerned
with the complexity of various stability concepts in fractional he-
donic games [4]. Lang et al. [25] introduce a new type of hedonic
game where agents rank their friends and their enemies (and may, in
addition, feel “neutral” about some other players), and these pref-
erences over players are extended to preferences over coalitions.

2. PRELIMINARIES
A hedonic game is a pair (N,�), where N = {1, . . . ,n} is a set of

players and � = (�1, . . . ,�n) is a list of the players’ preferences.
For i ∈ N, let N i = {C ⊆ N | i ∈ C} denote the set of coalitions
containing i. Player i’s preference relation �i ∈N i×N i induces
a complete, weak preference order over N i. For A,B ∈N i, we say
that player i weakly prefers A to B if A �i B, that i prefers A to B
(A �i B) if A �i B but not B �i A, and that i is indifferent between
A and B (A∼i B) if A�i B and B�i A. We call C ∈N i acceptable
for player i if C �i {i}. A coalition structure is a partition Γ =
{C1, . . . ,Ck} of the players into k coalitions C1, . . . ,Ck ⊆ N (i.e.,⋃k

r=1 Cr = N and Cr ∩Cs = /0 for all r and s, 1 ≤ r 6= s ≤ k). The
unique coalition in Γ containing player i ∈ N is denoted by Γ(i).

In order to avoid exponentially large preference orders in the
number of players, a common way to represent players’ preferences
is to consider a network of friends [16]. Each player i ∈ N has a set
of friends Fi ⊆ N \ {i} and a set of enemies Ei = N \ (Fi ∪ {i}).
Visually, let the players in N = {1, . . . ,n} be represented by the
vertices in a graph G = (N,H), and let a directed edge (i, j) ∈ H
denote that j is i’s friend, that is, the open neighborhood of i repre-
sents the set of i’s friends Fi = { j | (i, j) ∈ H}. Since in the con-
text of stability it is reasonable to consider symmetric friendship
relations [33], we will focus on undirected graphs representing net-
works of friends. In the friend-oriented preference extension [16]
more friends are preferred to fewer friends, and in case of an equal
number of friends, fewer enemies are preferred. Formally, define

A�F
i B ⇐⇒ |A∩Fi|> |B∩Fi| or (1)

(|A∩Fi|= |B∩Fi| and |A∩Ei| ≤ |B∩Ei|).

Note that friend-oriented preferences can be represented addi-
tively, by assigning a value of n = |N| to each friend and a value of
−1 to each enemy [16]: For any player i ∈ N and for any coalition
A ∈N i, define the value of a coalition by

vi(A) = n|A∩Fi|− |A∩Ei|.

Then, for A,B ∈N i, we have A�F
i B ⇐⇒ vi(A)≥ vi(B).

Relatedly, other representations and their preference extensions
are enemy-oriented preferences [16], additively separable [32] and

fractional hedonic games [4], and singleton encodings [13] (which
each are compactly representable but not fully expressive or com-
plete), individually rational encodings [7], and hedonic coalition
nets [19] (which are fully expressive but not compact in the sense
of polynomial-size representation). See Section 4 for a discussion
of how our models differ from representations known from the lit-
erature.

2.1 Properties of Preference Extensions
Below we give a selection of properties of preference extensions

inspired by various related topics such as voting theory and re-
source allocation. Let N = {1, . . . ,n} be a set of players and Fi
and Ei the sets of player i’s friends and enemies, respectively. Let
G = (N,H) be the corresponding network of friends. Consider
player i’s preference relation �i on N i. We say �i is reflexive
if A�i A for each coalition A ∈N i; �i is transitive if for any three
coalitions A,B,C ∈ N i, A �i B and B �i C implies A �i C; �i is
polynomial-time computable if for a given player i and two given
coalitions A,B ∈N i, it can be decided in polynomial time whether
or not A �i B; and �i is anonymous if renaming the players in N
does not change �i. Clearly, the first three properties are neces-
sary to have efficiently computable and rational preferences, and
anonymity means that only the structure of the friendship network
is important. We further define the following properties.

Weak Friend-Orientedness: If coalition A is acceptable for i, then
A∪{ f} is also acceptable for i, where f ∈ Fi \A.

Favoring Friends: If x ∈ Fi and y ∈ Ei then {x, i} �i {y, i}.
Indifference between Friends: If x,y ∈ Fi then {x, i} ∼i {y, i}.
Indifference between Enemies: If x,y ∈ Ei then {x, i} ∼i {y, i}.

Note that these four properties hold for friend-oriented prefer-
ences, see the work of Alcantud and Arlegi [1].

Sovereignty of Players: For a fixed player i and each C ∈ N i,
there exists a network of friends such that C ends up as i’s most
preferred coalition.

Monotonicity: Let j 6= i be a player with j ∈Ei and A,B∈N i, and
�′i be the preference relation resulting from �i when j turns
from being i’s enemy to being i’s friend (all else being equal).
We call �i type-I-monotonic if it holds that (1) if A �i B, j ∈
A∩B, and A �F

j B, then A �′i B, and (2) if A ∼i B, j ∈ A∩B,
and A �F

j B, then A �′i B. We call �i type-II-monotonic if it
holds that (1) if A �i B and j ∈ A \B, then A �′i B, and (2) if
A∼i B and j ∈ A\B, then A�′i B.
Type-I-monotonicity ensures i’s preference of A over B not to
become worse if an enemy j who is contained in both coali-
tions, turns into i’s friend, while j is weakly preferring A to B.
Type-II-monotonicity, on the other hand, requires that j is only
in A (hence has no opinion on B), but still i’s preference of A
over B should not become worse.

Symmetry: Let j and k be two distinct players with j 6= i 6= k. We
say that�i is symmetric if it holds that if swapping the positions
of j and k in G is an automorphism then(
∀C ∈N i \ (N j ∪N k)

)
[C∪{ j} ∼i C∪{k}].

Local Friend Dependence: The preference order �i can depend
on the sets of friends F1, . . . ,Fn. Let A,B ∈ N i. We say that
comparison (A,B) is

• friend-dependent in �i if (1) A �i B is true (false) and
(2) can be made false (true) by changing the set of friends
of some players (except for i);

• locally friend-dependent in�i if (1) A�i B is true (false),
(2) can be made false (true) by changing the set of friends
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of some players that are in A or B and are i’s friends,
and (3) changing the set of friends of all other players
in N \ ({i}∪ (Fi∩ (A∪B)) does not affect the status of the
comparison.

We say�i is locally friend-dependent if (1) there are A,B∈N i

such that (A,B) is friend-dependent in �i and (2) every (A′,B′)
that is friend-dependent in�i is locally friend-dependent in�i.

This property says that an agent’s preference over some coalition
can change if the set of a friend’s friends changes. This friend also
has to be a member of a coalition that is under consideration. Thus
local friend dependence is a crucial property that tries to capture
the essence of the proposed approach to altruism in hedonic games.

Friend-Oriented Unanimity: Let A,B ∈N i with A∩Fi = B∩Fi.
We say that �i is friend-orientedly unanimous if A �F

j B for
each j ∈ (Fi∪{i})∩A implies that A�i B.

Note that the definition of friend-oriented unanimity covers all
cases where the same subset of friends is consulted who all have a
unanimous opinion in terms of friend-oriented preferences, in par-
ticular the case considering all friends’ opinions: Fi ⊆ A∩B.

2.2 Stability Concepts
The following stability concepts are commonly studied in hedo-

nic games.

DEFINITION 1. Let (N,�) be a hedonic game and Γ be a coali-
tion structure. A coalition C ⊆ N blocks Γ if for each i ∈C it holds
that C �i Γ(i). If there is at least one i ∈ C with C �i Γ(i) while
C � j Γ( j) holds for the other players j 6= i in C, we call C weakly
blocking. A coalition structure Γ is said to be

1. individually rational if for all i ∈ N, Γ(i) is acceptable;
2. Nash-stable if for all i∈N and for each C ∈ Γ∪{ /0} with Γ(i) 6=

C, it holds that Γ(i)�i C∪{i};
3. individually stable if for all i ∈ N and for each C ∈ Γ∪{ /0}, it

either holds that Γ(i)�i C∪{i} or there is a player j ∈C with
C � j C∪{i};

4. contractually individually stable if for all i ∈ N and for each
C ∈ Γ∪{ /0}, it either holds that Γ(i) �i C∪{i}, or there is a
player j ∈ C with C � j C∪{i}, or there is a player k ∈ Γ(i)
with i 6= k and Γ(i)�k Γ(i)\{i};

5. strictly popular if it beats every other coalition structure Γ′ 6= Γ

in pairwise comparison, that is, if |{i ∈ N | Γ(i) �i Γ′(i)}| >
|{i ∈ N | Γ′(i)�i Γ(i)}|;

6. (strictly) core-stable if there is no (weakly) blocking coalition;
7. perfect if for all i∈N and for all C∈N i, it holds that Γ(i)�i C.

3. ALTRUISTIC HEDONIC GAMES
In this section, we introduce our new model that refines friend-

oriented hedonic games by taking altruistic influences into account.
In this model, each player still wants to be with as many friends and
as few enemies as possible, but in addition she wants her friends to
be as satisfied as possible.

3.1 Naïve Approach
A first attempt to formalize this idea (that will turn out to fail)

is the following. Consider the scenario where i ∈ N has a friend-
oriented preference extension (according to Equivalence (1)) ex-
cept that, whenever the number of friends in A and B is the same
and so is the number of enemies in A and B (i.e., A ∼F

i B), i now
prefers A to B if more of i’s friends that are contained in A and B
prefer A to B than B to A (according to Equivalence (1)). Formally:

A�NA
i B ⇐⇒ |A∩Fi|> |B∩Fi| or (2)

(|A∩Fi|= |B∩Fi| and |A∩Ei|< |B∩Ei|) or
(|A∩Fi|= |B∩Fi| and |A∩Ei|= |B∩Ei| and

|{ j ∈ A∩B∩Fi | A�F
j B}| ≥

|{ j ∈ A∩B∩Fi | B�F
j A}|).

Intuitively, according to (2), a player is selfish first, but as soon
as she is indifferent between two coalitions in the sense of (1),
she cares about her friends’ preferences. A major disadvantage
of this definition, however, is that irrational preference orders can
arise, i.e., preference orders that are not transitive in general: Con-
sider, e.g., the hedonic game (N,�NA) with N = {1,2,3,4,5,6,7}
and the network of friends shown in Figure 2a. For coalitions
A = {1,2,3,5}, B = {1,2,4,7}, and C = {1,3,4,6}, it holds that
A�NA

1 B and B�NA
1 C, yet C �NA

1 A, violating transitivity.

1
2
3
4

5
6
7

(a) Used, e.g., in the proof of
Proposition 7

1
2

3 4

5

(b) Illustrating distinct degrees
of altruism in Example 1

Figure 2: Two networks of friends representing hedonic games

In order to ensure transitivity, we have to add an extra condi-
tion to Equivalence (2). One idea would be to demand indiffer-
ence between all coalitions that are involved in a �NA

i -cycle by (2).
This, however, can lead to a comparison of all coalitions contain-
ing a player, so determining a relation between two coalitions might
comprise an exponential number of steps in the number of players.
Then it would have been easier to give an arbitrary preference order
as an input in the first place. Another idea would be to include the
preferences of all friends, not only of those contained in the con-
sidered coalitions, but this would contradict the concept of hedonic
game. In the following, we take a different approach.

3.2 Modelling Altruistic Influences
Given the failure of extending friend-oriented preferences by

breaking ties with “majority voting,” we consider the following
model instead: Player i ∈ N prefers coalition A over B if the av-
erage value of i’s friends in A is larger than the average value of i’s
friends in B. In more detail, using the friend-oriented encoding, we
obtain a friend j’s opinion on a coalition containing both player i
and j, which can have an influence on i’s preference relation in the
following ways. Since we consider friends to be equally important
and focus on the average valuation, assigning a weight to player
i’s own contribution in comparison to her friends’ influence on her
preference, we will distinguish between three degrees of altruism:
A player may (a) be selfish first and ask her friends only in case
of indifference, (b) treat her friends and herself equally, or (c) be
truly altruistic by asking her friends first and deciding herself only
in case of indifference. Next to the definition we will show that the
preferences capture the intuitive ideas behind them. For i ∈ N and
A ∈N i, let

avgF
i (A) = ∑

a∈A∩Fi

va(A)
|A∩Fi|

.

In each of the three cases below, a player’s utility ui of a coalition
is used as a measure of comparison combining the values vi and v j
for j ∈ Fi. Note that ui = vi under friend-oriented extensions.
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(a) Selfish First: A player initially decides upon her preference
over two coalitions friend-orientedly (i.e., according to (1)) and, if
and only if she is indifferent between them, she asks her friends for
a vote. For M ≥ n5, we define:

A�SF
i B ⇐⇒

M(n|A∩Fi|− |A∩Ei|)+ ∑
a∈A∩Fi

n|A∩Fa|− |A∩Ea|
|A∩Fi|

≥

M(n|B∩Fi|− |B∩Ei|)+ ∑
b∈B∩Fi

n|B∩Fb|− |B∩Eb|
|B∩Fi|

.

(3)

THEOREM 1. For M ≥ n5, vi(A)> vi(B) implies A�SF
i B.

PROOF. The claim clearly holds for avgF
i (A) ≥ avgF

i (B). For

avgF
i (A) < avgF

i (B), it holds if and only if M >
avgF

i (B)−avgF
i (A)

vi(A)−vi(B)
.

The numerator is upper-bounded by n|B∩Fi|·|B|
|B∩Fi| +

|A∩Fi|·|A|
|A∩Fi| ≤ n2 +n.

Since vi(A) and vi(B) are integral, vi(A)− vi(B) ≥ 1. Thus M >
n2 +n suffices.

(b) Equal Treatment: A player and her friends “vote” friend-
orientedly at the same time, equally taking part in the decision:

A�EQ
i B ⇐⇒ ∑

a∈A∩(Fi∪{i})

n|A∩Fa|− |A∩Ea|
|A∩ (Fi ∪{i})|

≥

∑
b∈B∩(Fi∪{i})

n|B∩Fb|− |B∩Eb|
|B∩ (Fi ∪{i})|

.

(4)

(c) Altruistic Treatment: A player first asks her friends for their
opinion on a coalition they are contained in and adopts their aver-
age opinion; if and only if the consensus is indifference, the player
decides for herself. For M ≥ n5, we define:

A�AL
i B ⇐⇒

n|A∩Fi|− |A∩Ei|+M ∑
a∈A∩Fi

n|A∩Fa|− |A∩Ea|
|A∩Fi|

≥

n|B∩Fi|− |B∩Ei|+M ∑
b∈B∩Fi

n|B∩Fb|− |B∩Eb|
|B∩Fi|

.

(5)

THEOREM 2. For M≥ n5, avgF
i (A)> avgF

i (B) implies A�AL
i B.

PROOF. The claim clearly holds for vi(A)≥ vi(B). For vi(A)<
vi(B), the claim holds if and only if M >

vi(B)−vi(A)
avgF

i (A)−avgF
i (B)

. The nu-

merator is upper-bounded by n2 + n. Note that vi(A) < vi(B) im-
plies |A∩Fi| ≤ |B∩Fi|. We distinguish three cases.

1. If avgF
i (A)|A∩ Fi| > avgF

i (B)|B∩ Fi|, then by the integral-
ity of v, we have avgF

i (A)|A∩ Fi| − avgF
i (B)|B∩ Fi| ≥ 1. Thus

avgF
i (A)− avgF

i (B) ≥
avgF

i (A)|A∩Fi|−avgF
i (B)|B∩Fi|

|A∩Fi| ≥ 1
n , as avgF

i (X)

is always positive if X contains a friend of i and |A∩Fi| ≤ |B∩Fi|.
2. If avgF

i (A)|A ∩ Fi| = avgF
i (B)|B ∩ Fi|, then we have

∑
a∈A∩Fi

va(A)
(

1
|A∩Fi| −

1
|B∩Fi|

)
≥ |A∩Fi|

(
1

|A∩Fi| −
1

|B∩Fi|

)
. This is

equal to 1− |A∩Fi|
|B∩Fi| , which is lower-bounded by 1

n : Suppose that the
lower bound does not hold. Then n(|B∩Fi| − |A∩Fi|) < |B∩Fi|.
Hence, we have the contradiction n < |B∩Fi|.

3. If avgF
i (A)|A∩Fi|< avgF

i (B)|B∩Fi|, then |B∩Fi|> |A∩Fi|.
Suppose that avgF

i (A)− avgF
i (B) <

1
n2 . Since by the premise we

have |B∩Fi| ∑
a∈A∩Fi

va(A)−|A∩Fi| ∑
b∈B∩Fi

vb(B)≥ 1, this is equiva-

lent to n2 <
|A∩Fi|·|B∩Fi|

|B∩Fi| ∑
a∈A∩Fi

va(A)−|A∩Fi| ∑
b∈B∩Fi

vb(B)
. The right-hand side is

upper-bounded by n2−n, implying the contradiction n2 < n2−n.

Overall, M > n4 +n3 suffices in all three cases.

For consistency we choose M ≥ n5. In all three cases in the
proof of Theorem 2, normalization by the number of i’s friends in a
coalition prevents a “tyranny of the many” (otherwise, large coali-
tions would be preferred merely by the fact that the total number of
friends is larger). The following example represents the different
approaches to altruism in hedonic games.

EXAMPLE 1. Consider the game with five players N = {1,2,3,
4,5} and the network in Figure 2b. Table 1 gives an overview of the
relevant values and average values needed to determine player 1’s
utilities for different acceptable coalitions depending on the degree
of altruism. A dash indicates that a value does not exist.

C {1
,2
,3
}

{1
,2
,3
,4
}

{1
,2
,3
,5
}

N {1
,2
}

{1
,3
}

{1
,2
,4
}

{1
,2
,5
}

{1
,3
,4
}

v1(C) 10 9 9 8 5 5 4 4 4

v2(C) 4 3 9 8 5 − 4 10 −
v3(C) 4 9 3 8 − 5 − − 10

avgF
1 (C) 4 6 6 8 5 5 4 10 10

EQ: u1(C) 6 7 7 8 5 5 4 7 7

Table 1: Values and average values of the players in Example 1

All four weak preference orders are different. Under the friend-
oriented preference extension (1), player 1’s weak preference order
is given in the first line according to the values of v1. For the selfish-
first extension (3), the order remains the same; however, indiffer-
ences are dissolved, as is the case here with {1,2,5} �SF

1 {1,2,4}
by Theorem 1. Under the equal-treatment extension (4), the grand
coalition is the most preferred one; intuitively, because all friends
have a large number of friends at the same time. Finally, under the
most altruistic extension (5), player 1’s friends consider {1,2,5}
and {1,3,4} the best coalition. As they agree on that, player 1
altruistically adopts this opinion by Theorem 2.

A player’s utility of a coalition can also be deduced from the
corresponding network of friends itself.

PROPOSITION 3. Let G be a network of friends, i a player, and
C∈N i a coalition. Let λ be the number of edges {i, j}where j∈C,
i.e., λ = |Fi ∩C|. Let µ be the number of edges between i’s friends
in C, i.e., µ = |{{ j,k} | j,k ∈ Fi∩C}|, and let ν denote the number
of edges between i’s friends in C and those friends of j in C who
are i’s enemies, i.e., ν = |{{ j,k} | j ∈ Fi ∩C, k ∈ Fj ∩C, k /∈ Fi}|.
Then i’s utility of C under selfish-first preferences is

M ·λ(n+1)+M+n+2− (M+1)|C|+ (n+1)(2µ+ν)

λ
;

under equal-treatment preferences it is

(2λ+2µ+ν)(n+1)
λ+1

−|C|+1;

and under altruistic-treatment preferences it is

M(n+2)+λ(n+1)+1− (M+1)|C|+ M(n+1)(2µ+ν)

λ
.

The proof of Proposition 3 is omitted due to limitation of space.
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4. PROPERTIES OF HEDONIC GAMES
WITH ALTRUISTIC INFLUENCES

In this section, we show which of the desirable properties from
Section 2.1 are satisfied by our model. First, however, we start with
a discussion of expressiveness, focusing on model (4):

First, as the original definition of friend-oriented preferences is
recovered for coalitions that only consist of enemies, our models
are not fully expressive. This follows from indifference between
friends and enemies, respectively.

Second, we show that the expressiveness of model (4) is incom-
parable to (additively) separable hedonic games, fractional hedonic
games, hedonic games with B- or W -preferences, and B- and W -
hedonic games (see, for example, the book chapter by Aziz and
Savani [6] for the definitions of these representations of hedonic
games). In all of the above models two players’ preference orders
are independent but in our model they might depend on each other.
Players are independent in choosing friends; however, the induced
preferences depend crucially on friends’ relations to other players.
In other words, a player’s preference is constrained by her friends’
preferences. Hence, there is a tradeoff between the expressiveness
of preferences and the expressiveness of profiles.

Third, model (4) can express preferences that are not separable:
Consider a game with players N = {i,a,b, j} and Fi = {a,b, j},
Fa = {i,b},Fb = {i,a},Fj = {i}. Denote the left-hand side of the

inequality in (4) by u∗i (A) = ∑a′∈A∩(Fi∪{i})
n|A∩Fa′ |−|A∩Ea′ |
|A∩(Fi∪{i})| . Then

u∗i ({i,a,b}) = 2n and u∗i ({i,a,b, j}) = 2n− 1. Thus {i,a,b} �EQ
i

{i,a,b, j} but {i, j} �EQ
i {i}, because j is a friend. However, ad-

ditively separable preferences can express strict preferences over
coalitions with a single friend, which is not possible in model (4)
because of indifference between friends. Similarly, fractional pref-
erences can express strict preferences over pairs. In addition, they
can express nonseparable relations by losing the ability to express
indifference between pairs. B- and W -preferences can express in-
difference between pairs but this constraints the preferences over
larger coalitions. In this case, however, depending on the network
of friends, model (4) can express every possible relation between
some specific coalitions. For B- and W -hedonic games, there is a
simple example with two coalitions of size two only one of which is
acceptable, where the implied relation over the coalition with both
players does not hold under model (4).

Overall, neither is model (4) more expressive than any of the
other considered models nor the other way around. Similar exam-
ples also exist for the other two models. It is not hard to see that all
three degrees of altruism are locally friend-dependent, because (ex-
cept for player i’s own preference) only her friends in the current
coalition affect its value. Note that this is a crucial property that
distinguishes our model from previous work. We omit the proof of
Proposition 4.

PROPOSITION 4. Under all three degrees of altruism (3)–(5),
the following properties are satisfied: reflexivity, transitivity, poly-
nomial-time computability, as well as anonymity.

THEOREM 5. Under all three degrees of altruism (3)–(5), weak
friend-orientedness, favoring friends, indifference between friends,
indifference between enemies, sovereignty of players, symmetry,
and friend-oriented unanimity are satisfied.

PROOF. We show these properties only for equal treatment (4).
Weak friend-orientedness: Suppose that A is acceptable for i∈

A, that is, we have A�EQ
i {i}, which is equivalent to the inequality

∑
a∈A∩(Fi∪{i})

va(A)
|A∩ (Fi ∪{i})|

≥ vi({i})
|{i}∩ (Fi ∪{i})|

= 0.

A∪{ f}�EQ
i {i} if and only if ∑a∈(A∪{ f})∩(Fi∪{i}) va(A∪{ f})≥ 0.

The left-hand side of this inequality equals

∑
a∈A∩(Fi∪{i})

va(A)+ ∑
a∈A∩(Fi∪{i})

va({ f})+ v f (A∪{ f}). (6)

The second sum and v f (A∪{ f}) are greater than zero because i
is f ’s friend (and vice versa) and there are at most n− 1 enemies
for f . Thus, in total, we have that (6) is nonnegative and, therefore,
A∪{ f} is acceptable for i as well.

Favoring friends: This property holds due to the fact that

∑
a∈{x,i}∩(Fi∪{i})

n|{x, i}∩Fa|− |{x, i}∩Ea|
|{x, i}∩ (Fi ∪{i})|

=
vx({x, i})

|{x, i}∩ (Fi ∪{i})|
+

vi({x, i})
|{x, i}∩ (Fi ∪{i})|

= n ≥ −1 = ∑
b∈{y,i}∩(Fi∪{i})

vb({y, i})
|{y, i}∩ (Fi ∪{i})|

.

Indifference between friends: Let x,y∈Fi. As their names can
be swapped, the sum for both friends is n and, therefore, we have
both {x, i} �EQ

i {y, i} and {y, i} �EQ
i {x, i}.

Indifference between enemies: Analogously to the indifference
between friends, both sums equal −1.

Sovereignty of players: We construct the network G such that
for all pairs of players x,y ∈C, x 6= y, there is an edge {x,y} in G,
while there are no other edges in G.

Symmetry: Suppose that swapping the positions of j and k in
G is an automorphism. If j is a friend of a player i, so is k. The
same holds for enemies. Therefore, the sum over all players in
(C∪{ j})∩ (Fi∪{i}) equals the sum over all players in (C∪{k})∩
(Fi ∪{i}) if j (and k) are not in Fi. If j (and, therefore, k) are i’s
friends, the additional summands equal each other, as j is neither
in Fj nor in E j and as k is neither in Fk nor in Ek.

Friend-oriented unanimity: As A∩Fi = B∩Fi and both A,B∈
N i, we have |A∩ (Fi ∪{i})| = |B∩ (Fi ∪{i})|. Thus it suffices to
show that ∑a∈A∩(Fi∪{i}) va(A)> ∑a∈A∩(Fi∪{i}) va(B). According to
the friend-oriented model, we subdivide the sum on the left-hand
side above as follows:

∑
a∈A∩(Fi∪{i})

va(A) = ∑
a1∈A∩(Fi∪{i})

va1 (A)+ ∑
a2∈A∩(Fi∪{i})

va2 (A),

where a1 are those a ∈ A∩ (Fi∪{i}) for which |A∩Fa|> |B∩Fa|,
and a2 are those a ∈ A∩ (Fi∪{i}) for which |A∩Fa|= |B∩Fa| and
|A∩Ea|< |B∩Ea|.
Considering a1, we note that va1(A) > va1(B), as even for |A∩
Fa1 | = |B∩Fa1 |+ 1 and |A∩Ea1 | = n− 1 and |B∩Ea1 | = 0, we
have n(|B∩Fa1 |+ 1)− (n− 1) > n|B∩Fa1 |. For a2, we see that
n|A∩Fa2 | − |A∩Ea2 | = n|B∩Fa2 | − |A∩Ea2 | > n|B∩Fa2 | − |B∩
Ea2 |. Thus A�EQ

i B, showing friend-oriented unanimity.
This proves (4); the proof for (3) and (5) is similar.

Regarding the property of symmetry, note that whenever two in-
terchangeable players have a distance of at most two, then the state-
ment

(
∀C ∈N i \ (N j ∪N k)

)
[C ∪ { j} ∼i C ∪ {k}] implies that

swapping i and j in G is an automorphism.

THEOREM 6. Selfish-first preferences (3) are type-I-monotonic
and type-II-monotonic.

PROOF. Let i ∈ N, A,B ∈N i, and j ∈ Ei. We denote with �̂SF
i

the preference of i resulting from �SF
i when j is moved from Ei to

Fi and i is moved from E j to Fj (all else being equal), and we denote
the new friend sets of i and j with F ′i = Fi∪{ j} and F ′j = Fj ∪{i}.
Recall that A �SF

j B means that (i) if A ∼SF
j B then A ∼F

j B has to
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hold and avgF
j (A) = avgF

j (B) (where avgF
j (A) = ∑a∈A∩Fj

va(A)
|A∩Fj | ),

and (ii) if A�SF
j B then either (a) A∼F

j B and avgF
j (A)> avgF

j (B),
or (b) A�F

j B. Suppose A∼SF
i B. Then we have that A∼F

i B and

avgF
i (A) = avgF

i (B). (7)

Since j ∈ A∩B, A∼̂SF
i B, so we have to compare ∑a∈A∩F ′i

va(A)
|A∩Fi|+1

and ∑b∈B∩F ′i
vb(B)
|B∩Fi|+1 , the former being equal to

|A∩Fi|
|A∩Fi|+1︸ ︷︷ ︸

(part 1)

n|A∩Fj|+n−|A∩E j|+1
|A∩Fi|︸ ︷︷ ︸
(part 2)

+avgF
i (A)︸ ︷︷ ︸

(part 3)

 (8)

and the latter being equal to

|B∩Fi|
|B∩Fi|+1︸ ︷︷ ︸

(part 4)

n|B∩Fj|+n−|B∩E j|+1
|B∩Fi|︸ ︷︷ ︸
(part 5)

+avgF
i (B)︸ ︷︷ ︸

(part 6)

 . (9)

We know from A ∼F
i B that (part 1) = (part 4), we know from

(7) that (part 3) = (part 6), and we know that the denominators in
(part 2) and (part 5) are equal. So calculating (part 2)− (part 5)
leads to

n|A∩Fj|− |A∩E j|− (n|B∩Fj|− |B∩E j|)

{
= 0 if A∼F

j B,
≥ 0 if A�F

j B.

In total, we have (8)≥ (9) if A�F
j B, thus A�̂SF

i B.
Assume now that A�SF

i B. If A�F
i B, nothing changes by mak-

ing j a friend of i. If A∼F
i B, then it has to hold that

∑
a∈A∩Fi

va(A)
|A∩Fi|

> ∑
b∈B∩Fi

vb(B)
|B∩Fi|

. (10)

By making j a friend of a, the relation A∼F
i B is not changed. So,

analogously to the first part, we have to compare the sums in (8)
and (9). By A∼F

i B, we know that (part 1) = (part 4) and from (10)
we know that (part 3)> (part 6). By the same argument as above,
we know that (part 2) ≥ (part 5) if A �F

j B, and, in total, we have

that A�̂SF
i B.

It remains to prove type-II monotonicity. In this case, we have
j ∈A\B. Suppose A∼SF

i B. This implies that A∩Fi =B∩Fi. Since
j is not contained in B, we have that |A∩F ′i |> |B∩F ′i |, which gives

A�̂SF
i B. Assume now that A �SF

i B. There are two cases. First, if

A∼F
i B, then A�̂SF

i B follows by the same argumentation as above.
Second, if A �F

i B, then adding a further friend to A who is not

contained in B does not change this relation. Thus A�̂SF
i B.

PROPOSITION 7. Equal-treatment preferences (4) and altruistic-
treatment preferences (5) are not type-II-monotonic.

PROOF. Let G1 be a game with the network of friends shown in
Figure 2a. We see that 7 6∈ F1 and A∼EQ

1 B for A = {1,2,3,7} and
B= {1,3,4,5}. Making 7 a friend of 1 leads to G ′1 with the network
of friends shown in Figure 3a, and in G ′1 we have that B �EQ

1 A,
violating type-II monotonicity. With an analogous argumentation
for the games G2 and G ′2 (illustrated in Figure 3b and 3c), altruistic-
treatment preferences are not type-II-monotonic.

Note that the above result is a desirable outcome since this be-
havior exactly captures the intuition behind the definition of the
equal treatment and the altruistic treatment.

1

2

3

4
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6

7
(a) Network of G ′1
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(b) Network of G2

1
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3

4

5

6

7
(c) Network of G ′2

Figure 3: Network of friends in the proof of Proposition 7

Based on a similar line of thought we note the following: In ad-
dition to the axiomatic properties in Section 2.1, one could consider
notions of independence (see, e.g., [1] for a characterization of
friend-oriented preferences using an independence axiom). Classic
independence axioms say that a relation between two coalitions, A
and B, continues to hold even if a new (and the same) player is
introduced to both coalitions. However, independence axioms of
this type are not desirable in our model because the new player can
be valued very differently in both coalitions. This would be the
case, for example, if the new player were an enemy to most of i’s
friends in A but were loved by most of i’s friends in B. Similarly,
B- and W -preferences [13] are natural extensions from singleton
encodings that are not independent.

5. STABILITY
In this section, we study several common stability concepts in

our model. Questions of interest are how hard it is to verify whether
a given coalition structure satisfies a certain concept in a given he-
donic game and whether stable coalition structures for certain con-
cepts always exist. If, for some concept, such a coalition struc-
ture does not always exist, we are also interested in the compu-
tational complexity of deciding whether or not some such coali-
tion structure exists in a given hedonic game. Recently, Peters
and Elkind [29] established metatheorems that help proving NP-
hardness results for stability concepts in hedonic games. However,
their results do not seem to be immediately applicable.

OBSERVATION 8. Under all three degrees of altruism (3)–(5),
a coalition structure Γ is individually rational if and only if for each
i ∈ N, Γ(i)∩Fi 6= /0 or Γ(i) = {i}.

PROPOSITION 9. For all three degrees of altruism (3)–(5), it
can be tested in polynomial time whether a given coalition structure
in a given game is Nash-stable, individually stable, or contractually
individually stable.

PROOF. Let Γ be a coalition structure. We need to check if for
each player i∈N and for each existing coalition C in Γ or for C = /0,
i prefers Γ(i) to being added to C. For n players, there are at most
n+ 1 such coalitions, and the preference relation can be verified
in polynomial time by Proposition 4. Similar arguments apply to
individual and contractually individual stability.

LEMMA 10. For all three degrees of altruism the following hold:
1. For each player i, each j ∈ Fi assigns a positive value to any

coalition C ∈N i∩N j.
2. If a player has at least one friend, her favorite coalition con-

tains at least one friend.

PROOF. 1. For symmetric friendship relationships, a friend
always has at least one friend in a coalition she is asked to evaluate.
Therefore, if a valuation of a friend is considered to influence a
preference, it is always positive.

2. Suppose that a coalition contains player i and none of her
friends. Then the overall value is at most zero.

This completes the proof.
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THEOREM 11. For all three degrees of altruism (3)–(5), there
always exist Nash-stable, individually stable, and contractually in-
dividually stable coalition structures.

PROOF. Let E = {i ∈ N | Fi = /0} and rename its members by
E = {e1, . . . ,ek}. The coalition structure {{e1}, . . . ,{ek},N \ E}
is Nash-stable: For each i ∈ E, vi(N \E) < 0, since there are no
friends to be evaluated positively nor to be asked for their valuation,
i would rather stay alone. For each i /∈ E, vi(N \E)> 0, since there
is at least one friend who leads to a positive value and i herself
contributes a positive value by Lemma 10.1, i would rather like to
stay in N \E than to move alone to the empty coalition.

Nash stability implies individual stability, which in turn implies
contractually individual stability.

On the other hand, for all three degrees of altruism, there exists
a game such that no coalition structure is strictly popular.

EXAMPLE 2. Consider the game from Example 1 and the coali-
tion structures Γ1 = {{1,2,5},{3,4}}, Γ2 = {{1,3,4},{2,5}},
Γ3 = {{1,2,3,4},{5}}, Γ4 = {{1,2,3,5},{4}}, and Γ5 = {N}.

1. Under selfish-first preferences (3), Γ1 and Γ2 are more popu-
lar than all other coalition structures, but are in a tie.

2. Under equal-treatment preferences (4), even three coalition
structures are in a tie: Γ3,Γ4, and Γ5.

3. Under altruistic-treatment preferences (5), Γ2 is more popu-
lar than Γ3, which in turn is more popular than Γ5. Γ5 and Γ2 are in
a tie. Further, Γ1 is more popular than Γ4; the two coalition struc-
tures behave analogously to Γ2 and Γ3, respectively, due to symme-
tries. There is no other coalition structure that is not beaten by any
of the above-mentioned coalition structures. Hence, no coalition
structure is strictly popular.

We now turn to the complexity of the verification and the existence
problem for strict popularity in selfish-first hedonic games.

THEOREM 12. Under selfish-first preferences (3), the problem
of whether a given coalition structure in a given game is strictly
popular is coNP-complete and the problem of whether there exists
a strictly popular coalition structure in a given game is coNP-hard.

PROOF. The first problem belongs to coNP, since the comple-
mentary problem can be decided by nondeterministically choos-
ing another coalition structure and verifying whether a larger num-
ber of players prefer the latter to the former than the other way
around. Verification can be done in polynomial time by Propo-
sition 4. We show coNP-hardness by means of a polynomial-time
many-one reduction from EXACT COVER BY 3-SETS (XC3) to the
complement of the first problem. An XC3 instance consists of a set
B = {1, . . . ,3k} and a family S = {S1, . . . ,Sm} of subsets Si ⊆ B
with |Si| = 3, for each i, 1 ≤ i ≤ m, and the question is whether
there exists an exact cover for B in S , i.e., a subfamily S ′ ⊆S
such that each element of B occurs in exactly one set in S ′. We
may assume that each b ∈ B occurs at most three times in the sets
of S (see [21]). The following construction is inspired by meth-
ods used by Sung and Dimitrov [32], which will be adapted in a
nontrivial way, though. Given an XC3 instance (B,S ), we con-
sider the set of players N = {βb | b ∈ B}∪{ζS,` | S ∈S ,1≤ `≤
3k}∪{ηS, j | S ∈S ,1 ≤ j ≤ 3k+ 3}. The network of friends, as
displayed in Figure 4, is the following: All players in {βb | b ∈ B}
are friends with each other; βb and ζS,` are each others’ friends if
b ∈ S, for each S ∈ S , 1 ≤ ` ≤ 3k; for each S ∈ S , all players
in QS = {ζS,`,ηS, j | 1 ≤ ` ≤ 3k,1 ≤ j ≤ 3k+ 3} are each others’
friends; and there are no other friendship relations.

Define the coalition structure Γ = {{β1, . . . ,β3k},QS1 , . . . ,QSm}.
We show that Γ is strictly popular if and only if there exists no exact
cover for B in S .

β1

...

βb

...

β3k

. . .

ζS,1

...

ζS,3k

b ∈ S

ηS,1

...

ηS,3k+3

. . .

Figure 4: Network of friends in the proof of Theorem 12

Only if: Assume there exists an exact cover S ′ ⊆S such that⋃
S∈S ′ S = B and |S ′| = k. Then, for the coalition structure ∆ =
{{βb | b ∈ S}∪QS | S ∈S ′}∪{QS | S ∈S \S ′}, it holds that
|{i | ∆(i) �SF

i Γ(i)}| = 3k + k · 3k = k(3k + 3) = |{ j | Γ( j) �SF
j

∆( j)}|. Hence, Γ cannot be strictly popular.
If: If, on the other hand, Γ is not strictly popular, there ex-

ists some coalition structure ∆ that is preferred to Γ by at least as
many players as the number of those players preferring Γ to ∆.
This is only possible if such a ∆ implies the existence of an ex-
act cover for B. Note that while eliminating all other possibilities,
the friends’ influences on a player ζS,` would be employed in favor
of a clique QS in comparison to other coalitions that ζS,` may be
indifferent between from a selfish-first point of view.

For the second problem, consider the same reduction as above,
except that Γ is not given. If, on the one hand, there is no ex-
act cover for B in S , a strictly popular coalition structure exists,
namely, Γ as considered above. If, on the other hand, there is an
exact cover for B in S , note that Γ beats every other coalition struc-
ture in pairwise comparison, but is in a tie in comparison to ∆ as
defined above. Therefore, Γ as well as any other coalition structure
cannot be strictly popular.

Theorem 13 is inspired by a result of Dimitrov et al. [16].

THEOREM 13. In games with selfish-first preferences (3), there
always exists a (strictly) core-stable coalition structure.

PROOF. For a given game with the player set N and selfish-first
preferences, we assume that the corresponding network of friends
consists of k connected components. We show that the coalition
structure Γ = {Γ1,Γ2, . . . ,Γk} consisting of these k components
is (strictly) core-stable. We know that the players from different
coalitions in Γ are not friends: Each i ∈ N has all of her friends
in Γ(i). Clearly, a (weakly) blocking coalition C cannot contain
players from different Γ`, for 1 ≤ ` ≤ k, as each of these play-
ers would prefer their assigned coalition because it either contains
more friends than C or, if all friends are also in C, less enemies.

This allows us to argue for the special case of a network consist-
ing of only one connected component and we show that the coali-
tion structure Γ = {N} is (strictly) core-stable. For a contradic-
tion, we assume that there exists a blocking coalition C ⊂ N. So,
for every j ∈ C we have that C �SF

j N, which implies that either
(a) C �F

j N or (b) C ∼F
j N and avgF

i (C)> avgF
i (N).

All of j’s friends are contained in N, so the first case can only
occur if C contains all of j’s friends and a proper subset of j’s ene-
mies. The same has to hold for each i ∈ Fj ⊆C, and for each of i’s
friends, as well. This can be continued following the paths through

257



the network of friends, and since we assume that the network is
connected, we obtain that C =

⋃
i∈N Fi = N. In the second case,

C ∼F
j N implies that v j(C) = v j(N), thus C = N.

Overall, there is no blocking coalition. The same argumentation
also holds for a weakly blocking coalition: At least one j ∈C has
to prefer C to N while we need C �SF

i N to hold for the remaining
i ∈C. The latter also implies that for each i ∈C, the set of friends
has to be in C, leading to C = N as above.

Under selfish-first preferences, it is easy to figure out whether
there exists a perfect coalition structure: This is the case if and
only if each connected component is a clique.

LEMMA 14. Let C be player i’s most preferred coalition in a
game with equal-treatment preferences (4). If a friend j is in Fi∩C,
then Fj \Fi ⊆C.

PROOF. If i has at least one friend, the value of C is positive by
Lemma 10.1. Assume that there is a k ∈ Fj \Fi with k /∈C. Then

∑a∈(Fi∪{i})∩(C∪{k}) va(C∪{k})
|(Fi ∪{i})∩ (C∪{k})|

−
∑a∈C∩(Fi∪{i}) va(C)

|(Fi ∪{i})∩C|

=
∑a∈C∩(Fi∪{i})(va(C∪{k})− va(C))

|Fi ∩C|+1

=
∑a∈C∩(Fi∪{i})∩Fk

(n)−∑a∈C∩(Fi∪{i})\Fk
(1)

|Fi ∩C|+1
≥ n− (n−2)
|Fi ∩C|+1

> 0.

Thus C ∪ {k} �EQ
i C, since i asks the same number of friends

and the value of C∪{k} increases by n for at least one player and
decreases by 1 for at most n−2 players.

PROPOSITION 15. Whenever a perfect coalition structure ex-
ists under equal-treatment preferences (4), it is unique and consists
of all connected components.

PROOF. Let C be a coalition in a perfect coalition structure. Due
to Lemma 10.2, C is connected. Suppose C is a proper subset of a
connected component. Then there exists an edge {k, `} with k ∈C
and ` /∈C. By Lemma 10.2, there exists another friend j of k’s in C.

Case 1: Assume that there exists a player j with ` /∈ Fj. Then, by
Lemma 14, this is a contradiction to C being j’s favorite coalition,
because C∪{`} �EQ

j C.
Case 2: For each j ∈ Fk ∩C, it holds that ` ∈ Fj (and j ∈ F̀

by symmetry). (a) Assume that there exists another x ∈ C with
` /∈ Fx. By Lemma 10.2, there exists a j ∈ Fk with x ∈ Fj (and
j ∈ Fx). Again, with ` ∈ Fj this is a contradition to C being x’s
most preferred coalition by Lemma 14. (b) Finally, for each x ∈C,
` ∈ Fx. This implies that v`(C∪{`}) = n · |C|−0. Thus, comparing
coalitions C∪{`} and C from k’s point of view, and letting λ denote
|Fk ∩C|, we obtain:
vk(C∪{`})+∑ j∈Fk∩C v j(C∪{`})+ v`(C∪{`})

1+λ+1
−

vk(C)+∑ j∈Fk∩C v j(C)

1+λ

≥ n+ |Ek ∩C|+λ(1+λ)n−λ|C|n+(1+λ)(n · |C|)
(2+λ)(1+λ)

=
n+ |Ek ∩C|+λ(1+λ)n+n · |C|

(2+λ)(1+λ)
> 0.

Therefore, C∪{`} �EQ
k C, which means that C has to be the whole

connected component. This completes the proof.

COROLLARY 16. If there exists a perfect coalition structure
under equal treatment (4), all connected components have a di-
ameter of at most two.

There do exist networks with a diameter of at most two that do
not allow a perfect coalition structure, e.g., stars (i.e., one central
vertex connected to a number of leaves).

PROPOSITION 17. Under equal treatment (4), trees with at least
three vertices do not allow a perfect coalition structure.

PROOF. Note that trees with diameter two are stars. Let i be
the central player and j a leaf. It holds that N \ { j} �EQ

i N such
that {N} is not perfect, which in turn implies that there cannot be a
perfect coalition structure by Proposition 15.

6. CONCLUSIONS AND FUTURE WORK
We have introduced and studied hedonic games with altruistic in-

fluences where the agents’ utility functions depend on their friends’
preferences. Axiomatically, we have defined desirable properties
and have shown that these are satisfied by our model, depending on
the degree of altruism. When tailored to other well-studied pref-
erence models, such as friend-oriented, enemy-oriented, additively
separable, and B- and W -preferences, we note that all of these five
extension principles fulfill the introduced properties of anonymity,
symmetry, and type-II-monotonicity, while only the former three
satisfy independence.

In terms of stability, hedonic games with altruistic influences al-
ways admit, e.g., Nash-stable coalition structures. However, both
the verification and the existence problems of strictly popular coali-
tion structures are computationally intractable.

We consider it important future work to completely character-
ize when certain properties hold or stable coalition structures exist
(e.g., to characterize when the grand coalition is perfect). Also, it
might be useful to extend the model and normalize by the size of
the coalition to consider only relative contributions of friend-of-a-
friend relationships. This can be compared to a friend-oriented re-
striction of a fractional hedonic game [4]. For example, one could
define

A�EQf
i B ⇐⇒ ∑

a∈A∩(Fi∪{i})

n|A∩Fa|− |A∩Ea|
|A| · |A∩ (Fi ∪{i})|

≥ ∑
b∈B∩(Fi∪{i})

n|B∩Fb|− |B∩Eb|
|B| · |B∩ (Fi ∪{i})|

.

(11)

This definition clearly extends to the altruistic case. For the
selfish-first case, the normalization is without effect. Hence, the
fractional variant is equivalent to the selfish-first case we have con-
sidered.

In addition, we propose considering restrictions of the input such
as constraining networks to special graph classes (such as interval
graphs, where the width of an interval represents an agent’s “tol-
erance”), studying problems of strategic influence (e.g., misreport-
ing preferences to friends, pretending to be a friend while one in
fact is an enemy, asserting control over the game as a whole). The
model can be extended in multiple ways. To model more realistic
situations, it would be suitable to allow for different degrees of al-
truism for distinct players and other representations of preferences
and aggregators. So far, a player takes only her friends’ preferences
into consideration, that is, a player tries to satisfy her friends with
respect to their preferences. Since players derive utility based on
their own preferences and their friends’ preferences, an interest-
ing model would be to consider players that try to maximize their
friends utilities (see, e.g., [31]). In a similar vein, the model can be
extended to edge-weighted graphs, where the influence of a friend
(or of a friend’s friend) diminishes with the distance as in, e.g.,
social distance games [12].
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