
Online Non-Preemptive Story Scheduling in Web
Advertising

Tie-Yan Liu
Microsoft Research

Beijing, China
tyliu@microsoft.com

Weidong Ma
Microsoft Research

Beijing, China
weima@microsoft.com

Tao Qin
Microsoft Research

Beijing, China
taoqin@microsoft.com

Pingzhong Tang
Tsinghua University

Beijing, China
kenshinping@gmail.com

Guang Yang
Tsinghua University &
Institute of Computing

Technology, CAS
Beijing, China

guang.research@gmail.com

Bo Zheng
Tsinghua University

Beijing, China
zhengb06science@gmail.com

ABSTRACT
This paper is concerned with online story scheduling, moti-
vated by storyboarding in online advertising. In storyboard-
ing, triggered by the browsing history of a user, advertisers
arrive online and wish to present a sequence of ads (stories)
on the website. The user ceases to browse with probability
1− β at each time step. Once the user finishes watching an
ad, the advertiser derives a reward. The goal of the website
is to determine a schedule that maximizes the expected total
reward. This problem was first introduced by Dasgupta et
al.(SODA’09) [7], and then improved by Alberts and Passen
(ICALP’13) [4]. In this paper, we abandon the preemptive
assumption in [7] and [4], and consider a more realistic set-
ting: online non-preemptive story scheduling, i.e., a running
job (correspond to advertiser’ story) cannot be preempted
even if another job leads to a higher reward.

Specifically, we study the setting where only 1-lengthed
and k-lengthed ads are allowed. We first present a greedy
algorithm which achieves a competitive ratio of βk−1, and
prove that this ratio is optimal for deterministic algorithms.
Then, we propose a randomized algorithm with a competi-
tive ratio of 1

k+1
for general β, and then show that no ran-

domized algorithm can achieve a competitive ratio better

than (1 + (1−βk−1)k

(1−βk)k−1)−1.

1. INTRODUCTION
Online advertising [11, 13, 14, 22] is very popular in nu-

merous industry sectors. It has even become the major
source of revenue for several distinguished Internet compa-
nies [6]. As an advanced form of online ads, storyboarding
was first launched in New York Times Digital [24] and has
been gaining increasing attention recently.

Storyboarding is also referred to as sequence advertising
or surround sessions [24]. In storyboarding, triggered by
user’s browsing history in a website, advertisers arrive online

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and wish to present a sequence of ads to the user. From
one time to another, there is only one selected advertiser
who owns the right to use a sequence of consecutive pages
for advertising purpose. To convey his/her message, the
advertiser can use these pages to create a story line of a
given product.

The algorithmic approach to achieve storyboarding is re-
ferred to as story scheduling, which was first introduced by
Dasgupta et al.(SODA’09) [7]. In their setting, stories (jobs)
arrive online, and value is obtained for each scheduled unit.
Jobs can be preempted, however, no further value can be
derived from the remaining unscheduled units. Online al-
gorithms were proposed in [7] and [4] for story scheduling,
whose total rewards are competitive against that of the op-
timal offline scheduler with the knowledge of all jobs.

Different from the setting in [7] and [4], in this paper, we
consider the more realistic non-preemption setting. The pre-
emptive setting is not realistic for several reasons. First, user
experience is bad if an ad (e.g., a video ad) is interrupted
while it is being watched by a user. Second, it is trouble-
some to evaluate the reward of an interrupted ad, and thus
is difficult for the website to charge fees for the advertiser.
In our setting, once a job is scheduled, other arriving jobs
must wait until that job is completed. No job (even with
much higher value) can preempt an on-going job. For this
new setting, we design two effective scheduling algorithms
and conduct competitive analysis on them.

1.1 Model and Problem Formulation
Time is discretized throughout this paper. Consider a user

who starts visiting a website at time t = 0. At each time
step, the user continues surfing with probability β, where
0 < β < 1, and stops surfing with probability 1 − β. Jobs
(stories) arrive online, and each job i is characterized by a
vector 〈ai, li, vi〉, where ai is the arrival time of the job, li is
the length of the job (i.e., the length of story the advertiser
would like to display), and vi is the per-unit value1 of the job.
Note that the user may cease with probability 1−β at each
step, so the real (expected) reward should be discounted by
the show time of the job. For example, a job with length

1In this paper, we do not restrict the range of per-unit value,
i.e., the per-unit value of a job can be arbitrary large.

269

2 will get expected reward of vi + viβ if shown at time 0
and of viβ

2 + viβ
3 if at time 2. As a result, the expected

reward of a job that is scheduled at time t can be written as

vi
∑t+li−1
j=t βj = vi · βt · 1−β

li

1−β .
In practice, many websites impose certain constraints on

the lengths of the stories. In this paper, we assume the
website allows either 1-lengthed ad or k-lengthed (k ≥ 2) ad,
for simplicity and without loss of much generality. Actually,
we can regard the 1-lengthed ad as a single shot ad, and the
k-lengthed ad as a storyline of ads (or ad sequence) [14].

We study the no-deadline model, i.e., a job i can be sched-
uled at any time after its arrival (the time horizon is infinite).
For a certain job scenario S, a schedule A specifies which
job to execute at each time t ≥ 0. Note that preemption of
jobs is not allowed. Therefore, the expected reward RA(S)
can be written

∑∞
t=0 β

t ·v(t), where v(t) is the per-unit value
of the job scheduled at time t. The goal of our algorithm
design is to maximize the expected reward.

Similar to [7], we use competitive ratio [19] to evaluate the
performance of an online scheduling algorithm. We say that
an algorithm (scheduler) A is c-competitive (has a competi-
tive ratio of c), if RA(S) ≥ c ·Ropt(S) holds for any scenario
S, where 0 < c ≤ 1 and opt is the optimal offline sched-
ule which has full information about all the future jobs of
scenario S.

1.2 Our Work
For deterministic algorithms, we observe that the best

competitive ratio one can hope is βk−1. We design a greedy
algorithm A1 (higher per-unit value first) in Section 3 and
prove that it achieves this optimal ratio (see Theorem 1).

Note that although the greedy algorithm is natural, it
remains a great challenge to analyze its competitive ratio.
The challenge comes from several aspects:

(1) Delayed Effect: It is possible that the scheduling time
of a job under the greedy algorithm be much later2 than
that under the optimal algorithm. See Example 1 for some
intuitive sense . Therefore, there does not exist such a simple
“mapping”, by which the optimal value obtained from any
time unit can be “mapped” to either the same time unit or
one of the next k − 1 ones under the greedy algorithm.

Example 1. When a high-value job a2 arrives, there is a
low-value long job a1 being scheduled. According to the non-
preemption rule, job a2 has to wait until a1 is completed.
Note that just after the time that a1 is completed, jobs (de-
note as set C1) with higher values (higher than that of a2)
might arrive one by one. Thus, under the greedy algorithm,
a2 would be delayed again and again. However, under the
optimal offline algorithm, it is possible that a2 is scheduled
at the time it just arrives, as the optimal offline algorithm is
clairvoyant to schedule the low-value long job a1 somewhere
else.

(2) Nested Effect: The delayed effect may be nested. Take
the job set C1 mentioned above for example. It is possible
that there is a job in C1 encountering a similar situation as
a2. Formally, aj+1 ∈ C1 has higher value than aj ∈ C1,
but aj+1 arrives later than aj . Then aj+1 may be delayed
by aj . Right after aj is completed, jobs (denoted by C2,
where C2 ⊂ C1) with higher values (than aj+1) could arrive

2Later than k − 1 time units.

one by one. Thus, the greedy algorithm would delay a2
further, until all jobs in C2 are accomplished. However,
since the time horizon is infinite and the value of each job
is unbounded, the adversary is able to design an unlimited
number of such nesting. Clearly, the worst-case analysis
would become significantly involved and hard to follow when
the nesting is very deep.

(3) Chain Effect: Due to non-preemption rule, a job has to
wait until the current job is completed. So a low-value long
job may delay a high-value job. The chain effect happens
when the delayed high-value job itself is a long job, so this
long job may delay a subsequent higher-value job. Formally,
let a1, . . . , an be long jobs, such that for every j = 1, . . . , n−
1, aj arrives just before aj+1 but the value of aj+1 is greater
than that of aj . As the time horizon is infinite and the
value of a job is not upper bounded, this may cause a lot
of delay and utility loss as beta goes down. It is not easy
to estimate the accumulated delay cost compared with the
optimal offline algorithm, let alone the chain effect may be
deeply entwined with the nested effect.

Given this situation, a carefully designed competitive anal-
ysis is needed. Actually, we obtain a stronger result as we
use the offline optimal preemptive allocation as the bench-
mark, which has a larger expected reward than the non-
preemptive optimal allocation, and show the greedy algo-
rithm can be βk−1 competitive regards to this benchmark.

We first introduce Lemma 2, which is universally appli-
cable in the discounted time horizon scheduling. In brief,
Lemma 2 presents a new algorithm Ad, which is the same
as Greedy Algorithm A1 except that it has to schedule jobs
from time k−1 on. Lemma 2 says that the expected reward
obtained by Ad is at least βk−1 times that obtained by A1.

At first sight, Lemma 2 may be misunderstood as trivial,
because a careless thought may arise: Ad schedules jobs in
the same order as A1, except for that all jobs are scheduled
k − 1 time units later.

This thought misses the important restriction that Ad it-
self is a greedy algorithm. For example, a short job 1 arrives
at time 0 and a long job 2 (with higher per-unit value than
job 1) arrives at time 1. Clearly, A1 will schedule job 1
at time 0 and schedule job 2 at time 1. Note that Ad will
schedule job 2 at time k− 1 and schedule job 1 at time unit
2k−1, rather than schedule job 1 at time k−1 and schedule
job 2 at time k. So, the order of scheduling jobs in Ad can
be very different from that in A1. Therefore, the βk−1 ap-
proximation can not be derived directly. In fact, the proof
is technical and involved.

Lemma 2 works as a useful tool to prove Theorem 1.

Then we prove the βk−1 upper bound for the competitive
ratio of any online deterministic algorithm (see Theorem 2).
In this way, we can come to the conclusion that the greedy
algorithm is an optimal deterministic algorithm.

We then consider randomized algorithms. The motiva-
tion is that the deterministic greedy algorithm may perform
poorly when β is extremely small or k is extremely large. To
handle this issue, we design a randomized algorithm A2 in
Section 4 and prove its competitive ratio to be 1

k+1
(see The-

orem 3). The key idea behind A2 is to ensure that each job
has the chance of exactly 1

k+1
to be scheduled at a unique

time t, which estimates the earliest time of scheduling this
job under opt.

270

We further derive an upper bound on the competitive ra-
tio for any online randomized algorithms (see Theorem 4),

which is (1+ (1−βk−1)k

(1−βk)k−1)−1, through classical adversary anal-

ysis. Note that we allow the adversary to use randomized
strategy.3

The rest of this paper is organized as follows. In Section 2,
we introduce several related works. In Section 3, we present
the greedy algorithm and an upper bound for all determin-
istic algorithms. Our randomized algorithm and the upper
bound for randomized algorithms are given in Section 4 and
Section 5, respectively. Finally, we conclude our paper in
Section 6.

2. RELATED WORK
Motivated by applications in web advertising, several vari-

ants and generalizations of online advertising have been stud-
ied recently [1, 2, 3, 11, 13, 14, 22]. As far as we know,
storyboarding as an important form of advertising has only
been studied by [4, 7]. Dasgupta et al. [7] give a determinis-
tic 1

7
-competitive algorithm for the storyboarding problem,

and show that no deterministic online algorithm can achieve
a competitive ratio better than 1

2
, for general β. Alberts and

Passen [4] improve the results by giving a 1
1+φ

-competitive

algorithm, where φ = (1 +
√

5)/2 is the Golden Ratio. The
main difference between their work and ours is that they
consider a preemptive setting.

There is a long research line regarding of online scheduling
problems (see [18, 21, 28] for a survey). However, the tradi-
tional scheduling problem does not consider a discount time
horizon and usually specify a deadline for each job, which is
the main difference from our work. Zhang et al. [29] study a
model in which the job value discounts with the delay: the
duration between its arrival time and schedule time. This
model is most close to ours, but not identical, because in
our model the value of every job discounts with the absolute
time, regardless of what time the job arrives.

There is also a rich literature which is concerned with non-
preemptive scheduling [20, 15, 16, 9, 8, 10]. In these works,
all jobs have deadlines and the job values are not discounted
with the time. By assuming the so called proportional val-
ues (i.e., the value of each job is proportional to the length),
in [15], a tight upper and lower bound of 2 are given for
the deterministic competitiveness when all jobs have equal
lengths, and a 6(blog2 κc+ 1)-competitive randomized algo-
rithm is provided when jobs’ values are restricted in [1, k],
matching the Ω(log k) lower bound [20] within a constant
factor.

Recently, the online scheduling problem has attracted the
attention of computational economics community, and many
results are obtained from a viewpoint of mechanism de-
sign [5, 12, 17, 19, 23, 25, 27]. These models differ from ours
in multiple ways, most notably in not having a discounted
time horizon.

3. DETERMINISTIC ALGORITHM
The main challenge of designing online algorithms for the

non-preemptive scheduling problem is the competition of a

3There is still a gap between the competitive ratio of A2 and

the upper bound, since (1 + (1−βk−1)k

(1−βk)k−1)−1 is always greater

than 1
2

when k ≥ 2 and 0 < β < 1.

current low-value job and a possible future high-value job:
As the online algorithm has no information about future
jobs, when it is executing a long job (with length k), it is
possible that a job with much higher value arrives. Thus the
more valuable job has to be delayed and incurs a loss. The
loss may be extremely large when the value of a job is not
upper bounded.

In this section we propose a greedy algorithm and analyze
its competitive ratio. We prove that the algorithm is an op-
timal deterministic algorithm in terms of competitive ratio
by charactering an upper bound on the competitive ratio of
any deterministic algorithm.

3.1 The Greedy Algorithm
The greedy algorithm is described in Algorithm 1. Here,

a time point t is called available if no job is being processed
at t.

Algorithm 1 The Greedy Algorithm A1

1: for each available time t ≥ 0 do
2: Schedule the job with the highest per-unit value.
3: end for

From now on, we will prove the competitive ratio of A1,
which is shown in Theorem 1.

Theorem 1. The greedy algorithm A1 has a competitive
ratio of βk−1.

As aforementioned, let opt denote the optimal offline schedul-
ing when the full information of future jobs is known in
advance. Furthermore, let opt∗ denote the optimal offline
scheduling when the full information of future jobs is known
in advance and preemption is allowed. Obviously, opt∗ al-
ways leads to a reward no less than opt. To analyze the
competitive ratio of A1, in principle, we need to compare
with opt. Here, instead of comparing with opt directly, we
achieve a slightly stronger result since we compare with a
stronger benchmark opt∗. In the proof, we will show that
A1 obtains a competitive ratio of at least βk−1 even if the
benchmark is opt∗ instead of opt.

To make the proof more readable, we introduce the fol-
lowing lemma.

Lemma 2. For any job set S, suppose w.l.o.g. that the
earliest arrival time of jobs in S is 0. We define a new
algorithm Ad which is the same as Greedy Algorithm A1

except that it has to schedule the jobs from time k − 1 on.
We claim that the expected reward obtained by Ad is at least
βk−1 times that obtained by A1.

Proof. We use induction to prove this lemma. If there is
only one job, the theorem holds trivially. Now we only need
to prove the case of n jobs given that the theorem holds
for less than n jobs. First, we introduce the definition of
conformity.

Definition 1. We say a job sequence scheduled by Ad
during the period [t1 +k−1, t2 +k−1] is in conformity with
the job sequence scheduled by A1 during the period [t1, t2], if
the job scheduled by Ad at time t+ k− 1 is the same as the
job scheduled by A1 at time t, for any time t ∈ [t1, t2].

If the job sequence scheduled by Ad is in conformity with
A1 all the time, then the reward obtained by Ad is βk−1

271

T0 T1

(a)

J1 J2

J1J2

A1:

Ad:

J2 J3 J1

J1 J2 J3

J2 J3 J4 J1

(b)

A1:

A′1:

Ad:

S1

S1

S̄1

S2

S2

S̄2

T0 T1

J1 J2 J3 J4

J2 J3 J4 J1

J3J2 J4 J5 J1

(c)

A1:

A′1:

Ad:

S̄1

S1

S1

S̄2

S2

S2

S3

S3

S̄3

T0 T1

Figure 1: Compare the scheduling under A1 and Ad

times that obtained by A1, clearly. Therefore, it suffices
to compare the sequences at the time when unconformity
occurs. There are three possible cases that may happen, as
shown in Figure 1. For a job Ji scheduled by A1 (resp. Ad),
we denote its starting time as si (resp. sdi) and its finishing
time as fi (resp. fdi).

(a) Fig 1 (a) describes such a case: when the unconformity
occurs, A1 has just finished a short job J1. At this
time (i.e., time f1), Ad schedules a job J2 instead of
J1.4 In fact, J2 is the job with highest per-unit value
at that time, so it is also scheduled by A1 at the same
time. We claim that, before the time Ad schedules
J1, the sequences (in the dashed boxes) under A1 and
Ad must be identical. In particular, these are the jobs
with higher per-unit value than J1 and arrival time
earlier than T0 = sd1. Obviously, the reward obtained
by Ad before T1 = fd1 is at least β (≥ βk−1) times
that obtained by A1 before T0. Thus the problem is
reduced to analyze the remaining part of Ad from T1

on (comparing with A1 from T0 on), which is already
covered by the induction hypothesis.

(b) Fig 1 (b) describes such a case: when the unconformity
occurs, A1 schedules a long job J1, but Ad schedules
another long job J2 instead. It is obvious that J2 must
have a higher per-unit value than J1. Therefore, s2 ≤
sd1 − 1. Now, we consider the job scheduled by Ad at
time f2 − 1. There are three cases: (1) it is just the
job J1; (2) it is a short job; (3) it is a long job other
than J1. For simplicity, we combine these cases in the
example in Figure 1 (b). In this example, a long job
J3 is scheduled by Ad at time f2 − 1. Then similarly,
we have s3 ≤ sd1 − 1 and continue to discuss the job
scheduled by Ad at time f3 − 1. In this example, a
short job J4 is scheduled by Ad at time f3 − 1. We
now consider a subsidiary allocation5 A′1 which is the
same as A1 except the allocation of J1, J2, J3 (see the

4In fact, it does not matter whether J1 is a short job or a
long job. Without loss of generality, we depict it as a short
one in the figure.
5Note, A′1 is not a legal scheduling of jobs, since J2 has not
arrived at time 0 and hence cannot be scheduled there.

figure). Since the per-unit value of J1 is less than J2
and J3, the reward of A′1 is greater than that of A1.
By comparing Ad with A1, we notice that S and S̄1

share the same constitution. That is, the same set of
jobs, though the orders may differ. Therefore, using
the induction hypothesis, S̄1 has reward at least βk−1

times that of S1. Thus, the reward of Ad before time
T1 = f3 − 1 is at least βk−1 times that of A′1 before
T0 = s3. The remaining part of this problem (the
subsequence of Ad from T1 on) reduces to case (c).

(c) Fig 1 (c) describes such a case: Ad schedules a short
job J2 instead of J1 when the unconformity occurs.
Similar to our argument for case (b), we discuss the
behavior of Ad at s2 and so forth. As depicted in
the figure, a short job J3 is scheduled at s2, and a
long job J4 is scheduled at s3. Through the subsidiary
allocation A′1, which differs from A1 in the allocations
of J1, J2, J3, J4 (see the figure), we will get: on the
one hand, the reward of A′1 is greater than A1; on the
other hand, the reward of Ad before T1 = f4 − 1 is
at least βk−1 times the reward of A′1 before T0 = s4.
It remains to discuss the sequence scheduled by Ad
starting from T1. This can be reduced to case (c) if J5
is a short job, to case (b) if J5 is a long job other than
J1, and to the induction hypothesis if it is job J1.

3.2 Proof of Theorem 1
In this subsection, we apply Lemma 2 to prove the com-

petitive ratio of A1. To make it easier to follow the tech-
nique, we first prove the special case, i.e., k = 2. The proof
for general k is similar, and we will introduce it afterwards.

Proof. Consider the job sequence arranged by opt∗. If
there does not exist preemption-resume, then A1 must ar-
range the same sequence as opt∗ does, and the ratio is 1 obvi-
ously. So in the following, we assume there exists preemption-
resume. We denote the first preempted long job as job a, and
its two segments as a1 and a2 (refer to Fig 2 (a)). Clearly,
a1 and a2 are both of length 1 and a1 is scheduled earlier
than a2. Fig 2 (a) depicts a part of job sequence under opt∗,

272

(a) opt∗
a1 c b1 b2 a2

A

B

I∗1 I∗2 I∗3

(b) case 1
a c′ b

Ā1

B̄1

I1 I2 I3

(c) case 2
a b c′′

Ā2

B̄2

I ′2

Figure 2: Compare the scheduling under opt∗ and Greedy Algorithm

which includes a1, A and a2. Here, we use A to represent
the job sequence scheduled between a1 and a2. First, we
give a useful observation below.

Observation 1. Each time unit between a1 and a2 are
occupied and every job scheduled between a1 and a2 has a
higher per-unit value than job a.

Fig 2 (b) and Fig 2 (c) depict two possible sequences under
A1, and in these two cases we denote the job sequence after
a as Ā1 and Ā2 respectively. By taking Observation 1 into
consideration, we have another two observations as follows.

Observation 2. The constitutions of A, Ā1 and Ā2 are
the same, i.e., they include the same jobs.

Observation 3. There may exist jobs whose preemption
and resume both occur between a1 and a2 (or occur after a2),
but cannot exist such situation: preemption occurs between
a1 and a2, but resume occurs after a2.

Observation 2 and Observation 3 are non-negligible, since
then we can focus on sequence 〈a1, A, a2〉 without loss of
generality.

We look into the job sequence A. If there does not exist
preemption-resume in A, then the jobs in A are scheduled
greedily under opt∗. Because A1 has to schedule the jobs
in A after completing a, which leads to one time-unit delay,
we can apply Lemma 2 here, and derive our desired result
directly.

Otherwise, if there exists preemption-resume in A, then
we denote the first preempted long job as b, and its two
segments b1 and b2 respectively. We may have two possible
cases:

(1) Job b is scheduled at the time that b2 is scheduled by
opt∗, please refer to Fig 2 (b). Actually, B̄1 is identical
to B in this case. Fig 2 (a) shows that the job sequence
of A is divided into three parts: I∗1 , I∗2 and I∗3 . Fig 2
(b) shows that the job sequence of Ā1 is also divided
into three parts I1, I2 and I3. Then applying Lemma 2
to I1, I2 and I3 respectively, we can get that the reward
obtained by A1 during I1, I2 or I3 is at least β times of

that obtained by opt∗ during I∗1 , I∗2 or I∗3 respectively.
So in this case the sequence in A1 must have reward
at least β times of that in opt∗.

(2) Job b is scheduled at the time that b1 is scheduled by
opt∗, please refer to Fig 2 (c). Clearly, job sequence
I ′2 is in accord with I∗2 , and we will discuss them later.
We first consider the remaining parts in A and Ā2,
and denote them as A − I∗2 and Ā2 − I ′2 respectively.
We can apply Lemma 2 to job sequence Ā2 − I ′2, and
derive that the reward obtained by A1 during Ā2 − I ′2
is at least β times of that obtained by opt∗ during
A− I∗2 . We now turn to discuss I ′2 and I∗2 . Since jobs
in sequence B̄2 are “delayed” compared to the jobs in
sequence B, we reduce to analyze the job sequence B,
and the analysis is the same as that of A.

Then, we can apply reduction until the proof is completed.

As for the case of general k, the proof is similar. We can
still refer to Fig 2, though some notations in Fig 2 have
different meanings now: a1 (resp. b1) and a2 (resp. b2)
denote the first and last segments of job a (resp. b) in opt∗.
Different from the case of k = 2, when k > 2, a1 (resp. b1)
and a2 (resp. b2) can be integers other than 1, and A (resp.
B) can include other segments of a (resp. b). We denote the
segments of a (resp. b) in A (resp. B) as A′ (resp. A′), and
denote Ā = A−A′ (resp. B̄ = B −B′). Clearly, all jobs in
Ā (resp. B̄) have higher per-unit value than a (resp. b).

If there does not exist any preemption-resume in A, then
the jobs in A are scheduled greedily under opt∗. SinceA1 has
to schedule the jobs in A after completing a, which induces
|a| − |a1| time units (less than k − 1) delay, we can apply
Lemma 2 here and derive our desired result directly.

If there does exist preemption-resumes in A, then we dis-
cuss the time that b is scheduled under A1. Case 1 denotes
the case in which job b is scheduled after the jobs in B, and
case 2 denotes the case in which job b is scheduled before
the jobs in B. Refer to Fig 2 (b) and Fig 2 (c) respectively.

Observation 4. In both case 1 and case 2, the jobs sched-
uled in I∗3 under opt∗ must be scheduled after job b under A1.

In Fig 2 (b), I1 contains part (all) of the jobs which are
scheduled in I∗1 under opt∗, B̄1 contains all the jobs in B̄

273

and part of jobs scheduled in I∗1 , and I3 contains all the jobs
scheduled in I∗3 and part of jobs scheduled in I∗1 .

In Fig 2 (c), B̄2 only contains all the jobs in B̄, as all jobs
in B̄ (thus B̄2) have higher per-unit values than job b.

We now discuss the reward obtained by A1 under the
above two cases.

(1) In case 1, we construct a subsidiary allocation, in which,
“all” the jobs in I∗1 (resp. B̄ and I∗3) are scheduled
greedily in I1 (resp. B̄1 and I3). On one hand, similar
to the k = 2 case, we can get that the reward obtained
by the subsidiary allocation during I1, I2 or I3 is at
least βk−1 times of that obtained by opt∗ during I∗1 ,
I∗2 or I∗3 respectively. On the other hand, the reward
of A1 must be no less than that of the subsidiary allo-
cation, due to the greedy property. In fact, the time b
scheduled under A1 might be no later than that under
the subsidiary allocation. Therefore, in this case the
sequence in A1 must have reward at least βk−1 times
of that in opt∗.

(2) In case 2, similar to the k = 2 case, we first consider
A − I∗2 and Ā2 − I ′2. We can apply Lemma 2 to job
sequence Ā2− I ′2, and derive that the reward obtained
by A1 during Ā2 − I ′2 is at least βk−1 times of that
obtained by opt∗ during A − I∗2 . We then discuss I ′2
and I∗2 . It is easy to know that jobs in sequence B̄2 are
delayed (no more than k − 1 time units) compared to
the jobs in sequence B. We reduce to analyze the job
sequence B, and the analysis is the same as that of A.

Similarly, we apply reduction until the proof is completed.

3.3 Upper Bound for the Deterministic Algo-
rithms

One may wonder whether there exists a deterministic al-
gorithm which can achieve a competitive ratio better than
βk−1. The following theorem gives a negative answer, and
thus bounds the power of deterministic algorithms.

Theorem 2. No deterministic algorithm can achieve a
competitive ratio better than βk−1.

Proof. We use an adversary argument. Consider the
following scenario: at time 0, a long job (with length k) with

per-unit value va (thus total value v′a = va · 1−β
k

1−β) arrives. If
a deterministic algorithmA was to schedule it at time t, then
the adversary would release a dominant short job with per-
unit value vb (vb is sufficiently large) at time t+ 1. In such
case, A obtains a reward βt · (v′a+βk ·vb), while the optimal
offline algorithm can obtain βt · (β · vb + β2 · v′a). Therefore,

the competitive ratio is at best
βt·(v′a+β

k·vb)
βt·(β·vb+β2·v′a)

→ βk−1, when
vb
v′a
→∞.

In this way, we come to the conclusion that the greedy
algorithm is among the optimal deterministic algorithms.

4. A 1
K+1

-COMPETITIVE RANDOMIZED AL-
GORITHM

In the previous section, we study the performance of de-
terministic algorithms. Although the performance of greedy
algorithm matches the upper bound for any deterministic al-
gorithms, it may perform poorly when β is extremely small

or k is extremely large. Therefore, in the following two
sections, we focus on randomized algorithms, and consider
whether randomization will help improve the performance
of algorithms. We introduce a randomized algorithm which
can ensure a competitive ratio of 1

k+1
in this section.

The algorithm A2 is described in Algorithm 2. In A2,
µ(·) is an indicator function: if input is a non-zero set, then
µ(·) = 1, otherwise µ(·) = 0.
A2 operates as follows: for each available time6 t, A2

selects a long job l∗ with highest per-unit value (Line 2)
and schedules it at t according to a well-defined probability
(Line 6). If there exist other long jobs, we delay them to
time t + k as if their arrival time was t + k (Line 3). This
process is based on the fact that in opt the reasonable earliest
scheduling time of these jobs is not earlier than t+ k, since
job l∗ has higher per-unit value than them. If there exist
short jobs, we denote the one with highest per-unit value as
s∗ (Line 2), and delay the others to time t + 1 as if their
arrival time was t+ 1 (Line 3).

Intuitively, the probability of scheduling l∗ at time t de-
pends on how many long jobs arrive before t whose execution
may interfere with the execution of l∗ at t. In precise, we
only need to check the k− 1 time points: {t− k+ 1, . . . , t−
2, t − 1}. Taking the interference into consideration, we in-
tend to ensure the scheduling of l∗ at time t with probability

1
k+1

finally.

Algorithm 2 The Randomized Algorithm A2

1: for each time t ≥ 0 do
2: Denote the set of long (resp. short) jobs arriving at

t as L(t) (resp. S(t)), the job with highest per-unit
value in L(t) (resp. S(t)) as l∗ (resp. s∗).

3: Delay all jobs in L(t) \ l∗ (resp. S(t) \ s∗) to the time
t + k (resp. t + 1), as if their arrival time was t + k
(resp. t+ 1).

4: if time t is available then
5: if L(t) 6= ∅ then
6: Schedule the job l∗ with probability

σ(t) =
1

k + 1−
∑k−1
i=1 µ(L(t− i))

.

7: if job l∗ is scheduled after randomization then
8: Throw away job s∗, if any.
9: else

10: Schedule job s∗, if any.
11: Throw away job l∗.
12: end if
13: else
14: Schedule job s∗, if any.
15: end if
16: else
17: Throw away job l∗ and job s∗, if any.
18: end if
19: end for

After randomization, there exist two cases:

• If l∗ is scheduled, throw away the short job with high-
est per-unit value (s∗) (Line 8).

• If l∗ is not scheduled, throw away l∗ (Line 11) and

6A time point t is available if there is no job processed at t.

274

“plug in” the short job with highest per-unit value (i.e.,
s∗) if any (Line 10).

If there does not exist any long job at time t, A2 schedules
the short job with highest per-unit value (i.e., s∗, if any)
directly (Line 14).

Note that for the unavailable time, i.e., some long job is
under process, the possible job l∗ and s∗ at that time (the
definitions are the same as above) should also be thrown
away (Line 17).

In Figure 3, we use an example to illustrate the operation
of algorithm A2.

a1
a2

e1
e2

b d

c

0 3 6 9

Figure 3: An example of the processing of A2

Example 3. In this k = 3 example, we have two long jobs
(a1 and a2) which arrive at time 0, and job a1 has a higher
per-unit value than a2 does. So at the time 0, our algorithm
delays a2 to time 3 and schedules job a1 with probability 1

4
.

If a1 is finally scheduled at time 0, then job b and job c will
be thrown away at time 1 and 2 respectively. Otherwise, the
algorithm throws a1 and schedules job b with probability 1

3
at time 1. Note that the final probability that job b would be
scheduled is (1− 1

4
) · 1

3
= 1

4
.

In the same way, if job c (or job a2) had not been thrown
away before, then it would be considered to be scheduled with
probability 1

2
. The reason is: for job c, there were two jobs

(a1 and b) which might interfere with it; for job a2 (remem-
ber we regard the arrival time of a2 as time 3), there were
also two job (b and c) which might interfere with it. There-
fore, we get the desired final probability 1

4
that job c or job

a2 would be scheduled ((1− 2 · 1
4
) · 1

2
= 1

4
).

As for job d, because there would be only one job (a2) that
might interfere with it, if it had not been thrown away, it
would be considered to be scheduled with probability 1

3
, thus,

we get the desire final probability 1
4

.
The situation for short jobs (e1 and e2) is relatively sim-

ple. As e1 has a higher per-unit value than e2, e2 is delayed
one time unit afterwards anyway. If job d is scheduled fi-
nally, e1 will be thrown away, otherwise, e1 will be sched-
uled.

Theorem 3. Algorithm A2 achieves a competitive ratio
of 1

k+1
, for general β.

Proof. The proof idea is rooted in the process of this
algorithm. Actually, according to the rule of A2, every long
job has the chance of 1

k+1
to be scheduled at some time t. It

is worth mentioning that t is the earliest possible time this
job would be scheduled under opt.

We now explain how 1
k+1

comes out. As for the first ar-
rived long job, the algorithm will schedule it with probability

1
k+1

clearly. By induction, if we assign σ(t) as the probabil-
ity to schedule for a long job at time t, then in consideration
of the interference from possible earlier scheduled jobs, the

final probability to schedule this job should be

(1− 1

k + 1
·
k−1∑
i=1

µ(L(t− i))) · σ(t)

=
1− 1

k+1
·
∑k−1
i=1 µ(L(t− i))

k + 1−
∑k−1
i=1 µ(L(t− i))

=
1

k + 1
.

(1)

As for the short job that arrives at t, the the final probability
to schedule is at least

1− 1

k + 1
·
k−1∑
i=0

µ(L(t− i)) ≥ 1

k + 1
. (2)

Since every job has at least 1
k+1

chance to schedule at some
time t which is no later than its earliest possible scheduled
time under opt. Therefore, the competitive ratio obtained
by A2 is at least 1

k+1
.

The following table shows the threshold β∗ for several
typical value of k. That is, given a fixed k, the random-
ized algorithm A2 performs better than the deterministic
algorithm A1 when β < β∗.

k 2 3 4 5 10 general k

β∗ 1/3 1/2 0.58 0.64 0.77 (k + 1)
−1
k−1

5. BOUNDING THE POWER OF RANDOM-
IZATION

In this section, we characterize the boundary of our re-
search and give an upper bound on the competitive ratios of
any randomized algorithms. Formally, we have the following
theorem.

Theorem 4. No randomized algorithm can achieve a com-

petitive ratio better than (1 + (1−βk−1)k

(1−βk)k−1)−1.

Proof. Let us take the k = 3 case for example, and the
proof for general k is essentially the same. We will use an
adversary argument and show that under some scenarios, no

algorithm can achieve a ratio better than (1+ (1−βk−1)k

(1−βk)k−1)−1.

The adversary will release at most two jobs: a long job l
(with length 3) and a short dominant job s (with length 1
and much larger per-unit value than l).

At time 0, the long job l is released. For an arbitrary ran-
domized algorithm A, we can use a vector 〈x1, x2, x3, x4〉 to
represent the probability that A starts to schedule l at each
time point. Formally, x1, x2 and x3 represent the probabil-
ity that A intends to schedule the job at time 0, 1 and 2
respectively, and x4 is the probability to schedule the job at
or later than time 3. Clearly, we have x1 +x2 +x3 +x4 = 1.

Given A, we construct the following possible adversarial
behaviors:

(1) No other job is released any more. Then, A obtains
an (expected) reward no greater than (x1 + β · x2 +
β2 · x3 + β3 · x4) · vl, while the opt can obtain a reward
vl. So the competitive ratio is no greater than x1 + β ·
x2 + β2 · x3 + β3 · x4.

(2) The short dominant job s is released at time 2. Then,
A obtains a competitive ratio of no greater than β ·
x1 + β2 · x2 + x3 + x4.

275

(3) The short dominant job s is released at time 1. Then,
A obtains a competitive ratio of no greater than β2 ·
x1 + x2 + x3 + x4.

Suppose the adversary also uses a randomized strategy
〈y1, y2, y3〉, i.e., the adversary chooses the i-th adversarial
behavior (mentioned above) with probability yi, i = 1, 2, 3,
and y1 + y2 + y3 = 1. In order to find an upper bound, we
come to a min max problem, which is formulated as follows.

min
y1,y2,y3

max
x1,x2,x3,x4

(
y1 y2 y3

) 1 β β2 β3

β β2 1 1
β2 1 1 1

 x1

x2
x3
x4

 .

Notice that the coefficients of x4 is dominated by that of x3,
thus x4 = 0 is a dominant strategy for A. Therefore, the
min max problem can be simplified to the following style:

min
y1,y2,y3

max
x1,x2,x3

(
y1 y2 y3

) 1 β β2

β β2 1
β2 1 1

 x1
x2
x3

 .

It is interesting that the matrix is a Toeplitz matrix, and
we find that the min max problem is not difficult to solve
based on the following observation:

Observation 5. As the adversary choose his strategy af-
ter algorithm A does, the best strategy for A is to offer a
menu with identical items.

That is, elements in the following vector must be the same. 1 β β2

β β2 1
β2 1 1

 x1
x2
x3

 =

 x1 + β · x2 + β2 · x3
β · x1 + β2 · x2 + x3
β2 · x1 + x2 + x3

 .

Together with the constraint x1 + x2 + x3 = 1, we can solve
x1, x2 and x3, and the upper bound is exactly the result of
the min max problem.

For a general k, the proof idea is similar: At time 0, a long
job (with length k) is released. Each algorithm A is asso-
ciated with a probability vector 〈x1, x2, . . . , xk, xk+1〉 (xk+1

will be proved to be 0). We then construct k adversarial be-
haviors, and in fact the adversary can randomly choose such
behaviors. Therefore, we come to solve a min max problem:

min
~y

max
~x

~y T ~x′, (3)

where ~x = 〈x1, . . . , xk〉, ~y = 〈y1, . . . , yk〉 and T is the Toeplitz
matrix as follows:

1 · · · · · · βk−1

β · · · βk−1 1
...

...
...

...
βk−1 · · · 1 1

 . (4)

By the similar analysis, we can construct equations and ob-

tain the upper bound (1 + (1−βk−1)k

(1−βk)k−1)−1.

By observing the form of (1 + (1−βk−1)k

(1−βk)k−1)−1, we know the

upper bound is increasing with β and decreasing with k.
Moreover, the upper bound is always greater than 1

2
when

k ≥ 2 and 0 < β < 1. There is still a gap between the
competitive ratio of A2 and the upper bound.

6. CONCLUSIONS
In this paper, we studied the online non-preemptive story

scheduling problem in web advertising. This new scheduling
problem is different from those classic problems studied in
the 90’s (see [26] for an overview) because of the motivation
of online advertising. The key factors which constitute the
new problem are (1) discounted time horizon, (2) no dead-
line, and (3) no preemption. We designed both deterministic
and randomized algorithms and proved they all have good
performance (in terms of expected reward) through compet-
itive analysis. We also showed upper bounds of competitive
ratio for any deterministic and randomized algorithms.

There are multiple aspects to study in the future.

• It remains to close the gap between the upper bound
and lower bound for randomized algorithms in our
setting. Our hypothesis is that the tight bound is∑k−1

i=0 β
i

k
.

• Although the setting of two possible lengths seems to
be restrictive, it has already posed great challenge for
the competitive analysis of the simplest Greedy algo-
rithm. Our work is the first step towards a general
setting, in which job lengths can be any integer in
{1, 2, . . . , k}. We plan to study this generalization.

• We assumed that a website has no information about
future jobs and focused on worst-case analysis in this
work. When the website accumulates more and more
data as time goes on, it can get some distribution in-
formation about future jobs and thus it is interesting
to design better algorithms leveraging the distribution
information.

• We did not consider advertisers’ strategic behaviors,
e.g., they may misreport their stories. Taking the
strategic behaviors into consideration, this problem
can be explored from the perspective of mechanism
design.

7. ACKNOWLEDGEMENTS
This work was supported by the National Basic Research

Program of China Grant 2011CBA00300, 2011CBA00301,
the Natural Science Foundation of China Grant 61033001,
61361136003, 61303077, 61561146398, 61170062, 61222202,
61433014, a Tsinghua Initiative Scientific Research Grant
and a China Youth 1000-talent program.

REFERENCES
[1] G. Aggarwal, Y. Cai, A. Mehta, and G. Pierrakos.

Biobjective online bipartite matching. In Web and
Internet Economics, pages 218–231. Springer, 2014.

[2] S. Alaei, E. Arcaute, S. Khuller, W. Ma, A. Malekian,
and J. Tomlin. Online allocation of display
advertisements subject to advanced sales contracts. In
Proceedings of the third international workshop on
data mining and audience intelligence for advertising,
pages 69–77. ACM, 2009.

[3] S. Alaei, M. Hajiaghayi, and V. Liaghat. Online
prophet-inequality matching with applications to ad
allocation. In Proceedings of the 13th ACM Conference
on Electronic Commerce, pages 18–35. ACM, 2012.

276

[4] S. Albers and A. Passen. New online algorithms for
story scheduling in web advertising. In Automata,
Languages, and Programming, pages 446–458.
Springer, 2013.

[5] G. Christodoulou, E. Koutsoupias, and A. Vidali. A
lower bound for scheduling mechanisms. Algorithmica,
55(4):729–740, 2009.

[6] P. W. H. Coopers. IAB internet advertising revenue
report. Coopers, Price Water House, 2014.

[7] A. Dasgupta, A. Ghosh, H. Nazerzadeh, and
P. Raghavan. Online story scheduling in web
advertising. In Proceedings of the twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
1275–1284. Society for Industrial and Applied
Mathematics, 2009.

[8] J. Ding, T. Ebenlendr, J. Sgall, and G. Zhang. Online
scheduling of equal-length jobs on parallel machines.
In Proceedings of the 15th annual European conference
on Algorithms, pages 427–438. Springer-Verlag, 2007.

[9] J. Ding and G. Zhang. Online scheduling with hard
deadlines on parallel machines. In Algorithmic Aspects
in Information and Management, pages 32–42.
Springer, 2006.

[10] T. Ebenlendr and J. Sgall. A lower bound for
scheduling of unit jobs with immediate decision on
parallel machines. In Approximation and Online
Algorithms, pages 43–52. Springer-Verlag, 2009.

[11] J. Feldman, N. Korula, V. Mirrokni,
S. Muthukrishnan, and M. Pál. Online ad assignment
with free disposal. In Internet and network economics,
pages 374–385. Springer, 2009.

[12] E. J. Friedman and D. C. Parkes. Pricing wifi at
starbucks: issues in online mechanism design. In
Proceedings of the 4th ACM conference on Electronic
commerce, pages 240–241. ACM, 2003.

[13] A. Ghosh and A. Sayedi. Expressive auctions for
externalities in online advertising. In Proceedings of
the 19th international conference on World wide web,
pages 371–380. ACM, 2010.

[14] G. Goel, M. Hajiaghayi, and M. R. Khani.
Randomized revenue monotone mechanisms for online
advertising. In Web and Internet Economics, pages
324–337. Springer, 2014.

[15] S. A. Goldman, J. Parwatikar, and S. Suri. Online
scheduling with hard deadlines. Journal of Algorithms,
34(2):370–389, 2000.

[16] M. H. Goldwasser. Patience is a virtue: The effect of
slack on competitiveness for admission control.
Journal of Scheduling, 6(2):183–211, 2003.

[17] M. Hajiaghayi, R. Kleinberg, M. Mahdian, and D. C.
Parkes. Online auctions with re-usable goods. In
Proceedings of the 6th ACM conference on Electronic
commerce, pages 165–174. ACM, 2005.

[18] A. W. Kolen, J. K. Lenstra, C. H. Papadimitriou, and
F. C. Spieksma. Interval scheduling: A survey. Naval
Research Logistics (NRL), 54(5):530–543, 2007.

[19] R. Lavi and N. Nisan. Competitive analysis of
incentive compatible on-line auctions. In Proceedings
of the 2nd ACM conference on Electronic commerce,
pages 233–241. ACM, 2000.

[20] R. Lipton. Online interval scheduling. In Proceedings

of the fifth annual ACM-SIAM symposium on Discrete
Algorithms, pages 302–311. Society for Industrial and
Applied Mathematics, 1994.

[21] A. Mäcker, M. Malatyali, F. Meyer auf der Heide, and
S. Riechers. Non-preemptive scheduling on machines
with setup times. In Proceedings of the 13th
International Symposium on Algorithms and Data
Structures (WADS), LNCS. Springer, 2015.

[22] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani.
Adwords and generalized online matching. Journal of
the ACM (JACM), 54(5):22, 2007.

[23] N. Nisan and A. Ronen. Algorithmic mechanism
design. In Proceedings of the thirty-first annual ACM
symposium on Theory of computing, pages 129–140.
ACM, 1999.

[24] N.Y.Times. What is surround sessions?, 2002.

[25] D. C. Parkes. Online mechanisms. Algorithmic Game
Theory, ed. N. Nisan, T. Roughgarden, E. Tardos, and
V. Vazirani, Cambridge University Press, pages
411–439, 2007.

[26] M. L. Pinedo. Scheduling: theory, algorithms, and
systems. Springer Science & Business Media, 2012.

[27] R. Porter. Mechanism design for online real-time
scheduling. In Proceedings of the 5th ACM conference
on Electronic commerce, pages 61–70. ACM, 2004.

[28] K. Pruhs, J. Sgall, and E. Torng. Online scheduling.
Handbook of scheduling: algorithms, models, and
performance analysis, pages 15–1, 2004.

[29] H. Zhang, B. Li, H. Jiang, F. Liu, A. V. Vasilakos,
and J. Liu. A framework for truthful online auctions
in cloud computing with heterogeneous user demands.
In Proceedings of INFOCOM, pages 1510–1518. IEEE,
2013.

277

