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ABSTRACT
We study the Provision-after-Wait problem in healthcare
introduced by Braverman, Chen, and Kannan (2016). In
this setting, patients seek a medical procedure, and the pro-
cedure can be performed by different hospitals of different
costs. Each patient has a value for each hospital, and a
budget-constrained government/planner pays for the medi-
cal expenses of the patients. The planner’s goal is to find
an optimal stable assignment that is envy-free and maxi-
mizes the social welfare while keeping the expenses within
the budget.

In this work, we focus on the settings where the patients
have a common preference of the hospitals. We show that
computing the optimal stable assignment for maximizing so-
cial welfare is NP-hard. Furthermore, we construct a fully
polynomial-time approximation scheme (FPTAS) that runs
in time O((n + m)n3m/ε), where m and n are the number
of hospitals and patients, respectively. In order to develop
the FPTAS, we have defined and studied a new problem,
ordered Knapsack.

We also consider the setting where the planner uses lottery
as a rationing tool. For a large sub-class of our settings, we
show the conditions under which the optimal lottery scheme
has a simple structure and generates more social welfare
than the optimal stable assignment. Moreover, such optimal
lottery scheme can be computed by a linear program.

Keywords
budget, NP-hardness, approximation, FPTAS, waiting, lot-
tery, envy-free, assignment, matching

1. INTRODUCTION
We study the Provision-after-Wait problem in healthcare

[5], which considers the interaction among the patients, the
hospitals, and a planner. Each patient seeks a medical ser-
vice, such as X-ray or MRI, and has different values for
different hospitals. Each hospital has a cost for serving one
patient, which must be paid. Yet, the patients do not pay
for the service and, instead, the planner pays for all of them.
However, the planner has a budget and might not be able
to afford the costs incurred by all patients going to their
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most preferred hospitals. Thus, the planner decides how to
distribute his budget among the hospitals and, thus, how
many patients he can afford each hospital to serve (in one
budget period, say a month or a year). Patients choose their
favorite hospitals and, if a hospital is over-demanded, then
naturally a line will form and a waiting-time is specified at
that hospital: the amount of time each patient has to wait
before getting served there. Given the waiting times, a pa-
tient selects the hospital that maximizes his utility, which
is his value minus the waiting time. De facto, the planner
uses waiting times as a rationing tool and sets the hospitals’
waiting times such that when the patients pick their utility-
maximizing hospitals, the social welfare is maximized while
the total cost is within the budget. In other words, the
planner wants to produce a stable assignment: where each
patient has non-negative utility and gets the hospital that
maximizes his utility (thus a stable assignment is automat-
ically envy-free).

Even when each patient is “narcissistic” and only has pos-
itive value for a single distinct hospital, the problem of com-
puting the optimal budget feasible social welfare is already
NP-hard [5]. Beyond this, little is known about computing
the optimal social welfare when the patients’ preferences are
structured. In this paper, we consider the setting where the
patients have a common preference of the hospitals: that is,
the patients have the same ranking over the hospitals and
perceive the hospitals based on the same quality measure-
ment. This type of preferences is considered in position auc-
tions [3, 21] where the patients in our setting correspond to
the advertisers there, the hospitals correspond to the slots,
and all advisers know the click-through rates of all slots.
Similarly, in our setting, the patients know a ranking and
quantitative measurements of the hospitals (i.e., based on
ranking and reviews from U.S. News Best Hospitals 2015-
161 or Centers for Medicare and Medicaid Services2 of the
US government).

1.1 Our Results
In the common-preference setting, each patient has a value

for receiving the medical service and each hospital has a
quality factor that is publicly known. The value of a patient
for a hospital is the product of the two: that is, a consumer’s
value for a provider is proportional to the provider’s qual-
ity. This is typical in position auctions [3, 21] where quality
means view-through or click-through rate, or in scenarios
where quality means the probability of obtaining the same

1http://health.usnews.com/best-hospitals
2http://www.cms.gov/
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resource [13, 15, 16]. In the Provision-after-Wait problem, a
hospital’s quality can be considered as a scale-down from a
perfect hospital: the “star ratings” on the Internet for hos-
pitals are illustrative examples for such measurements.

Our model and results for waiting times are formally pre-
sented in Sections 2 and 3, and those for lotteries are in
Section 4. Below we summarize our main results. Due to
lack of space, most of the proofs are provided in the full
version of the paper [9].

Optimal Stable Assignments.
For computing an optimal stable assignment of the Provision-

after-Wait problem with common preference, we have the
following two theorems.

Theorem 1 (restated). It is NP-hard to compute an optimal
stable assignment.

Theorem 2 (restated). There exists a fully polynomial-time
approximation scheme (FPTAS) for the optimal stable as-
signment problem which, given any ε > 0, runs in time
O((n+m)n3m/ε), where n and m are respectively the num-
ber of patients and hospitals.

To construct the desired FPTAS we introduce another
problem, ordered Knapsack. Roughly speaking, this is a
bounded Knapsack problem where the items’ values are af-
fected by the order in which the items are packed into the
knapsack. We construct an FPTAS for this problem and
show how to use it to approximate the optimal stable as-
signment. We believe that the ordered Knapsack problem
itself is of independent interest and is worth further study.
Detailed discussions on Theorems 1 and 2 are in Sections 3.1
and 3.2, respectively. These results provide us a relatively
complete understanding about the computation problem in
our setting.

Moreover, it is worth pointing out that, our results are ro-
bust against small perturbations of the patients’ valuations
that may destroy the common-preference property: they re-
main true as long as the perturbed valuations keep a desired
“ordering” among the patients. A more detailed discussion
about this issue is in the full version.

Optimal Lottery Assignments.
In this part, we consider the patients as a continuous pop-

ulation instead of a discrete set, so that the solutions have a
clean formula. Indeed, in the healthcare literature it is often
assumed that there is a continuous population of patients,
since in reality the number of patients is usually huge. By
discretizing the patient space, similar results can be obtained
for discrete settings.

Consider the patients as a continuous population repre-
sented by the interval [0, 1]. Their values for the medical
service can be specified by a function v mapping each pa-
tient x ∈ [0, 1] to a non-negative real, such that the value of
patient x at a hospital is v(x) times the hospital’s quality.
The function v is called the patients’ valuation profile.3 We
assume v to be increasing, which is without loss of general-
ity, since we can reorder and rename the patients: we can
also do this in the discrete case, so that the value of patient
1 is smaller than that of patient 2, etc. Moreover, some reg-

3We do not call v the valuation function because it applies
to all patients, in which sense it corresponds to a valuation
profile in the discrete case.

ularity assumptions about v are typically used to ease the
discussion, such as piece-wise continuity (see Section 4).

A lottery scheme is essentially a menu of randomized (hos-
pital, waiting time) pairs for the patients to choose from,
where the waiting times may or may not be non-zero. It
is somewhat surprising that, given the extremely rich struc-
tures of the possible lottery schemes, for a large class of
Provision-after-Wait problems, the optimal lottery scheme
has a very simple form: that is, there is a single distribution
from which all patients’ hospitals are drawn, and no waiting
time is imposed. We call such a lottery scheme a randomized
assignment, and we have the following.

Theorem 4 (restated). For any v(x) such that (1−x)v′(x) is
non-increasing, the optimal randomized assignment is opti-
mal among all lottery schemes, including those with waiting
times.

In Section 4.1 we show that the optimal randomized as-
signment can be solved by a linear program, so does the
optimal lottery scheme whenever the condition in Theorem
4 holds. In particular, the condition holds when v(x) is
concave, and for many other cases where it is neither con-
cave nor convex, but does not increase “too fast”. When
the condition holds, the ratio between the social welfare of
the optimal randomized assignment and that of the optimal
stable assignment can be arbitrarily large. This condition
is tight in the sense that, when it does not hold, there are
cases where optimal stable assignments generate more social
welfare: we provide examples in the full version.

Moreover, it is worth pointing out that, given a random-
ized assignment, we do not need to sample the patients’
hospitals independently: our result holds as long as the
marginal distribution for each patient is as specified by the
assignment. Thus the optimal randomized assignment can
be implemented so that the budget constraint is satisfied
with probability 1 (see Section 4.2).

Interestingly, the condition in Theorem 4 has a very nat-
ural interpretation from another aspect. If we consider a
single patient whose “type” x is drawn uniformly at ran-
dom from [0, 1] and set his value to v(x), then the condition
in Theorem 4 holds if and only if the distribution of the
resulting value has monotone hazard rate (MHR). This im-
mediately connects our result with lottery pricing schemes
[10] with a single buyer and multiple items, where optimal
pricing schemes are studied when the distributions of the
buyer’s values have MHR. Indeed, besides being succinct,
one benefit of consider a continuous population of patients
is that it lets us see clearly the connection between our con-
dition and MHR, which is typically studied for continuous
distributions.

We further generalize our result to settings where the pa-
tients do not perceive the hospitals based on the same qual-
ity measurement but still have the same ranking for them.
Here the randomized assignment may not be optimal among
all lottery schemes, but we have the following.

Theorem 5 (restated). Under similar conditions as in The-
orem 4, the optimal randomized assignment is better than the
optimal stable assignment.

Theorem 5 is formalized in Section 4.3. Moreover, when
the conditions do not hold there are cases where optimal
stable assignments do better.

In conclusion, we have studied the computation and the
structure of the optimal Provision-after-Wait schemes when
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waiting times and lotteries are used as rationing tools. Our
results suggest that neither rationing tool is absolutely bet-
ter than the other in terms of generating social welfare, and
we have identified conditions that enable the comparison of
their performances. A planner should choose an appropri-
ate tool based on the patients’ valuations as specified by
Theorems 4 and 5. Our results then allow the planner to
compute/approximate the optimal allocations efficiently.

1.2 Related Work
The Provision-after-Wait problem was introduced in [5].

Since the authors allow arbitrary values of the patients for
the hospitals, the NP-hardness for computing the optimal
equilibrium there is much easier to show than ours. Also,
in [5] the authors study optimal lotteries when there are
two hospitals. Since we allow any number of hospitals, our
results on optimal lotteries and randomized allocations are
more general.

In unit-demand pricing schemes, n items are to be sold to
m buyers and each buyer only wants one of them. This is
similar to our case: each patient needs to be assigned to one
hospital. Envy-freeness is a widely adopted solution con-
cept there, but the goal of pricing schemes is to maximize
revenue. In [13, 16], the authors study pricing problems
where the buyers’ valuations are similar to ours, and they
characterize the optimal envy-free solutions for generating
revenue [13, 16] and total value [13]. Their characteriza-
tions are analogous to ours, but their goals are different and
they do not further study the computation complexity of
the optimal solutions. While most works on pricing schemes
study deterministic optimal item-pricing [6, 10, 12, 14, 16],
a few consider lotteries [7, 11, 19, 20] and show that they
can generate more revenue than deterministic item-pricing
in various cases. However, the structures of optimal lottery
pricing schemes are far from being well understood.

Finally, one key difference we see between the Provision-
after-Wait model and the model of [17], a classic study about
matching, is that, in [17] there is only one “currency”, the
salary (in particular, gross product is measured in the same
unit as salary); while in our model there are two “curren-
cies”, money and time, and they are not exchangeable since
patients do not care about money paid to the hospital.

2. THE MODEL
In the Provision-after-Wait problem [5], there are n pa-

tients, indexed by [n] = {1, 2, ..., n}, and m hospitals, in-
dexed by [m] = {1, 2, ...,m}. Each patient wants a single
medical service, which can be provided by any one of the
hospitals. For each hospital j ∈ [m], there is a cost cj ∈ Z+

for serving one patient.4 Moreover, each patient i ∈ [n] has
a value vij ∈ Z+ for receiving the service in hospital j ∈ [m].
As mentioned earlier, the patients do not pay for the service.
Instead, the planner (e.g., government) pays for everybody’s
service through some funding program (e.g., the Patient Pro-
tection and Affordable Care Act in United States—that is,
Obamacare). The planner has a budget B ∈ Z+ that limits
the total amount that he can spend. To ensure the planner
does not spend more than the budget (and while ensuring

4That is, one hospital provides the same service to all pa-
tients, while different hospitals may provide different ser-
vices. For example, one “hospital” may actually represent
X-ray services and another one may represent MRI services.

free-choice of the patients), the planner determines the wait-
ing time wj for each hospital j ∈ [m].The planner’s goal is
to produce a solution that maximizes social welfare.

It is worth pointing out that, although in the model it
is the planner who decides the waiting times, it has been
shown in [5] that waiting times derive endogenously from
the budget constraint and the dynamics between patients
and hospitals: the planner only needs to decide each hospi-
tal’s supply given the budget, and the demand and supply
together determine waiting times and social welfare. If a
hospital is over-demanded and there is no budget to increase
its supply, then its waiting time increases in the dynamics.

Solution Concept.
A solution to the Provision-after-Wait problem is called

an assignment. An assignment A consists of an assign-
ment function a : [n] → [m] and a waiting vector w =
(w1, . . . , wm) where wj ≥ 0 for each j ∈ [m]: a(i) is the
hospital to whom patient i is assigned and wj is the wait-
ing time for any patient assigned to hospital j. The total
cost of A is C(A) =

∑
i∈[n] ca(i). The planner has a budget

B ≥ 0, and A is budget-feasible if C(A) ≤ B. Given A, each
patient i’s utility is via(i) − wa(i),5 and the social welfare of
A is SW (A) =

∑
i∈[n] via(i) − wa(i).

An assignment A is stable if for any patient i, (1) via(i) −
wa(i) ≥ 0 and (2) for any hospital j, via(i) − wa(i) ≥ vij −
wj . Notice that we could have allowed different patients
to have different waiting times at the same hospital. How-
ever, an assignment is envy-free if for any patients i and i′,
via(i)−wa(i) ≥ via(i′)−wa(i′). Thus envy-freeness automati-
cally implies that patients assigned to the same hospital have
the same waiting time, and our model is without any loss
of generality. We are interested in mechanisms that, given
the patients’ values, output assignments that are stable and
budget-feasible, and maximize the social welfare.

Definition 1. A stable assignment A is optimal if A ∈
argmaxA′ is stable and budget-feasible SW (A′).

Without loss of generality we assume ncmax > B and
ncmin ≤ B, where cmax and cmin are the maximum and the
minimum costs of the hospitals, respectively. Moreover, it
is often useful to consider optimal stable assignments with
respect to a particular assignment function, as follows.

Definition 2. For any assignment function a, a stable
assignment A = (a,w) is optimal with respect to a if A ∈
argmaxA′=(a,w′) and A′ is stable SW (A′).

Note that budget-feasibility is not required in Definition 2:
the cost of all such assignments is solely decided by a, thus
either all of them are budget-feasible or none is.

Common Preference.
In the general Provision-after-Wait problem, the patients’

values for the hospitals can be arbitrary. For the special
class of “narcissistic” valuations where each patient i ∈ [n]

5Utilities are quasi-linear in waiting time because we mea-
sure patients’ valuations as “willingness to wait”, in paral-
lel with “willingness to pay” in auctions, where utilities are
quasi-linear in price. The planner doesn’t need to intention-
ally delay care to preserve fairness: as mentioned previously,
the desired waiting times will appear endogenously from the
dynamics between hospitals and patients.

280



has a value vij > 0 for j = i and vij = 0 for all j 6= i,
the problem of computing an optimal stable assignment is
already NP-hard [5]. Beyond this result, little is known for
the computational complexity of the problem.

Here, we consider a different class of valuations where the
patients have a common preference over the hospitals. In
particular, for each hospital j ∈ [m], there is a quality factor
qj ∈ Z+ that is publicly known. Without loss of generality,
we can rename the hospitals such that q1 ≥ q2 ≥ ... ≥ qm.
For each patient i ∈ [n], there is a value vi ∈ Z+ specifies
i’s happiness for getting the medical service. For each pa-
tient i ∈ [n] and hospital j ∈ [m], i’s value for hospital j
is vij = viqj . Thus, vi1 ≥ vi2 ≥ ... ≥ vim for all patients
i ∈ [n]. The setting where a consumer’s value for a provider
is proportional to its value and the provider’s quality has
been explored in other context under different economic in-
centive settings [2, 13, 15, 16, 21]. We will consider this
type of valuations throughout the paper and we will explic-
itly represent the value vij as viqj for clarity.

3. OPTIMAL STABLE ASSIGNMENTS
In this section, we show that (1) computing an optimal

stable assignment is NP-hard; and (2) there is a fully poly-
nomial time approximation scheme (FPTAS) that returns
an assignment with social welfare ε-close to the optimum.

3.1 Finding Optimal Stable Assignments
In this and next sections, without loss of generality we

rename the patients and the hospitals so that

v1 ≥ v2 ≥ · · · ≥ vn and q1 ≥ q2 ≥ · · · ≥ qm. (1)

Theorem 1. It is NP-hard to compute an optimal stable
assignment.

To prove Theorem 1, we first characterize the social wel-
fare of optimal stable assignments. Our approach is similar
to that in [13, 16], but the formulas are different. Indeed,
their goals were to maximize the total payment and/or the
total value in the context of revenue maximization. In par-
ticular, our Definition 4 and Lemma 3 are equivalent to
Lemma 2.1 in [13], but the remaining parts are new. In
this section, we only state our key lemmas and we refer the
readers to the full version [9] for a detailed analysis.

Definition 3. An assignment function a is ordered if
a(1) ≤ a(2) ≤ · · · ≤ a(n).

Lemma 1 shows that it is sufficient to consider stable as-
signments A = (a,w) with a ordered.

Lemma 1. Given any stable assignment A = (a,w), in
polynomial time it can be modified so that: a beomes ordered,
A is still stable, and the total cost and the utility of each
patient remain the same.

Therefore, for any stable assignment A = (a,w) with a
ordered, we can deduce that qa(1) ≥ qa(2) ≥ · · · ≥ qa(n) and
wa(1) ≥ wa(2) ≥ · · · ≥ wa(n). In other words, patients with
higher values are assigned to hospitals with higher quality,
and hospitals with higher quality have higher waiting times
than those with lower quality: indeed, if hospital i has higher
quality than hospital j, but lower waiting time, then patients
assigned to j want to deviate to i, since it gives them higher
utilities.

Definition 4. For any ordered assignment function a,
an assignment A = (a,w) is tight at a if for any i < n

wa(n) = 0 and wa(i) = (qa(i) − qa(i+1))vi+1 + wa(i+1).

Notice that, by the inequality on qa(i)’s, the wa(i)’s in Def-
inition 4 are all non-negative. Also notice that, being tight
at a implies that for any i < n, vi+1qa(i+1) − wa(i+1) =
vi+1qa(i)−wa(i). That is, patient i+1 is indifferent between
his utility at a(i+ 1) and that at a(i).

The following lemmas show that we only need to consider
assignment A that is tight at a.

Lemma 2. For any ordered assignment function a, let
A = (a,w) be an assignment such that A is tight at a and
wj = v1q1 for any j 6∈ a({1, . . . , n}). Then A is stable.

Lemma 3. For any ordered assignment function a and
any stable assignment A = (a,w), A is optimal with respect
to a if and only if it is tight at a.

The following lemma shows that the social welfare of any
stable assignment optimal with respect to a can be explic-
itly calculated from the patients’ values and the hospitals’
qualities.

Lemma 4. For any ordered assignment function a and
any stable assignment A = (a,w) optimal with respect to
a, SW (A) =

∑
i<n i · qa(i) · (vi − vi+1) + n · qa(n) · vn.

Given the above lemmas, we now present the proof of
Theorem 1.

Proof of Theorem 1. Consider the decision version of
the Provision-after-Wait problem: DPaW = {(q1, . . . , qm,
c1, . . . , cm, v1, . . . , vn, B, V ) : there exists a stable budget
feasible assignment A such that SW (A) ≥ V }.

It is clear that if one can find an optimal stable assign-
ment for every instance of the Provision-after-Wait problem
then one can decide DPaW . We shall show that DPaW is
NP-complete by a reduction from the Subset-Sum problem:
SubsetSum = {(s1, . . . , sn, T ) : there exists S ⊆ [n] such
that

∑
i∈S si = T}. Given an instance α = (s1, . . . , sn, T ) of

SubsetSum, we assume without loss of generality that s1 ≥
s2 ≥ · · · ≥ sn, and construct an instance γ = (q1, . . . , qm,
c1, . . . , cm, v1, . . . , vn, B, V ) of DPaW as follows. Notice
that we use the same symbol for both a variable and its bi-
nary representation, and the 1st bit refers to the rightmost
bit.

• There are m = 2n hospitals and n patients.

• For each i ∈ [n], qi = ci = si·2n(dlogne+1)+2(n−i)(dlogne+1):
qi and ci are obtained by appending n(dlogne+1) bits
of 0’s to the right of the binary representation of si,
and then setting the (n− i)(dlogne+ 1) + 1st bit to 1.

• For each i ∈ [n], qn+i = cn+i = 2(n−i)(dlogne+1). That
is, qn+i and cn+i consist of one bit of 1 followed by
(n− i)(dlogne+ 1) bits of 0’s. Notice that the unique
bit of 1 in qn+i and cn+i is aligned with the unique bit
of 1 after si in qi and ci.

• B = V = T · 2n(dlogne+1) +
∑
i∈[n] 2(n−i)(dlogne+1).

That is, B and V are obtained by appending n(dlogne+
1) bits of 0’s to the right of the binary representation
of T , and then set the (n− i)(dlogne+ 1) + 1st bit to
1 for each i ∈ [n].
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• For each i ∈ [n], vi =
∑n
k=i

1
k

.

It is easy to see that the construction takes polynomial
time and that γ satisfies Inequality 1. We have the following
two lemmas.

Lemma 5. γ ∈ DPaW ⇒ α ∈ SubsetSum.

Proof. Let A = (a,w) be an optimal stable assignment
of γ. By definition, A is optimal with respect to a. By
Lemma 1 we assume without loss of generality that a is
ordered. Thus by Lemma 4 we have SW (A) =

∑
i<n i·qa(i) ·

(vi − vi+1) + n · qa(n) · vn =
∑
i<n i · qa(i) ·

1
i

+ n · qa(n) · 1n =∑
i∈[n] qa(i). Since qj = cj for any j ∈ [m] and since A is

budget feasible, SW (A) =
∑
i∈[n] ca(i) = C(A) ≤ B = V.

Since γ ∈ DPaW , we have SW (A) ≥ V and thus SW (A) =
V. In particular, for any j ∈ [n], SW (A) has a 1 at the
(n− j)(dlogne+ 1) + 1st bit preceded by dlogne bits of 0’s.
We now show that for any j ∈ [n],

|{i ∈ [n] : a(i) ∈ {j, n+ j}}| = 1, (2)

that is, there is exactly one patient assigned to either hos-
pital j or hospital n+ j.

To see why Equation 2 is true, notice that for any k ∈ [n]
there are dlogne bits of 0’s between the (n−k+1)(dlogne+
1)+1st bit and the (n−k)(dlogne+1)+1st bit in the binary
representation of any qj . Since there are n patients, there
is no carry to the (n − k + 1)(dlogne + 1) + 1st bit when
computing SW (A). Further notice that the only hospitals
whose qualities contribute a 1 to the (n−j)(dlogne+1)+1st
bit of SW (A) are hospitals j and n+ j.

If more than one patients are assigned to either j or n+j,
then the dlogne bits preceding the (n−j)(dlogne+1)+1st bit
of SW (A) cannot be all 0’s, and SW (A) 6= V . If no patient
is assigned to either j or n + j, then the (n − j)(dlogne +
1)+1st bit of SW (A) cannot be a 1, and again SW (A) 6= V .
Thus there must be exactly one patient assigned to either
hospital j or hospital n+ j, and Equation 2 holds.

By Equation 2, the two sets S = {j ∈ [n] : j ∈ a({1, . . . , n})}
and S′ = {j ∈ [n] : n + j ∈ a({1, . . . , n})} form a partition
of [n], and SW (A) =

∑
i∈[n] qa(i) =

∑
j∈S qj+

∑
j∈S′ qn+j =∑

j∈S sj ·2
n(dlogne+1)+

∑
j∈[n] 2(n−j)(dlogne+1). Since SW (A) =

V = T ·2n(dlogne+1)+
∑
i∈[n] 2(n−i)(dlogne+1), we have

∑
j∈S sj =

T . Thus α ∈ SubsetSum and Lemma 5 holds.

Lemma 6. α ∈ SubsetSum⇒ γ ∈ DPaW .

Proof. Since α ∈ SubsetSum, there exists S ⊆ [n] such
that

∑
i∈S si = T. Let k = |S| and S = {j1, . . . , jk}, with

j1 ≤ j2 ≤ · · · ≤ jk. Further, let S′ = [n]\S = {jk+1, . . . , jn},
with jk+1 ≤ jk+2 ≤ · · · ≤ jn. We construct an assignment
A = (a,w) as follows.

• a(i) = ji for any i ≤ k, and a(i) = n + ji for any
i ≥ k + 1.

• wa(n) = 0, wa(i) = (qa(i) − qa(i+1))vi+1 + wa(i+1) for
any i < n, and wj = v1q1 for any j 6∈ a({1, . . . , n}).

Notice that a(1) ≤ a(2) ≤ · · · ≤ a(n) = n + jn ≤ m. Thus
a is a well defined function from [n] to [m] and is ordered.
Also notice that A is tight at a.

The cost of A is C(A) =
∑
i∈[n] ca(i) =

∑
i≤k cji

+
∑
i≥k+1 cn+ji = T ·2n(dlogne+1)+

∑
j∈[n] 2(n−j)(dlogne+1) =

B. Thus A is budget feasible.

Since A is tight at a, by Lemma 2, A is stable. By Lemma
3, A is optimal with respect to a. Thus SW (A) =

∑n−1
i=1 i ·

qa(i) ·(vi−vi+1)+n·qa(n) ·vn =
∑n−1
i=1 i·qa(i) ·

1
i
+n·qa(n) · 1n =∑

i∈[n] qa(i) =
∑
i∈[n] ca(i) = C(A) = B = V. Therefore A

is a stable budget feasible assignment with SW (A) ≥ V .
Accordingly, γ ∈ DPaW and Lemma 6 holds.

By Lemmas 5 and 6, α ∈ SubsetSum if and only if γ ∈
DPaW . Thus, DPaW is NP-complete and Theorem 1 holds.

3.2 An FPTAS for Optimal Stable Assignments
Next, we show that there is an efficient algorithm that

produces a stable assignment with social welfare arbitrarily
close to the optimum. Letting Aopt be an optimal stable
assignment, we have the following.

Theorem 2. There exists an algorithm for the Provision-
after-Wait problem such that, given any ε > 0, it runs in
time O((n+m)n3m/ε) and outputs a stable budget feasible
assignment A = (a,w) such that SW (A) ≥ (1−ε)SW (Aopt).

The complete proof of Theorem 2 is in the full version of
the paper [9]. Below, we describe the general ideas. No-
tice that by Lemma 4, for any ordered assignment func-
tion a we can define the social welfare of a, SW (a), to
be the social welfare of stable assignments optimal with re-
spect to a. That is, SW (a) =

∑
i<n i · qa(i) · (vi − vi+1) +

n · qa(n) · vn. An assignment function a is budget feasible if
C(a) =

∑
i∈[n] ca(i) ≤ B.

Definition 5. An ordered assignment function a is op-
timal if a ∈ argmax

a′is ordered and budget feasible
SW (a′).

Given an ordered assignment function a, by Lemmas 2
and 3, we can construct, in time O(m+ n), a stable assign-
ment A optimal with respect to a: that is, the assignment
defined in Lemma 2. If a is optimal, then A is an optimal
stable assignment. Thus, to prove Theorem 2 it suffices to
approximate the optimal ordered assignment function.

Notice that if there exists a hospital j such that cj <
cj+1, then for any ordered assignment function a and for all
patients assigned to hospital j + 1, by reassigning them to
j we get another ordered assignment a′ such that C(a′) ≤
C(a) and SW (a′) ≥ SW (a). Accordingly, we can further
focus on ordered assignment functions that do not assign
any patient to j + 1. That is, we can assume without loss
of generality that c1 ≥ c2 ≥ · · · ≥ cm. Below we define a
more general problem and construct an FPTAS for it, which
will give us an FPTAS for the optimal ordered assignment
function.

3.3 The Ordered Knapsack Problem

Definition 6. The ordered Knapsack problem has m items,
n players, and a budget B. Each item j has n copies, with
cost cj each. Each player i has value uij for item j. We
have c1 ≥ c2 ≥ · · · ≥ cm, ui1 ≥ ui2 ≥ · · · ≥ uim for each
i ∈ [n], and ncm ≤ B < nc1. An assignment is a function
a : [n] → [m] such that a(1) ≤ a(2) ≤ · · · ≤ a(n). The
social welfare of a is SW (a) =

∑
i∈[n] uia(i), and the cost is

C(a) =
∑
i∈[n] ca(i). The goal is to find an assignment with

cost no larger than B and the maximum social welfare.
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Intuitively, the ordered-Knapsack problem has a knapsack
where the order of the items packed in it affects their val-
ues —the “players” can be considered as ordered slots in the
knapsack.6 We can reduce the problem of the optimal or-
dered assignment function to the ordered Knapsack problem
by taking, for any j ∈ [m], uij = iqj(vi − vi+1) for any i <
n and unj = nqjvn. Any assignment of the resulting ordered
Knapsack problem is an ordered assignment function of the
original Provision-after-Wait problem, with the same cost
and the same social welfare. Thus, letting aopt be the opti-
mal assignment for the ordered Knapsack problem, to prove
Theorem 2 it suffices to construct an FPTAS for aopt.

Theorem 3. There exists an algorithm for the ordered
Knapsack problem such that, given any ε > 0, it runs in
time O((n + m)n3m/ε) and outputs an assignment a with
C(a) ≤ B and SW (a) ≥ (1− ε)SW (aopt).

Proof of Theorem 3 (Sketch). We first construct a
dynamic program that computes the optimal assignment in
pseudo-polynomial time, and then run it on properly scaled
inputs to get the desired FPTAS. We refer the readers to
the full version of the paper [9] for the complete proof, and
here we only provide the objective function for our dynamic
program. (We are abusing the notation C a bit, but it always
represents the cost that we want to measure.)

For any assignment a and player i, let SW (a, i) =
∑n
i′=i ui′a(i′)

be the contribution of players i, . . . , n to SW (a). For any
i ∈ [n], j ∈ [m], and s ∈ {0, 1, . . . , nV }, we are interested
in the minimum cost, denoted by C(i)(j)(s), needed for
players i, . . . , n to make contribution s to the social wel-
fare, when player i is assigned to item j. More precisely,
let SW (i, j) =

∑n
i′=i ui′j be the contribution of players

i, . . . , n when they are all assigned to j. If SW (i, j) ≥ s then
C(i)(j)(s) = cj + mina:j=a(i)≤···≤a(n),SW (a,i)≥s

∑
i′>i ca(i′),

and C(i)(j)(s) = +∞ otherwise. Notice that C(i)(j)(s) =
+∞ means it is impossible for players i, . . . , n to make con-
tribution s to the social welfare even if all of them are as-
signed to j, and thus impossible to make such contribution
at j and items after j. In practice, +∞ can be replaced
by B + 1 (or any number larger than B and of polynomial
length). Moreover, we observe that (a) for any optimal as-
signment a, SW (a) = max{s : minj∈[m] C(1)(j)(s) ≤ B};
and (b) C(n)(j)(s) = cj for any j ∈ [m] and s ≤ unj ,
C(i)(j)(0) = cj + (n − i)cm for any i < n and j ∈ [m], and
for any i < n, j ∈ [m] and 0 < s ≤ SW (i, j),

C(i)(j)(s) = cj + min
j′≥j

C(i+ 1)(j′)(max{s− uij , 0}).

Finally, C(i)(j)(s) = +∞ in all other cases. The dynamic
program thus computes the function C and the optimal as-
signment a.

6Such a scenario widely exists in real life. For example, in
school choices the order may represent the priority of be-
ing admitted to different schools. Indeed, priority list has
been widely studied in the Economics literature (see, e.g.,
[4, 1, 8]). But the model and the concerns there are different
from ours, e.g., the optimization goal is usually not utilitar-
ian, and there is no budget constraints. Thus we do not
elaborate on this line of research. Also notice that the or-
dered Knapsack problem is quite different from the partially
ordered Knapsack problem studied in [18]. In the latter each
item has a fixed value and the outcome is a set instead of a
function from players to items.

Remark 1. In fact, we can construct a pseudo-polynomial
time dynamic program directly for the Provision-after-Wait
problem. Then one may try to scale down the hospitals’ qual-
ities qj and patients’ values vi separately and apply the dy-
namic program on the scaled inputs. However, when scaling
everything back, the errors in the social welfare will accumu-
late multiplicatively, due to the terms iqa(i)(vi−vi+1). Thus
the desired approximation ratio cannot be guaranteed. The
idea is to scale down each iqj(vi − vi+1) as a whole, but the
resulted parameters may not lead to a well defined Provision-
after-Wait problem with qualities and values—that is where
the ordered Knapsack problem comes into play.

4. ASSIGNMENTS USING LOTTERIES
If no randomness is allowed, the optimal stable assignment

is our best rationing tool. However, if the planner can ask
the patients to enter lotteries, the space of possible mecha-
nisms becomes much larger and better social welfare can be
obtained. In this section, we first characterize the structure
of the optimal lotteries for a large sub-class of the Provision-
after-Wait problem. Furthermore, for a class of valuations
more general than what we currently consider, we character-
ize the conditions under which a particular lottery achieves
more social welfare than the optimal stable assignment.

Although our results apply to the discrete case of n pa-
tients, they are more succinct to state for a continuous pop-
ulation of patients. Thus, we let the patients be indexed
by the interval [0, 1], and use the valuation function v(x)
to specify the value of each patient x. We assume v(x) is
strictly increasing and twice differentiable, so that the in-
tegrations and differentiations used below are always well
defined.7 Also, by shifting down all patients’ values by v(0),
we assume without loss of generality that v(0) = 0.

Definition 7. A lottery λ for the Provision-after-Wait
problem is a tuple of non-negative reals, λ = (p1, . . . , pm, w),
s.t.

∑
j∈[m] pj ≤ 1. A lottery scheme L is a set of lotteries,

s.t. there exists λ = (p1, . . . , pm, w) ∈ L with w = 0.

A patient taking lottery λ will wait for time w and then be
assigned to each hospital j with probability pj . Patient x’s
(expected) utility under λ is u(x, λ) = (

∑
j∈[m] pjqjv(x)) −

w.8 Given L, each patient chooses a lottery to maximize his
own utility. That is, denoting by λL(x) = (pL1 (x), . . . , pLm(x)
, wL(x)) ∈ L the choice of patient x, we have that for any
λ ∈ L,

u(x, λL(x)) ≥ u(x, λ). (3)

The definition of a lottery scheme ensures u(x, λL(x)) ≥ 0
for any x, and u(0, λL(0)) = 0.

7Our approach works as long as v(x) is non-decreasing
(which is without loss of generality since we can reorder
and rename the patients) and piecewise twice differentiable.
But in this more general setting the analysis is unnecessarily
complicated without bringing in interesting views. Thus we
stick to our current setting so as to highlight the key ideas.
Moreover, following Inequality 1, we could have assumed
v(x) is decreasing. But assuming v(x) to be increasing will
make the statements and the analysis more succinct.
8If

∑
j pj < 1 then with probability 1 −

∑
j pj the patient

waits for time w but does not get any resource. If each pa-
tient has to be served, then we just need to require

∑
j pj = 1

in the definitions and our results still hold.

283



Since for any two lotteries λ1, λ2 ∈ L, any convex combi-
nation αλ1 +(1−α)λ2 can be realized by a patient choosing
λ1 with probability α and λ2 with probability 1−α, without
loss of generality we assume that L is convex. Accordingly,
the patients’ choices are on the boundary of L.

Since the patients are infinitesimal, each hospital j’s cost
cj denotes the cost for serving 1 unit of the population at j,

and the (expected) cost of L is C(L) =
∫ 1

0

∑
j∈[m] p

L
j (x)cjdx.

L is budget feasible if C(L) ≤ B. The (expected) social wel-

fare of L is SW (L) =
∫ 1

0
u(x, λL(x))dx. We denote by Lopt

the optimal lottery scheme:

Lopt ∈ argmax
L is budget feasible

SW (L).

For each x ∈ [0, 1], we denote by λopt(x) = (popt1 (x), . . . ,
poptm (x), wopt(x)) the choice of patient x under Lopt.

A stable assignment A = (a,w) is defined as before, except
a is now a function on [0, 1]. It is easy to see that A is
equivalent to a lottery scheme L which is the convex hull
of a set of lotteries {λ1, . . . , λm}: for each j ∈ [m], λj =
(p1, . . . , pm, wj), pj = 1 and pj′ = 0 for any j′ 6= j. Given
L, each patient x chooses λa(x), which corresponds to being
assigned to a(x) with probability 1 after waiting wa(x). Thus
we have SW (Lopt) ≥ SW (Aopt), where Aopt is the optimal
stable assignment.

Besides stable assignments, another class of lottery schemes
is of particular interest: those with waiting time 0. Such a
lottery scheme L reduces to a single lottery (p1, . . . , pm, 0)
whose expected quality

∑
j∈[m] pjqj is the maximum in L,

since this lottery maximizes all patients’ utilities over L. We
call a lottery scheme of this form a randomized assignment,
formally defined below.

Definition 8. A randomized assignment R is a tuple of
non-negative reals, R = (p1, . . . , pm), s.t.

∑
j∈[m] pj ≤ 1.

According to R, each patient is assigned to each hospital j
with probability pj and waiting time 0. The expected so-

cial welfare of R is SW (R) =
∫ 1

0

∑
j∈[m] pjqjv(x)dx, and

the expected cost is C(R) =
∑
j∈[m] pjcj . We denote by

Ropt the optimal randomized assignment, that is, Ropt ∈
argmaxR is budget feasible SW (R). As a randomized assign-

ment is a special lottery scheme, SW (Lopt) ≥ SW (Ropt).
Notice that a lottery scheme is “stable in expectation”,

since a patient chooses a lottery that maximizes his ex-
pected utility. This is also true for a randomized assignment,
since there is only one lottery to choose from. But a lottery
scheme may not be “ex-post stable”: the realized assignment
may not maximize a patient’s utility among all hospitals.

4.1 Optimal Lottery Schemes
The structure of the optimal lottery scheme is hard to

characterize in general, but as we show in the following the-
orem, for a large sub-class of the problem, the optimal ran-
domized assignment is optimal among all lottery schemes.

Theorem 4. For any v(x) such that (1− x)v′(x) is non-
increasing, SW (Ropt) = SW (Lopt).

Proof of Theorem 4 (Sketch). To show Theorem 4,
we rely on the facts (as shown in the full version [9]) that
(a) for any lottery scheme L, the function

∑
j∈[m] p

L
j (x)qj is

non-decreasing, and (b) for any lottery scheme L and any

patient x ∈ [0, 1], u(x, λL(x)) =
∫ v(x)
0

∑
j∈[m] qjp

L
j (v̂)dv̂.

Since SW (Lopt) ≥ SW (Ropt) by definition, we only need
to show that SW (Ropt) ≥ SW (Lopt). To show this, we
first define, for any budget feasible lottery scheme L, R =
(p1, . . . , pm) to be the randomized assignment where for any

j ∈ [m], pj =
∫ 1

0
pLj (x)dx. That is, each pj is the average

of pLj (x) over [0, 1]. Letting L = Lopt, (a) and (b) imply
SW (R) ≥ SW (Lopt). Thus SW (Ropt) ≥ SW (Lopt).

The following shows that the class of valuation functions
satisfying Theorem 4 is very broad: in particular it includes
all concave valuation functions.

Corollary 1. For any concave valuation function v(x),
SW (Ropt) = SW (Lopt).

Proof. Letting g(x) = (1 − x)v′(x), we have g′(x) =
−v′(x) + (1 − x)v′′(x). Since v(x) is concave, v′′(x) ≤ 0.
Since v′(x) > 0 and x ∈ [0, 1], we have g′(x) ≤ 0. Thus g(x)
is non-increasing.

Clearly, Theorem 4 applies to many other valuation func-
tions that are not concave. For example, letting v(x) =
ex − 1, we have (1 − x)v′(x) = (1 − x)ex, which is non-
increasing on [0, 1]. Thus the optimal randomized assign-
ment is optimal among all lottery schemes in this case.

Theorem 4 in Terms of Monotone Hazard Rate.
Interestingly, the condition in Theorem 4 has a very nat-

ural interpretation from another viewpoint. Consider an
assignment problem where there is a single patient and mul-
tiple hospitals. The planner’s budget is lower than the cost
of the patient’s favorite hospital, thus he cannot simply be
assigned there with probability 1. There is a distribution
D from which the patient’s value is drawn: his type is uni-
formly distributed over [0, 1] and his value at type x is v(x).
Letting y = v(x), it is easy to see that for any value v0
and x0 = v−1(v0), the cumulative distribution function is
F (v0) = Pr[y ≤ v0] = Pr[v−1(y) ≤ x0] = x0 = v−1(v0), and
the probability density function is f(v0) = F ′(v0) = 1

v′(x0)
.

Accordingly, (1−x0)v′(x0) = 1−F (v0)
f(v0)

= 1
h(v0)

, where h(v) ,
f(v)

1−F (v)
is the hazard rate of D. Recall that a distribution has

monotone hazard rate (MHR) if h is non-decreasing. Thus
(1−x)v′(x) is non-increasing if and only if D has MHR, and
we immediately have the following.

Corollary 2. For any value distribution D that has MHR,
SW (Ropt) = SW (Lopt).

4.2 Important Properties of the Optimal Ran-
domized Assignment

In this subsection, we further discuss several interesting
properties of the optimal randomized assignment.

Computability.
In general Provision-after-Wait problems, there may not

be an efficient algorithm for finding an optimal lottery scheme.
But the optimal randomized assignment is always defined by
the following linear program.
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max
p1,...,pm

∑
j∈[m]

pjqj

∫ 1

0

v(x)dx

s.t. pj ≥ 0 ∀j ∈ [m],∑
j∈[m]

pj ≤ 1,

∑
j∈[m]

pjcj ≤ B.

Since the integral
∫ 1

0
v(x)dx is a constant in the linear pro-

gram, the linear program can be solved in polynomial time.
Of course, we need the value of

∫ 1

0
v(x)dx so as to compute

SW (Ropt). If
∫ 1

0
v(x)dx has a closed form and can be com-

puted in polynomial time, then SW (Ropt) can be computed

in polynomial time. Otherwise, by computing
∫ 1

0
v(x)dx nu-

merically, SW (Ropt) can also be computed numerically.

Ex-post Budget feasibility.
A lottery scheme in general only satisfies the budget con-

straint in expectation, and it is possible that under some
realization of the lotteries the total cost is much higher
than the budget. Yet, given a randomized assignment R =
(p1, . . . , pm), the planner can first choose an ordering of the
patients uniformly at random, and then assign the first p1
fraction of them to hospital 1, the next p2 fraction to hospi-
tal 2, and so on. By doing so, each patient is assigned to the
hospitals according to the correct distribution (p1, . . . , pm),
thus the expected social welfare equals SW (R). While in
any realized assignment the total cost is

∑
j∈[m] pjcj , ex-

actly the expected cost of the randomized assignment, and
thus the budget constraint is satisfied with probability 1.9

Advantage in Generating Social Welfare.
When Theorem 4 applies, not only the social welfare of

the optimal randomized assignment is no less that of the
optimal stable assignment, but the ratio between them can
be arbitrarily large, since in the latter a lot of social welfare
may be burnt by letting the patients wait. As an example,
consider the case where v(x) = v0 is a positive constant,
q1 = ε � 1, 1 � q2 < · · · < qm, B � 1, c1 = 1, c2 = · · · =
cm = B−ε

1−ε . It is easy to see that one particular optimal
stable assignment is to assign all patients to hospital 1 with
waiting time 0, where the social welfare is q1

∫ 1

0
v(x)dx =

εv0 (assigning some patients to better hospitals won’t help,
since all patients must have the same utility anyway). While
there is a randomized assignment that assigns each patient
to hospital m with probability 1− ε and to hospital 1 with
probability ε, resulting in total cost (1 − ε)cm + εc1 = B

and social welfare ((1− ε)qm+ εq1)
∫ 1

0
v(x)dx = ((1− ε)qm+

ε2)v0 ≥ (1 − ε)v0 � εv0. To make v(x) strictly increasing,
just take v(x) = αx with some arbitrarily small α > 0: the
analysis is essentially the same as when v(x) is a constant.

4.3 Randomized v.s. Stable Assignments
Finally, we extend our approach to settings where the pa-

tients’ values are not proportional to the hospitals’ qualities,

9How to implement lotteries so that the desired constraints
are satisfied ex-post is an important research topic in the
Economics literature, see, e.g., [8].

but there are still orders among the hospitals and the pa-
tients. More precisely, for each j ∈ [m], let function vj(x)
be the value that patient x ∈ [0, 1] receives when assigned
to hospital j. Again by shifting each function vj(x) down by
vj(0), we assume without loss of generality that vj(0) = 0
for each j. We consider the cases where each vj(x) is strictly
increasing and v1(x) ≤ v2(x) ≤ · · · ≤ vm(x) for each x.

As will become clear in the analysis, the key factors af-
fecting the social welfare are not the patients’ values, but
the differences among each patient’s values at different hos-
pitals. Accordingly, for each j ∈ [m], letting fj(x) be a func-
tion on [0, 1] that is strictly increasing, twice differentiable
and fj(0) = 0,10 we consider the patients’ values such that

vj(x) =
∑j
k=1 fk(x) for any x ∈ [0, 1]. Notice this setting

includes that of Section 4.1 as a special case: after renaming
the hospitals s.t. q1 ≤ q2 ≤ · · · ≤ qm, take f1(x) = q1v(x)
and fj(x) = (qj − qj−1)v(x) ∀j > 1.

In this more general setting, it is unclear how to compare
the optimal lottery scheme and the optimal randomized as-
signment, but we have the following.

Theorem 5. If (1 − x)f ′j(x) is non-increasing for every
j ∈ [m], then SW (Ropt) ≥ SW (Aopt).

Proof of Theorem 5 (Sketch). The proof uses related
but different ideas from those for Theorem 4. We only
present a key claim here.

Claim 1. For any stable assignment A = (a,w), there
exists x0, · · · , xm with 0 = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xm−1 ≤
xm = 1, s.t. for any j ∈ [m] and x ∈ (xj−1, xj), a(x) = j.

Moreover, if A is optimal with respect to a, then w1 = 0
and for any j > 1, wj = vj(xj−1) − vj−1(xj−1) + wj−1 =

fj(xj−1) + wj−1 = · · · =
∑j
k=1 fk(xk−1).

Let A = (a,w) be a stable assignment that is budget
feasible and optimal with respect to a, and x0, . . . , xm as
specified in Claim 1. Defining the randomized assignment
R = (p1, . . . , pm) where pj = xj − xj−1 for each j ∈ [m] and
comparing SW (R) and SW (A) will prove our theorem.

Corollary 3. If fj(x) is concave for every j ∈ [m], then
SW (Ropt) ≥ SW (Aopt).

Again, Ropt can be computed by a linear program, and
when the conditions in Theorem 5 hold the ratio between
SW (Ropt) and SW (Aopt) can be arbitrarily large. When
the conditions do not hold, the relation between randomized
assignments and stable assignments depend on the budget
and the hospitals’ costs, as shown in the full version [9].
As a future direction, it would be interesting to not only
characterize the conditions under which the optimal stable
assignment does better, but also quantify the ratio or dif-
ference between the social welfare of the two. Moreover, it
is easy to see the FPTAS in Section 3.2 can be generalized
to the setting of Section 4.3 with discrete patients. Finally,
the conditions in Theorem 5 can also be interpreted in terms
of MHR in the corresponding single-player Bayesian assign-
ment problem.
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