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ABSTRACT
Results from social choice theory are increasingly used to ar-
gue about collective decision making in computational mul-
tiagent systems. A large part of the social choice literature
studies voting paradoxes in which seemingly mild proper-
ties are violated by common voting rules. In this paper, we
investigate the likelihood of the Condorcet Loser Paradox
(CLP) and the Agenda Contraction Paradox (ACP) using
Ehrhart theory, computer simulations, and empirical data.
We present the first analytical results for the CLP on four
alternatives and show that our experimental results, which
go well beyond four alternatives, are in almost perfect con-
gruence with the analytical results. It turns out that the
CLP—which is often cited as a major flaw of some Con-
dorcet extensions such as Dodgson’s rule, Young’s rule, and
MaxiMin—is of no practical relevance. The ACP, on the
other hand, frequently occurs under various distributional
assumptions about the voters’ preferences. The extent to
which it is real threat, however, strongly depends on the
voting rule, the underlying distribution of preferences, and,
somewhat surprisingly, the parity of the number of voters.
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1. INTRODUCTION
Results from social choice theory are increasingly used

to argue about collective decision making in computational
multiagent systems (see, e.g., [12, 8, 30, 9]). A large part of
the social choice literature studies voting paradoxes in which
seemingly mild properties are violated by common voting
rules. Moreover, there are a number of sweeping impossibil-
ities, which entail that there exists no “optimal” voting rule
that avoids all paradoxes. As a consequence, much of the
research in social choice theory is concerned with whether
a paradox can appear for a given voting rule or not. How-
ever, it turns out that some paradoxes—while possible in
principle—will almost never occur in practice.

An extreme example of this phenomenon was recently re-
vealed for the voting rule TEQ . Due to its unwieldy re-
cursive definition, it was unknown for more than 20 years
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whether TEQ satisfies any of a number of very basic de-
sirable properties. In 2011, Brandt et al. [7] have shown
that TEQ violates all of these properties. However, their
proof is non-constructive and only shows the existence of
astronomically large counterexamples requiring about 10136

alternatives. While there are smaller computer-generated
counterexamples [4], computer experiments have shown that
these counterexamples are extremely rare and that TEQ sat-
isfies the desirable properties for all practical purposes [6].
These findings motivated us to provide analytical, experi-
mental, and empirical justifications for such statements.

In this paper, we study two voting paradoxes. The first is
the well-known Condorcet loser paradox (CLP), which oc-
curs when a voting rule selects the Condorcet loser, an alter-
native that loses against every other alternative in pairwise
majority contests. Perhaps surprisingly, this paradox affects
some Condorcet extensions, i.e., voting rules that are guar-
anteed to select an alternative that wins against every other
alternative in pairwise majority contests. Common affected
Condorcet extensions are Dodgson’s rule, Young’s rule, and
MaxiMin [18]. The second paradox, called agenda contrac-
tion paradox (ACP), occurs when removing losing alterna-
tives changes the set of winners. There are only few voting
rules that do not suffer from this paradox, one of them be-
ing the essential set. In fact, all common voting rules that
violate the CLP also violate the ACP.

In principle, quantitative results on voting paradoxes can
be obtained via three different approaches. The analyt-
ical approach uses theoretical models to quantify para-
doxes based on certain assumptions about the voters’ pref-
erences. Analytical results usually tend to be quite hard to
obtain and are limited to simple—and often unrealistic—
assumptions. The experimental approach uses computer
simulations based on underlying stochastic models of how
the preference profiles are distributed. Experimental results
have less general validity than analytical results, but can be
obtained for arbitrary distributions of preferences. Finally,
the empirical approach is based on evaluating real-world
data to analyze how frequently paradoxes actually occur or
how frequently they would have occurred if certain voting
rules had been used for the given preferences. Unfortunately,
only very limited real-world data for elections is available.

Our main results are as follows.
Using Ehrhart theory, we compute upper bounds for the

CLP as well as the exact probabilities under which the
CLP occurs for MaxiMin when there are four alternatives
and preferences are distributed according to the Impartial
Anonymous Culture (IAC) distribution. This approach also
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yields the exact limit probabilities (for CLP and ACP) when
the number of voters goes to infinity. To the best of our
knowledge, these are the first analytical results for the CLP
on four alternatives (which is the minimal number of alter-
natives for which the voting rules we consider exhibit the
CLP).

For both the CLP and the ACP, we throughly analyze a
variety of other settings with more alternatives and other
stochastic preference models using computer simulations.
For those settings in which the analytical approach is also
feasible, our results are in almost perfect congruence with
the analytical results. This is strong evidence for the accu-
racy of our simulation results.

It turns out that the CLP—which is often cited as a ma-
jor flaw of some Condorcet extensions—is of no practical
relevance. The maximum probability under all preference
models we studied is 2.2% (for MaxiMin, three voters, four
alternatives, and IAC). In more realistic settings, it is much
lower. For Dodgson’s rule, it never exceeds 0.01%. We did
not find any occurrence of the paradox in real-world data,
neither in the PrefLib library [25] nor in millions of elec-
tions based on data from the Netflix Prize [3].

The ACP, on the other hand, frequently occurs under vari-
ous distributional assumptions about the voters’ preferences.
The extent to which it is real threat, however, strongly
depends on the voting rule, the underlying distribution of
preferences, and the parity of the number of voters. If the
number of voters is much larger than the number of alter-
natives, less discriminating voting rules seem to fare better
than more discriminating ones. For example, when there
are 1,000 voters and four alternatives, the probability for
the ACP under Copeland’s rule and IAC is 9% while it oc-
curs with a probability of 33% for Borda’s rule. When there
are fewer voters, the parity of the number of voters plays a
surprisingly strong role. For example, if there are 6 alterna-
tives, the ACP probability for Copeland’s rule is 44% for 50
voters, but only 26% for 51 voters. These results are in line
with the empirical data we analyzed.

2. RELATED WORK
There is a huge body of research on the quantitive study

of voting paradoxes. Gehrlein [19] focusses on the non-
existence of Condorcet winners, arguably the most studied
voting paradox. Gehrlein and Lepelley [20], on the other
hand, provide an overview of many paradoxes and, in par-
ticular, analyze the influence of group coherence. In addi-
tion, Gehrlein and Lepelley [20] survey different tools and
techniques that have been applied over the years for the
quantitive study of voting paradoxes.

The analytical study of voting paradoxes under the as-
sumption of IAC is most effectively done via Ehrhart the-
ory, which goes back to the year 1962 and the French math-
ematician Eugène Ehrhart [16]. Interestingly, parts of these
results have been reinvented (in the context of social choice)
by Huang and Chua [22] in 2000, before Ehrhart’s origi-
nal work was independently rediscovered for social choice
by Wilson and Pritchard [34] and Lepelley et al. [23] more
than forty years later.

Current research on the probability of voting paradoxes
under IAC is based on algorithms that build upon Ehrhart’s
results, such as the algorithm developed by Barvinok [2].
For many years, these approaches were limited to cases with

three or fewer alternatives. Recent advances in software
tools and mathematical modeling enabled the study of elec-
tions with four alternatives. Bruns and Söger [10] and Schür-
mann [31] provide such results for Condorcet’s paradox, the
Condorcet efficiency of plurality and the similarity between
plurality and plurality with runoff. Schürmann [31] further
shows how symmetries in the formulation of the paradoxes
can be exploited to facilitate the corresponding computa-
tions.

For the CLP (sometimes also referred to as “Borda’s para-
dox”) many quantitive results are known [20], which are,
however, limited to simple voting rules and scoring rules in
particular. These results also include some empirical evi-
dence for the paradox under plurality ([20], p.15) and sug-
gest that it is an unlikely yet possible problem in practice.
Interestingly, the CLP for Condorcet extensions has—to the
best of our knowledge—only been considered by Plassmann
and Tideman [28]. However, they restrict their analysis to
the three-alternative case and find that the CLP never oc-
curs, which is unsurprising since provably four alternatives
are required for the Condorcet extensions they considered.

The ACP appears to have received less attention in the
quantitative literature on voting paradoxes. Some limit
probabilities for scoring rules were obtained by Gehrlein and
Fishburn (see [20], p. 282–284). Fishburn [17] experimen-
tally studied a variant of this paradox called “winner turns
loser paradox” for Borda’s rule under Impartial Culture. For
Condorcet extensions, Plassmann and Tideman [28] consid-
ered another variant of the ACP under a spatial model, but
again limit their experiments to three alternatives. These
few results already seem to indicate that the ACP might
occur even under realistic assumptions. However, there are
no results for more than three alternatives, Condorcet ex-
tensions, and the ACP in its full generality.

The preference models we consider (such as IC, IAC,
and the Mallows-φ model) have also found widespread
acceptance for the experimental analysis of voting rules
within the multiagent systems and AI community (see, e.g.,
[1, 5, 21, 27]).

3. MODELS AND DEFINITIONS
Let A be a set of m alternatives and N = {1, . . . , n} a

set of voters. Each voter is equipped with a (strict) prefer-
ence relation �i, i.e., a connex,1 transitive, and asymmetric
binary relation on A. We read x �i y as voter i (strictly)
preferring alternative x to alternative y.

A (preference) profile (or an election) is an n-tuple of pref-
erence relations and will be denoted by R := (�1, . . . ,�n).
We will sometimes consider the restriction of �i to a subset
of alternatives B ⊆ A, called an agenda. Such a restriction
will be denoted by R|B := (�1|B , . . . ,�n|B).

3.1 Stochastic Preference Models
In this paper we consider five of the most common stochas-

tic preference models. These models vary in their degree of
realism. Impartial culture (IC) and impartial anonymous
culture (IAC), for example, are usually considered as rather
unrealistic. However, the simplicity of these models enables

1A binary relation �i on A is connex if x �i y ∨ y �i x
for all x 6= y ∈ A. One may alternatively define �i as
the irreflexive component of a complete, antisymmetric, and
transitive relation <i.
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the use of analytical tools that cannot be applied to the other
models. IC and IAC typically yield higher probabilities for
paradoxes than other preference models and can therefore be
seen as worst-case estimates (see, e.g., [29]). We only give
informal definitions here; for more extensive treatments see,
e.g., Critchlow et al. [14] and Marden [24].

Impartial culture The most widely-studied distribution
is the so-called impartial culture (IC), under which every
possible preference relation has the same probability of 1

m!
.

Thus, every preference profile is equally likely to occur.

Impartial anonymous culture In contrast to IC the
impartial anonymous culture (IAC) is not based on the prob-
abilities of individual preferences but on the probabilities of
whole profiles. Under IAC one assumes that each possible
anonymous preference profile on n voters is equally likely to
occur. A more formal definition is given in Section 4.1.

Mallows-φ model In Mallows-φ model, the distance to
a reference ranking (or ground truth) is measured by means
of the Kendall-tau distance2 and a parameter φ is used to
indicate the dispersion. The case of φ = 1 means absolute
dispersion and coincides with IC, the case φ = 0 corresponds
to no dispersion and every voter always picks the“true”rank-
ing. We chose φ = 0.8 to simulate voters with relatively bad
estimates, which leads to situations in which paradoxes are
more likely to occur.

Pólya-Eggenberger urn model In the Pólya-
Eggenberger urn model, each possible preference relation is
represented by a ball in an urn from which individual pref-
erences are drawn. After each draw, the chosen ball is put
back and α ∈ N0 new balls of the same kind are added to the
urn. While the urn model subsumes both impartial culture
(α = 0) and impartial anonymous culture (α = 1), we set
α = 10 to obtain a reasonably realistic interdependence of
individual preferences.

Spatial model In the spatial model alternatives and
agents are placed in a multi-dimensional space uniformly at
random and the agents’ preferences are then determined by
the Euclidean distances to the alternatives (closer alterna-
tives are preferred to more distant ones). The spatial model
is considered particularly realistic in political science where
the dimensions are interpreted as different aspects of the al-
ternatives [32]. We chose the simple case of two dimensions
for our analysis.3

3.2 Voting Rules
A voting rule is a function f that maps a preference profile

to a non-empty set of winners.
For a preference profile R, let gxy := |{i ∈ N : x �i y}| −
|{i ∈ N : y �i x}| denote the majority margin of x against
y. A very influential concept in social choice is the notion
of a Condorcet winner, an alternative that wins against any
other alternative in a pairwise majority contest. Alternative
x is a Condorcet winner (CW) of a profile R if gxy > 0 for all
y ∈ A \ {x}. Conversely, alternative x is a Condorcet loser
(CL) if gyx > 0 for all y ∈ A \ {x}. Neither CWs nor CLs

2The Kendall-tau distance counts the number of pairwise
disagreements.
3In a related study, Brandt and Seedig [5] have found that
the number of dimensions does not seem to have a large
impact on the results as long as it is at least two.

necessarily exist, but whenever they do they are unique. A
voting rule f is called a Condorcet extension if f(R) = {x}
whenever x is the CW in R.

In the following paragraphs we briefly introduce the voting
rules considered in this paper.

Borda’s Rule Under Borda’s rule each alternative re-
ceives from 0 to |A| − 1 points from each voter (depending
on the position the alternative is ranked in). The alterna-
tives with highest accumulated score win.

MaxiMin The MaxiMin rule is only concerned with the
highest defeat of each alternative in a pairwise majority con-
test. It yields all alternatives as winners which have the
maximal value of miny∈A gxy.

Young’s Rule Young’s rule yields all alternatives that
can be made a CW by removing a minimal number of voters.

Dodgson’s Rule Dodgson’s rule selects all alternatives
that can be made a CW by a minimal number of pairwise
swaps of adjacent alternatives in the individual preference
relations.

Essential Set Consider the symmetric two-player zero-
sum game G given by the skew-symmetric matrix with en-
tries gxy for all pairs of alternatives x, y. The essential set
is the set of all alternatives that are played with positive
probability in some mixed Nash equilibrium of G.4

Except for Borda’s rule, all presented voting rules are in
fact Condorcet extensions. While Borda’s rule, MaxiMin,
and the essential set can be computed efficiently, Young’s
rule and Dodgson’s rule have been shown to be complete
for parallel access to NP. The essential set is one of the
few voting rules that do suffer from neither the CLP nor the
ACP, and is merely included as a reference. For more formal
definitions and computational properties of these rules, we
refer to Brandt et al. [9].

3.3 Voting Paradoxes
In this paper we focus on two voting paradoxes whose

occurrence can be determined given a voting rule f and a
preference profile R.

Let f be a voting rule. Formally, a (voting) paradox is
a characteristic function that maps a preference profile to 0
or 1. In the latter case, we say the paradox occurs for voting
rule f at profile R.

The Condorcet Loser Paradox (CLP) occurs when a vot-
ing rule selects the CL as a winner.

Definition 1. Given a voting rule f the Condorcet loser
paradox CLPf is defined as

CLPf (R) =

{
1 if f(R) contains a CL

0 otherwise.

The agenda contraction paradox (ACP) occurs when re-
ducing the set of alternatives, by eliminating unchosen al-
ternatives, influences the outcome of an election.

Definition 2. Given a voting rule f the agenda contrac-
tion paradox ACPf is a paradox defined as

ACPf (R) =

{
1 if f(R|B) 6= f(R) for some B ⊇ f(R)

0 otherwise.

4These mixed equilibria are also known as maximal lotteries
in probabilistic social choice.
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4. QUANTIFYING VOTING PARADOXES
In this section we present the three general approaches

for quantifying voting paradoxes: the analytical approach
via Ehrhart theory, the experimental approach via computer
simulations, and the empirical approach via real-world data.

4.1 Exact Analysis via Ehrhart Theory
Anonymous preference profiles only count the number of

voters for each of the m! possible rankings on m alternatives.
An anonymous preference profile can hence be viewed as an
integer point in a space of d := m! dimensions. Formally, the
set Sm,n of anonymous preference profiles on m alternatives
with n voters can be identified with the set of all integer
points z = (z1, . . . , zm!) ∈ Zm! which satisfy

zi ≥ 0 for all i ∈ {1, . . . ,m!}, and

m!∑
i=1

zi = n.

Under IAC each anonymous preference profile is assumed
to be equally likely to occur. Hence, in order to deter-
mine the probability of a paradox under IAC it is enough
to compute the number of points belonging to preference
profiles in which the paradox occurs and compare them to
the total number of points in Sm,n, which is known to be
|Sm,n| =

(
m!+n−1
m!−1

)
.5

In this framework, many paradoxes X can be described
with the help of linear constraints, i.e., the set of points
belonging to the event can be described with the help of
(in)equalities, a polytope. For variable n, this approach
then describes a dilated polytope Pn = nP := {n~x : ~x ∈ P}.
Hence, we know that the probability of a paradox Xn under
IAC is given by:

P(Xn) =
|nP ∩ Zd|
|Sm,n|

.

and we can determine the probability of (many) voting para-
doxes under IAC by evaluating the function L(P, n) :=
|nP∩Zd|, which describes the number of integer points inside
the dilation nP . This can be done with the help of Ehrhart
theory. Ehrhart [16] was the first to show that L(P, n) can
be described by special functions, called quasi- or Ehrhart-
polynomials. A function f : Z→ Q is a quasi-polynomial of
degree d and period q if there exists a list of q polynomials
fi : Z→ Q (0 ≤ i < q) of degree d such that f(n) = fi(n) if
n ≡ i mod q.

Quasi-polynomials can be determined with the help of
computer programs such as LattE (De Loera et al. [15])
or Normaliz (Bruns et al. [11]). Unfortunately, the com-
putation of our quasi-polynomials is computationally very
demanding, especially because the dimension of the poly-
topes grows super-exponentially in the number of alterna-
tives. This limits analytical results under IAC to rather
small numbers of alternatives. To the best of our knowl-
edge, Normaliz is the only program which is able to com-
pute polytopes corresponding to elections with up to four
alternatives. And even Normaliz is not always able to com-
pute the whole quasi-polynomial, but sometimes we had to

5For most preference models other than IAC this approach
does not work. While for specific combinations of (simple)
distributions and voting rules there are some highly tailor-
made computations in the literature (cf. Section 2), these
have to be redesigned for each individual setting.

Paradox Voting rule(s) Result

CLP
Condorcet extensions upper bound (∀n ∈ N)

MaxiMin probability (∀n ∈ N)
Tideman’s rule limit prob. (n→∞)

ACP MaxiMin limit prob. (n→∞)

Table 1: Theoretical results obtained via Ehrhart
theory (for four alternatives and under IAC)

resort to computing the leading coefficients only of the poly-
nomial, which fortunately suffices for determining the limit
probability of a paradox when the number of voters goes to
infinity.

An overview of our analytical findings obtained in this
way is provided in Table 1.

Finding a Quasi-polynomial for MaxiMin
As an example for the method just described, we consider
the CLPMaxiMin in four-alternative elections under IAC,
the probabilities of which can be computed from a quasi-
polynomial with degree 23 and a period of 5,040.6

In order to determine the polynomial, we first need to
describe the corresponding polytope with equalities and
inequalities. Recall the definition of MaxiMin from Sec-
tion 3.2:

fMaxiMin(R) := arg max
x∈A

min
y∈A

gxy.

For CLPMaxiMin(R) = 1 the CL of R has to have the lowest
highest defeat. Formally, there is x ∈ A such that for all
y ∈ A\{x},

gyx > 0, and (1)

max
z∈A\{x}

gzx ≤ max
z∈A\{y}

gzy. (2)

Now let A = {a, b, c, d} and assume x = d. We then have
that gad, gbd, gcd > 0, which implies maxz∈A\{d} gzd > 0.
Furthermore,

max
z∈A\{y}

gzy > 0 for all y ∈ {a, b, c},

from which it follows that either gab, gbc, gca > 0 or
gba, gcb, gac > 0. In both cases there is a majority cycle
between a, b, and c. Due to symmetry we can choose one
direction of the cycle arbitrarily and assume gab, gbc, gca > 0.
Then,

max
z∈A\{a}

gza = gca, max
z∈A\{b}

gzb = gab, and max
x∈A\{c}

gzc = gac.

Condition (1) is already represented in the form of linear
inequalities. In order to model condition (2) we determine
maxz∈A\{d} gzd and distinguish cases for the seven possible
outcomes. The inequalities for the case maxz∈A\{d} gzd =
{gad} are

gad − gbd > 0 and gad − gcd > 0.

6In theory, the analysis can be adapted to also cover more
complex rules (e.g., Dodgson’s and Young’s rule, which in-
volve solving an ILP). It is unclear, however, how one would
translate their definitions to linear inequalities.
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Condition (2) furthermore yields

gca − gad ≥ 0, gab − gad ≥ 0, and gbc − gad ≥ 0.

Each case belongs to a different polytope and the poly-
topes are pairwise distinct, so we can compute each quasi-
polynomial separately and later combine them to one. To
get the final polynomial we have to multiply by eight for the
four different possible choices of a CL and the two possible
directions of the majority cycle. This then enables us to
efficiently evaluate the exact probabilities for any number
of voters. The results are depicted in Figure 2. The lead-
ing coefficient of the quasi-polynomial can also be used to
determine the limit probability which is given by

P(CLPMaxiMin = 1 | m = 4, n→∞)

= 8 · 485052253637930099

6443662124777472000000
≈ 0.06%.

4.2 Experimental Analysis
As we will see, simulating elections with the help of com-

puters is a viable way of achieving very good approxima-
tions for the probabilities we are looking for. It even turns
out that the results of our simulations are almost indistin-
guishable from the theoretical result obtained via Ehrhart
theory (with the exception of the limit case, which cannot
be realized via simulations).

More specifically, the experimental approach works as fol-
lows: a profile source creates random preference profiles ac-
cording to a specific preference model. The profiles are then
used to compute the winner(s) according to a given voting
rule and to determine if the paradox occurs. Any such ex-
periment is carried out for each pair of n and m and repeated
frequently. In many cases in which we covered a wide range
of voters, we did not consider every possible value of n but,
more economically, only simulated the values: 1–30, 49–51,
99–101, 199–201, 499–501, 999–1,001.

In contrast to many other studies, we are concerned about
the statistical significance of our experimental results. Thus,
we also computed 99%-confidence intervals for each data
point we generated. To this end, we used the binofit func-
tion in Matlab which is based on the standard approach by
Clopper and Pearson [13]. It shows that, based on our sam-
pling rate of 105 and 106, respectively, the 99%-confidence
intervals are pleasantly small. Hence, even though they are
depicted in all of the figures throughout this paper, some-
times it can be difficult to recognize them.

4.3 Empirical Analysis
The most valuable quantification of voting paradoxes

would be their actual frequency in real-world elections. As
mentioned before, real-world election data is generally rela-
tively sparse, incomplete, and inaccurate. This makes em-
pirical research on this topic rather difficult. Otherwise, the
empirical approach strongly resembles the experimental ap-
proach.

For this paper we used two sources of empirical data.
First, we used the 314 profiles with strict order preferences
from the PrefLib library [25]. Second, we had access to the
54,650 preference profiles over four alternatives without a
CW which belong to the roughly 11 million four-alternative
elections which Mattei et al. [26] derived from the Netflix
Prize data [3]. Non-existence of Condorcet winners is a pre-
requisite for the paradoxes we study.

5. CONDORCET LOSER PARADOX
In this section we present our findings on the CLP. We con-

clude that—even though the CLP is possible in principle—it
is so unlikely that it cannot be used as a serious argument
against any of the Condorcet extensions we considered.

5.1 An Upper Bound
Before analyzing the CLP for concrete voting rules, we

discuss an upper bound valid for all Condorcet extensions.
For a Condorcet extension to choose the CL a profile obvi-
ously has to satisfy two conditions. First, there has to exist
a CL in the profile. Second, no CW may exist in the profile.
In the case of four-alternative elections—which is the first
interesting case—we can compute the quasi-polynomial via
Ehrhart theory and hence know the exact probabilities for
any number of voters. The derivation and presentation of
the quasi-polynomial, which has degree 23 and contains 24
polynomials, is omitted due to space constraints. The re-
sulting probabilities for up to 1 000 voters—and a compar-
ison with the results of an experimental analysis—can be
obtained from Figure 1. The value of the limit probability
is approximately 8%.

100 101 102 103
0%

10%

20%

30%

Number of voters

4 alternatives, IAC

Experimental (even)

Experimental (odd)

Analytical

Analytical (limit)

Figure 1: Probability of the event that a Condorcet
extension could choose a CL in four-alternative elec-
tions under IAC

Especially for small even numbers of voters, where the
probability is around 20%, the upper bound is too high to
discard the CLP for Condorcet extensions altogether, and
even the limit probability of 8% is relatively large. Also, for
an increasing number of alternatives this problem does not
vanish (for elections with 50 and 51 one voters and up to 100
alternatives the probabilities range between 5% and 25%).7

Note that differences between odd and even number of
voters were to be expected since even numbers allow for
majority ties, which have significant consequences for the
paradoxes; this effect decreases for larger electorates. In the

7These upper bounds turn out to be relatively indepen-
dent from the underlying preference distribution (among the
models we considered, cf. Section 5.3).

389



specific case under consideration, the upper bound is gener-
ally higher for an even number of voters because the much
higher likelihood of not having a CW more than counterbal-
ances the lower likelihood of having a CL.

5.2 Results under IAC
Despite the high upper bounds from the previous section,

the picture is quite clear for concrete Condorcet extensions:
even under IAC, the risk of the considered Condorcet exten-
sions selecting the CL is very low, as shown in Figure 2 and
Figure 3 for four-alternative elections. The highest proba-
bility was found for CLPMaxiMin with 2.2% for three vot-
ers (CLPYoung with about 0.9%). The limit probability of
CLPMaxiMin, with 0.06% is so low that for sufficiently large
electorates it would occur in only one out of 10,000 elec-
tions. The same seems to hold for the limit probability for
CLPYoung. The probability of CLPDodgson is even signifi-
cantly lower, with a maximum of about 0.01% in elections
with 9,999 voters. We could determine the limit probability
of 0.01% only for an approximation of Dodgson’s rule by
Tideman [33], which seems to be close to that for Dodgson’s
rule, based on our experimental data.

When increasing the number of alternatives the probabil-
ities drop even further. For elections with more than ten
alternatives they reach a negligibly small level of less than
0.005% for all considered rules and in no simulations with
twelve or more alternatives we could find any occurrence of
the paradox.

100 101 102 103
0%

0.5%

1%

1.5%

2%

2.5%

Number of voters

4 alternatives, IAC

MaxiMin (odd)

MaxiMin (even)

MaxiMin (analytical)

MaxiMin (limit)

Young (odd)

Young (even)

Figure 2: Comparison between CLP probabilities
for MaxiMin and Young’s rule under IAC in four-
alternative elections

5.3 Results under Other Preference Models
Figure 4, as one would expect, shows that under more

realistic assumptions the probability of the CLP decreases
further in four-alternative elections with 50/51 voters, with
the highest probability occurring under the unrealistic as-
sumption of IC and the lowest probability under what may
be the most realistic model in many settings, the spatial

100 101 102 103 104
0%

0.005%

0.01%

0.015%

Number of voters

4 alternatives, IAC

Dodgson (odd)

Dodgson (even)

Tideman (limit)

Figure 3: CLP probabilities for Dodgson’s rule un-
der IAC in four-alternative elections; the seemingly
large confidence intervals are due to the small scale
of the graph.

model. In our experiments, Dodgson’s rule never selected a
CL in the spatial model.

Similarly, we could not find any occurrence of the CLP
in real-world data, which may be considered the strongest
evidence that the CLP virtually never materializes in prac-
tice.8

0% 0.05% 0.1% 0.15% 0.2% 0.25%

Spatial

Mallows

Urn

IAC

IC

MaxiMin, 4 alternatives

50 voters
51 voters

Figure 4: CLP probabilities in four-alternative elec-
tions for varying preference models and MaxiMin

8We tested 314 preference profiles with strict orders from
the PrefLib library as well as the roughly 11 million four-
alternative elections which Mattei et al. [26] derived from
the Netflix Prize data. While about 54,000 of those elec-
tions were susceptible to the CLP, it never occurred under
the rules we considered in this paper. In contrast, under
plurality it already occurred in twelve out of the 314 Pref-
Lib-instances.
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6. AGENDA CONTRACTION PARADOX
Recall that the agenda contraction paradox (ACP) occurs

when a reduced set of alternatives (created by the unavail-
ability of losing alternatives) influences the outcome of an
election. For many cases, it may be considered a generaliza-
tion of the CLP as the following argument shows. Suppose
the CL x is uniquely selected by a voting rule which im-
plements majority rule on two-alternative choice sets. Then
restricting A to {x, y} for some alternative y 6= x yields the
new winner y (since gxy > 0).

As we will see, the ACP is much more of a practical prob-
lem than the CLP. The picture, however, is not black and
white. Whether or not it is a serious threat depends on the
voting rule, the underlying preference distribution, and on
the parity of the number of voters.

6.1 Varying Voting Rules
The ACP probability strongly varies for different voting

rules (see Figure 5). Borda’s rule generally exhibits the
worst behavior of the rules studied, with probabilities of up
to 56%, and with 34% for large electorates with 1, 000 voters.
In contrast, Copeland’s rule is quite robust to the ACP for
large electorates (with only about 8% occurrence probability
for 1, 000 voters).9

The reason for this gap between Borda’s and Copeland’s
rule appears to be two-fold: First, Condorcet extensions are
safe from this paradox as long as a CW exists; Borda’s rule,
by contrast, is not. Second, the discriminatory power of
voting rules (i.e., their ability to select small winning sets)
strongly supports the paradox. As soon as a single majority-
dominated alternative is selected, the ACP has to occur. For
large numbers of voters, this is in line with Copeland’s rule
being least discriminating among those evaluated. The es-
sential set is among the most discriminating known voting
rules immune to the ACP, but presumably less discriminat-
ing than Copeland’s rule.

The behavior of MaxiMin is almost identical to that of
Young’s and Dodgson’s rule. Confirming our approximate
“limit” results of 1, 000 voters, we were able to analytically
compute the limit probability for MaxiMin as 331

2048
≈ 16%.

This is in perfect congruence with the (rounded) values for
MaxiMin, Young’s rule, and Dodgson’s rule.

It should also be noted that with fewer than 100 voters,
the parity of the number of voters plays a major role. For
even numbers, significantly higher probabilities arise (which
is particularly true for Copeland’s rule, see above). At least
part of this can be explained by a reduced probability for
CWs in these cases.

For more alternatives (see the right-hand side of Figure 5),
the relative behavior remains vastly unchanged with proba-
bilities further increasing to values larger than 40% to 80%
(mostly since the likelihood of a CW decreases roughly at
the same rate).

6.2 Varying Preference Models
Figure 6 extends the analysis of the previous section by

additionally considering preference models beyond IAC. The
overall picture regarding the different rules remains the
same. For large electorates Copeland’s rule outperforms the
other rules, whereas Borda’s rule performs worst.

9For small even numbers of voters, Copeland’s rule also fre-
quently fails agenda contraction, which is also visible in Fig-
ure 6 and explains the seemingly high values in Table 2.

Regarding the different preference models, three classes
emerge from Figure 6.

First, for Mallows-φ we observe probabilities that are van-
ishing with increased numbers of voters. Under the spatial
model this is true as well, with the surprising exception of
Borda’s rule, for which the picture looks completely differ-
ent and the probability does not go below 20% in the spa-
tial model. Presumably, this can be explained by Borda’s
inability to select the CW in this setting, a hypothesis that
deserves further study, however. On the contrary, the other
rules appear to be benefitting from the fact that the exis-
tence of a CW becomes very likely under models with high
voter interdependence.

Second, as expected, the assumption of IC serves as an
upper bound for all other preference models. The results for
IAC are not much lower, fostering the impression that IAC
could also be an unrealistic upper bound.

Third, the urn model yields much lower values compared
to IAC and IC. The absolute numbers, however, are still
beyond acceptable levels (between 4% and 23% for 1,000
voters).

The findings in the empirical data corroborate our ex-
perimental findings. In PrefLib the ACP occurs 17 times
for Borda, three times for Copeland and exactly once for
MaxiMin as well as Young’s and Dodgson’s rule. In the
Netflix data set, where the number of voters is at least 350,
Copeland performs much better than the other Condorcet
extensions (4, 400 compared to 18, 470 occurrences for the
other Condorcet extensions). Borda’s rule virtually always
suffers from the ACP on this data set: there are 54, 620 in-
stances of ACPs already when considering profiles that do
not have a CW (there are 54, 650 of such).

7. CONCLUSION
We investigated the likelihood of the CLP and the ACP

using Ehrhart theory, computer simulations, and empirical
data. The CLP is often cited as a major flaw of some Con-
dorcet extensions such as Dodgson’s rule, Young’s rule, and
MaxiMin. For example, Fishburn regards Condorcet exten-
sions that suffer from the CLP (specifically referring to the
three rules mentioned above) as “ ‘dubious’ extensions of the
basic Condorcet criterion” ([18], p. 480).10 While this is in-
telligible from a theoretical point of view, our results have
shown that the CLP is of virtually no practical concern. The
ACP, on the other hand, frequently occurs under various dis-
tributional assumptions about the voters’ preferences. The
extent to which it is real threat, however, strongly depends
on the voting rule, the underlying distribution of preferences,
and, surprisingly, the parity of the number of voters. Our
main quantitative results for the worst case are summarized
in Table 2. Potential future work includes the analysis of
other voting paradoxes (such as monotonicity failures or the
no-show paradox) and other rules (such as Nanson’s rule or
Black’s rule).
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Paradox Condorcet loser paradox (CLP) Agenda contraction paradox (ACP)

Model IAC IC IAC IC

n {1, . . . , 1000} {50, 51} {50, 51} {1, . . . , 1000} {50, 51} {1, . . . , 1000}
m 4 {1, . . . , 10} 4 4 {1, . . . , 10} 4

Essential set 0% 0% 0% 0% 0% 0%
Borda 0% 0% 0% 56% 84% 59%

Copeland 0% 0% 0% 56% 63% 58%
Dodgson 0.01% 0.005% 0.005% 21% 59% 23%
Young 1% 0.15% 0.25% 21% 59% 23%

MaxiMin 2.2% 0.15% 0.25% 21% 59% 23%

Table 2: Rounded maximal CLP and ACP probabilities which occurred during our simulations
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ample to a conjecture of Schwartz. Social Choice and
Welfare, 40:739–743, 2013.

[8] F. Brandt, V. Conitzer, and U. Endriss. Computa-
tional social choice. In G. Weiß, editor, Multiagent
Systems, chapter 6, pages 213–283. MIT Press, 2nd
edition, 2013.

[9] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and
A. Procaccia, editors. Handbook of Computational
Social Choice. Cambridge University Press, 2016.
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Normaliz. Algorithms for rational cones and affine
monoids. Available at https://www.normaliz.uni-

osnabrueck.de.

[12] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet.
A short introduction to computational social choice.
In Proc. of 33rd Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM),
volume 4362 of LNCS, pages 51–69. Springer, 2007.

[13] C. J. Clopper and E. S. Pearson. The use of confi-
dence or fiducial limits illustrated in the case of the
binomial. Biometrika, 26(4):404–413, 1934.

[14] D. E. Critchlow, M. A. Fligner, and J. S. Verducci.
Probability models on rankings. Journal of Mathe-
matical Psychology, 35:294–318, 1991.

[15] J. A. De Loera, R. Hemmecke, J. Tauzer, and
R. Yoshida. Effective lattice point counting in rational
convex polytopes. Journal of Symbolic Computation,
38(4):1273–1302, 2004.

[16] E. Ehrhart. Sur les polyedres rationnels homothe-
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