
State of the Art Control of Atari Games
Using Shallow Reinforcement Learning

Yitao Liang†, Marlos C. Machado‡, Erik Talvitie†, and Michael Bowling‡
†Franklin & Marshall College

Lancaster, PA, USA
{yliang, erik.talvitie}@fandm.edu

‡University of Alberta
Edmonton, AB, Canada

{machado, mbowling}@ualberta.ca

ABSTRACT
The recently introduced Deep Q-Networks (DQN) algorithm
has gained attention as one of the first successful combina-
tions of deep neural networks and reinforcement learning. Its
promise was demonstrated in the Arcade Learning Environ-
ment (ALE), a challenging framework composed of dozens
of Atari 2600 games used to evaluate general competency
in AI. It achieved dramatically better results than earlier
approaches, showing that its ability to learn good represen-
tations is quite robust and general. This paper attempts to
understand the principles that underlie DQN’s impressive
performance and to better contextualize its success. We sys-
tematically evaluate the importance of key representational
biases encoded by DQN’s network by proposing simple linear
representations that make use of these concepts. Incorporat-
ing these characteristics, we obtain a computationally prac-
tical feature set that achieves competitive performance to
DQN in the ALE. Besides offering insight into the strengths
and weaknesses of DQN, we provide a generic representation
for the ALE, significantly reducing the burden of learning a
representation for each game. Moreover, we also provide a
simple, reproducible benchmark for the sake of comparison
to future work in the ALE.

Keywords
Reinforcement Learning, Function Approximation, DQN,
Representation Learning, Arcade Learning Environment

1. INTRODUCTION
In the reinforcement learning (RL) problem an agent au-

tonomously learns a behavior policy from experience in or-
der to maximize a provided reward signal. Most successful
RL approaches have relied upon the engineering of problem-
specific state representations, diminishing the agent as fully
autonomous and reducing its flexibility. The recent Deep
Q-Network (DQN) algorithm [20] aims to tackle this prob-
lem, presenting one of the first successful combinations of
RL and deep convolutional neural-networks (CNN) [13, 14],
which are proving to be a powerful approach to represen-
tation learning in many areas. DQN is based upon the
well-known Q-learning algorithm [31] and uses a CNN to

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

simultaneously learn a problem-specific representation and
estimate a value function.

Games have always been an important testbed for AI, fre-
quently being used to demonstrate major contributions to
the field [5, 6, 8, 23, 28]. DQN follows this tradition, demon-
strating its success by achieving human-level performance in
the majority of games within the Arcade Learning Environ-
ment (ALE) [2]. The ALE is a platform composed of dozens
of qualitatively diverse Atari 2600 games. As pictured in
Figure 1, the games in this suite include first-person per-
spective shooting games (e.g. Battle Zone), platforming
puzzle games (e.g. Montezuma’s Revenge), sports games
(e.g. Ice Hockey), and many other genres. Because of this
diversity, successful approaches in the ALE necessarily ex-
hibit a degree of robustness and generality. Further, because
it is based on problems designed by humans for humans, the
ALE inherently encodes some of the biases that allow hu-
mans to successfully navigate the world. This makes it a
potential stepping-stone to other, more complex decision-
making problems, especially those with visual input.

DQN’s success in the ALE rightfully attracted a great deal
of attention. For the first time an artificial agent achieved
performance comparable to a human player in this challeng-
ing domain, achieving by far the best results at the time
and demonstrating generality across many diverse problems.
It also demonstrated a successful large scale integration of
deep neural networks and RL, surely an important step to-
ward more flexible agents. That said, problematic aspects
of DQN’s evaluation make it difficult to fully interpret the
results. As will be discussed in more detail in Section 6, the
DQN experiments exploit non-standard game-specific prior
information and also report only one independent trial per
game, making it difficult to reproduce these results or to
make principled comparisons to other methods. Indepen-
dent re-evaluations have already reported different results
due to the variance in the single trial performance of DQN
(e.g. [12]). Furthermore, the comparisons that Mnih et al.
did present were to benchmark results using far less training
data. Without an adequate baseline for what is achievable
using simpler techniques, it is difficult to evaluate the cost-
benefit ratios of more complex methods like DQN.

In addition to these methodological concerns, the evalu-
ation of a complicated method such as DQN often leaves
open the question of which of its properties were most im-
portant to its success. While it is tempting to assume that
the neural network must be discovering insightful tailored
representations for each game, there is also a considerable
amount of domain knowledge embedded in the very struc-

485



Figure 1: Examples from the ALE (left to right:
Battle Zone, Montezuma’s Revenge, Ice Hockey).

ture of the network. We can identify three key structural
biases in DQN’s representation. First, CNNs provide a form
of spatial invariance not exploited in earlier work using lin-
ear function approximation. DQN also made use of multiple
frames of input allowing for the representation of short-range
non-Markovian value functions. Finally, small-sized convo-
lutions are quite well suited to detecting small patterns of
pixels that commonly represent objects in early video game
graphics. These biases were not fully explored in earlier
work in the ALE, so a natural question is whether non-linear
deep network representations are key to strong performance
in ALE or whether the general principles implicit in DQN’s
network architecture might be captured more simply.

The primary goal of this paper is to systematically in-
vestigate the sources of DQN’s success in the ALE. Obtain-
ing a deeper understanding of the core principles influencing
DQN’s performance and placing its impressive results in per-
spective should aid practitioners aiming to apply or extend
it (whether in the ALE or in other domains). It should also
reveal representational issues that are key to success in the
ALE itself, potentially inspiring new directions of research.

We perform our investigation by elaborating upon a sim-
ple linear representation that was one of DQN’s main com-
parison points, progressively incorporating the representa-
tional biases identified above and evaluating the impact of
each one. This process ultimately yields a fixed, generic fea-
ture representation able to obtain performance competitive
to DQN in the ALE, suggesting that the general form of
the representations learned by DQN may in many cases be
more important than the specific features it learns. Further,
this feature set offers a simple and computationally prac-
tical alternative to DQN as a platform for future research,
especially when the focus is not on representation learning.
Finally, we are able provide an alternative benchmark that
is more methodologically sound, easing reproducibility and
comparison to future work.

2. BACKGROUND
In this section we introduce the reinforcement learning

problem setting and describe existing results in the ALE.

2.1 Reinforcement Learning
In the reinforcement learning (RL) problem [26, 27] an

agent interacts with an unknown environment and attempts
to maximize a “reward” signal. The environment is com-
monly formalized as a Markov decision process (MDP) M
defined as a 5-tuple M = 〈S,A,R, P, γ〉. At time t the
agent is in the state st ∈ S where it takes an action at ∈ A
that leads to the next state st+1 ∈ S according to the tran-
sition probability kernel P , which encodes Pr(st+1|st, at).
The agent also observes a reward rt+1 ∼ R(st, at, st+1).
The agent’s goal is to learn the optimal policy, a conditional
distribution π(a|s) that maximizes the state value function

V π(s)
.
= Eπ

[∑∞
k=0 γ

krt+k+1|st = s
]

for all s ∈ S, where
γ ∈ [0, 1) is known as the discount factor.

As a critical step toward improving a given policy π, it
is common for reinforcement learning algorithms to learn a
state-action value function, denoted:

Qπ(s, a)
.
= Eπ

[
R(st, at, st+1) + γV π(st+1)

∣∣st=s, at=a
]
.

However, in large problems it may be infeasible to learn a
value for each state-action pair. To tackle this issue agents
often learn an approximate value function: Qπ(s, a; θ) ≈
Qπ(s, a). A common approach uses linear function approx-
imation (LFA) where Qπ(s, a; θ) = θ>φ(s, a), in which θ
denotes the vector of weights and φ(s, a) denotes a static
feature representation of the state s when taking action a.
However, this can also be done through non-linear function
approximation methods, including neural networks.

One of the most popular reinforcement learning algorithms
is Sarsa(λ) [22]. It consists of learning an approximate
action-value function while following a continually improv-
ing policy π. As the states are visited, and rewards are
observed, the action-value function is updated and conse-
quently the policy is improved since each update improves
the estimative of the agent’s expected return from state s,
taking action a, and then following policy π afterwards, i.e.
Qπ(s, a). The Sarsa(λ) update equations, when using func-
tion approximation, are:

δt = rt+1 + γQ(st+1, at+1; ~θt)−Q(st, at; ~θt)

~et = γλ~et−1 +∇Q(st, at; ~θt)

~θt+1 = ~θt + αδt~et,

where α denotes the step-size, the elements of ~et are known
as the eligibility traces, and δt is the temporal difference er-
ror. Theoretical results suggest that, as an on-policy method,
Sarsa(λ) may be more stable in the linear function approx-
imation case than off-policy methods such as Q-learning,
which are known to risk divergence [1, 10, 18]. These theo-
retical insights are confirmed in practice; Sarsa(λ) seems to
be far less likely to diverge in the ALE than Q-learning and
other off-policy methods [7].

2.2 Arcade Learning Environment
In the Arcade Learning Environment agents have access

only to sensory information (160 pixels wide by 210 pixels
high images) and aim to maximize the score of the game
being played using the 18 actions on a standard joystick
without game-specific prior information. Note that in most
games a single screen does not constitute Markovian state.
That said, Atari 2600 games are deterministic, so the entire
history of interaction fully determines the next screen. It
is most common for ALE agents to base their decisions on
only the most recent few screens.

2.2.1 Linear Value Function Approximation
Early work in the ALE focused on developing new generic

feature representations to be used with linear RL methods.
Along with introducing the ALE itself, Bellemare et al. [2]
presented an RL benchmark using four different feature sets
obtained from the game screen. Basic features tile the screen
and check if each of the available colors in the Atari 2600
are active in each tile. BASS features add pairwise combi-
nations of Basic features. DISCO features attempt to detect

486



and classify objects on the screen in order to infer their po-
sitions and velocities. LSH simply applies Locally Sensitive
Hashing [9] to raw Atari 2600 screens. Bellemare, Veness,
and Bowling proposed an extension to the Basic feature set
which involved identifying which parts of the screen were un-
der the agents’ direct control. This additional information
is known as contingency awareness [3].

These feature sets were, for some time, the standard rep-
resentations for Atari 2600 games, being directly used in
other work [7, 16, 17] or serving as the base for more elabo-
rate feature sets [4]. The feature representations presented
in this paper follow the spirit of this early work. We use Ba-
sic features (formally described below) as a starting point,
and attempt to capture pairwise spatial relationships be-
tween objects on the screen.

Basic Features: To obtain Basic features we first divide
the Atari 2600 screen into 16×14 tiles of size 10×15 pixels.
For every tile (c, r) and color k, where c ∈ {1, . . . , 16}, r ∈
{1, . . . , 14}, and k ∈ {1, . . . , 128}, we check whether color k
is present within the tile (c, r), generating the binary feature
φc,r,k. Intuitively, Basic features encode information like
“there is a red pixel within this region”. There are 16×14×
128 = 28,672 Basic features in total.

It can be computationally demanding to work directly
with 160 × 210 pixel screens with a 128 color palette. To
make the screen more sparse, following previous work (e.g.
[2, 3]) we subtract the background from the screen at each
frame before processing it. The background is precomputed
using 18,000 samples obtained from random trajectories.

2.2.2 Non-Linear Value Function Approximation
The use of non-linear function approximation in the ALE

is more recent. Veness et al. [30], for example, propose the
use of compression techniques as a policy evaluation ap-
proach in RL, evaluating their method in the ALE. Soon
after, the research landscape changed due to the success of
using deep learning techniques to approximate value func-
tions, demonstrated by the DQN algorithm [19, 20]. DQN
achieved 75% of a human player’s score in the majority of
games and this inspired much more work in the ALE using
deep learning (e.g. [11, 24, 25]).

DQN employs a deep convolutional neural network to rep-
resent the state-action value function Q. A deep convolu-
tional network uses weight sharing to make it practical to
learn a function of high-dimensional image input. Specif-
ically, when processing the image a small network focused
on a small region of the screen called a filter is applied at
multiple positions on the screen. Its output at each position
forms a new (smaller) image, which can then be processed
by another filter, and so on. Multiple layers of convolu-
tion allow the network to detect patterns and relationships
at progressively higher levels of abstraction. DQN’s net-
work uses three layers of convolution with multiple filters
at each layer. The final result of those convolutions is then
processed via a more standard fully connected feed-forward
network. The convolutional aspect of the network allows
the network to detect relationships like “A bullet is near an
alien here,” where “bullet” and “alien” can be position in-
variant concepts. The non-linear global layers allow it to
represent whole-screen concepts such as “A bullet is near an
alien somewhere.” This is the inspiration of our spatially
invariant features (Section 3). Further, Mnih et al. actually

provide the four most recent images as input to their net-
work, allowing it to detect relationships through time (such
as movement). This motivates our short-order-Markov fea-
tures (Section 4). Finally, note that Basic features are essen-
tially a simple convolution where the filters simply detect the
presence of each color in their range. DQN’s more sophisti-
cated filters motivate our improvement of object detection
for base features (Section 5).

3. SPATIAL INVARIANCE
Recall that Basic features detect the presence of each color

in various regions of the screen. As discussed above, this can
be seen as analogous to a single convolution with a crude fil-
ter. The BASS feature set, which was amongst the best per-
forming representations before DQN’s introduction encodes
pairwise relationships between Basic features, still anchored
at specific positions, so it is somewhat analogous to a second
convolutional layer. But in many games the absolute posi-
tions of objects are not as important as their relative posi-
tions to each other. To investigate the effect of ignoring ab-
solute position we impose a non-linearity over BASS (anal-
ogous to DQN’s fully connected layers), specifically taking
the max of BASS features over absolute position.

We call the resulting feature set Basic Pairwise Relative
Offsets in Space (B-PROS) because it captures pairwise rel-
ative distances between objects in a single screen. More
specifically, a B-PROS feature checks if there is a pair of
Basic features with colors k1, k2 ∈ {1, . . . , 128} separated by
an offset (i, j), where −13 ≤ i ≤ 13 and −15 ≤ j ≤ 15.
If so, φk1,k2,(i,j) is set to 1, meaning that a pixel of color
k1 is contained within some block (c, r) and a pixel of color
k2 is contained within the block (c + i, r + j). Intuitively,
B-PROS features encode information like “there is a yel-
low pixel three tiles below a red pixel”. The computational
complexity of generating B-PROS features is similar to that
of BASS, though ultimately fewer features are generated.
Note that, as described, B-PROS contains redundant fea-
tures (e.g. φ1,2,(4,0) and φ2,1,(−4,0)), but it is straightforward
to eliminate them. The complete feature set is composed of
the Basic features and the B-PROS features. After redun-
dancy is eliminated, the B-PROS feature set has 6,885,440
features in total (28,672 + ((31× 27× 1282− 128)/2 + 128)).

Note that there have been other attempts to represent
pairwise spatial relationships between objects, for instance
DISCO [2] and contingency awareness features [3]. How-
ever, these existing attempts are complicated to implement,
demanding to compute, and less effective (as will be seen),
most likely due to unreliable estimates of object positions.

3.1 Empirical Evaluation
Our first set of experiments compares B-PROS to the

previous state of the art in linear representations for the
Atari 2600 [2, 3] in order to evaluate the impact of the non-
linearity applied to BASS. For the sake of comparison we
follow Bellemare et al.’s methodology [2]. Specifically, in 24
independent trials the agent was trained for 5000 episodes.
After the learning phase we froze the weights and evalu-
ated the learned policy by recording its average performance
over 499 episodes. We report the average evaluation score
across the 24 trials. Following Bellemare et al., we defined
a maximum length for each episode: 18,000 frames, i.e. five
minutes of real-time play. Also, we used a frame-skipping
technique, in which the agent selects actions and updates its

487



Table 1: Comparison of linear representations. Bold
denotes the largest value between B-PROS and Best
Linear [2]. See text for more details.

Game Best Linear CAF B-PROS (std. dev.)

Asterix 987.3 1332.0 4078.7 (1016.0)

Beam Rider 929.4 1742.7 1528.7 (504.4)

Breakout 5.2 6.1 13.5 (11.0)

Enduro 129.1 159.4 240.5 (24.2)

Freeway 16.4 19.97 31.0 (0.7)

Pong -19.2 -17.4 4.9 (6.6)

Q*Bert 613.5 960.3 1099.8 (740.0)

Seaquest 664.8 722.89 1048.5 (321.2)

Space Invaders 250.1 267.93 384.7 (87.2)

value function every x frames, repeating the selected action
for the next x − 1 frames. This allows the agent to play
approximately x times faster. Following Bellemare et al. we
use x = 5 (DQN also uses a similar procedure).

We used Sarsa(λ) with replacing traces and an ε-greedy
policy. We performed a parameter sweep over nine games,
which we call “training” games. The reported results use a
decay rate γ = 0.99, an exploration rate ε = 0.01, a step-size
α = 0.5 and eligibility decay rate λ = 0.9.

Table 1 compares our agent to existing linear agents in
our set of training games (note that Breakout, Enduro,
Pong, and Q*Bert were not training games for the ear-
lier methods). “Best Linear” denotes the best performance
obtained among four different feature sets: Basic, BASS,
DISCO and LSH [2]. For reference, in the “CAF” column
we also include results obtained by contingency awareness
features [3], as reported by Mnih et al. [20]. Note, that these
results are not directly comparable because their agent was
given 10,000 episodes of training (rather than 5000).

B-PROS’ performance surpasses the original benchmarks
by a large margin and, except in one game, even surpasses
the performance of CAF, despite being far simpler and train-
ing with half as much data. Further, some of the improve-
ments represent qualitative breakthroughs. For instance,
in Pong, B-PROS allows the agent to win the game with
a score of 20-15 on average, while previous methods rarely
scored more than a few points. In Enduro, the earlier meth-
ods seem to be stymied by a sudden change in dynamics af-
ter approximately 120 points, while B-PROS is consistently
able to continue beyond that point.

When comparing these features sets for all 53 games B-
PROS performs better on average than all of Basic, BASS,
DISCO, and LSH in 77% (41/53) of the games. Even with
less training data, B-PROS performs better on average than
CAF in 77% (38/49) of the games in which CAF results were
reported1. The dramatic improvement yielded by B-PROS
clearly indicates that focusing on relative spatial relation-
ships rather than absolute positions is vital to success in the
ALE (and likely in other visual domains as well).

4. NON-MARKOVIAN FEATURES
B-PROS is capable of encoding relative distances between

objects but it fails to encode movement, which can be a very
important aspect of Atari games. For instance, the agent
may need to know whether the ball is moving toward or
away from the paddle in Pong. Previous linear representa-
tions similarly relied mainly on the most recent screen. In

1Due to space restrictions we reserve the full table of 53
games for the longer version of this paper [15].

contrast, Mnih et al. use the four most recent screens as in-
put, allowing DQN to represent short-order-Markov features
of the game screens. In this section we present an extension
to B-PROS that takes a similar approach, extracting infor-
mation from the two most recent screens.

Basic Pairwise Relative Offsets in Time (B-PROT) fea-
tures represent pairwise relative offsets between Basic fea-
tures obtained from the screen five frames in the past and
Basic features from the current screen (i.e. PROT fea-
tures). More specifically, for every pair of colors k1, k2 ∈
{1, . . . , 128} and every offset (i, j), where −13 ≤ i ≤ 13 and
−15 ≤ j ≤ 15, a binary B-PROT feature φk1,k2,(i,j) is 1 if a
pixel of color k1 is contained within some block (c+ i, r+ j)
on the screen five frames ago and a pixel of color k2 is con-
tained within the block (c, r) in the current screen.

The B-PROST feature set contains Basic, B-PROS, and
B-PROT features. Note that there are roughly twice as
many B-PROT features as B-PROS because there are no re-
dundant offsets. As such, B-PROST has a total of 20,598,848
sparse, binary features (6,885,440 + 31× 27× 1282).

4.1 Empirical Evaluation
B-PROS outperformed all the other linear architectures

in the previous experiment. Subsequent extensions will be
primarily compared to DQN (see Section 6). As such, in
these experiments, we adopted an evaluation protocol simi-
lar to Mnih et al.’s. Each agent was trained for 200,000,000
frames (equivalent to 40,000,000 decisions) over 24 indepen-
dent trials. The learned policy in each trial was evaluated
by recording its average performance in 499 episodes with
no learning. We report the average evaluation score over
the 24 trials. In an effort to make our results comparable to
DQN’s we also started each episode with a random number
of “no-op” actions and restricted the agent to the minimal
set of actions that have a unique effect in each game.

The first two columns of Table 2 present results using
B-PROS and B-PROST in the training games. B-PROST
outperforms B-PROS in all but one of the training games.
One particularly dramatic improvement occurs in Pong; B-
PROS wins with a score of 20-9, on average, while B-PROST
rarely allows the opponent to score at all. Another result
worth noting is in Enduro. The randomized initial condi-
tions seem to have significantly harmed the performance of
B-PROS in this game, but B-PROST seems to be robust
to this effect. When evaluated over all 49 games evaluated
by Mnih et al. the average score using B-PROST is higher
than that using B-PROS in 82% of the games (40/49)2. This
clearly indicates the critical importance of non-Markov fea-
tures to success in the ALE.

Before making a final comparison with DQN, we will make
one more improvement to our representation.

5. OBJECT DETECTION
Because Basic features encode the positions of individual

pixels on the screen, both B-PROS and B-PROST features
struggle to distinguish which pixels are part of the same
object. DQN’s network is capable of learning far more subtle
filters. In order to measure the impact of improved low-level
object detection, we consider a simple extension to Basic
that exploits the fact that Atari screens often contain several
contiguous regions of pixels of the same color. We call such

2The full results table is available in the longer paper [15].

488



Table 2: Comparison of relative offset features. Bold
indicates the best average of the three columns. The
† indicates significant differences between B-PROST
and Blob-PROST.

Game
B-PROS B-PROST Blob-PROST

Avg. (std. dev.) Avg. (std. dev.) Avg. (std. dev.)

Asterix 8194.3 (1802.9) 8928.8† (1714.5) 4400.8 (1201.3)

Beam Rider 1686.9 (255.2) 1808.9 (309.2) 1902.3 (423.9)

Breakout 7.1 (1.7) 15.0 (4.7) 46.7† (45.7)

Enduro 34.9 (71.5) 207.7 (23.1) 257.0† (79.8)

Freeway 23.8 (6.7) 29.1 (6.3) 31.5† (1.2)

Pong 10.9 (5.2) 18.9 (1.3) 20.1† (0.5)

Q*Bert 3647.8 (1273.3) 3608.7 (1129.0) 6946.8† (3036.4)

Seaquest 1366.1 (445.9) 1636.5 (519.5) 1664.2 (440.4)

Space Invaders 505.1 (130.4) 582.9 (139.0) 723.1† (101.5)

regions “blobs”. Rather than directly represent coarsened
positions of pixels, we first process the screen to find a list
of blobs. Blob features then represent coarsened positions of
blobs on the screen. Changing the “primitive” features from
Basic to Blob yields the Blob-PROST feature set.

Note that blobs are a simplification; in many Atari games,
as would be true in more natural images, objects consist of
multiple close but separate blobs. Grouping only strictly
contiguous pixels into each blob may generate redundant
blobs that all represent a single object. As a simple means
to address this we add a tolerance to the contiguity condi-
tion, i.e. we consider pixels that are in the same s× s pixel
square to be contiguous. This approach has an inherent
trade-off. On the one hand, with sufficiently large s we may
successfully represent each object with few blobs. Also, by
reducing the number of blobs, we substantially decrease the
number of primitive features, making Blob-PROS and Blob-
PROT features easier to compute. On the other hand, if s
is too high then multiple distinct objects may be grouped
together. In our experiments we set s to be 6 after an infor-
mal search using the set of training games. It is very likely
that with a more systematic selection of s one can obtain
better results than those reported here.

We define the position of a blob as the centroid of the
blob’s smallest bounding box. To generate the features, we
first generate Blob features that are analogous to Basic fea-
tures: we divide the screen into tiles of 4×7 pixels and then
for every color k and block (c, r), where c ∈ {1, . . . , 40}, r ∈
{1, . . . , 30} and k ∈ {1, . . . , 128}, the Blob feature φc,r,k is
1 if the block (c, r) contains the centroid for some blob of
color k. Note that we use a finer resolution than Basic. This
is feasible only because of the extreme sparsity of blobs on
the screen. The number of blobs in one frame ranged from 6
(Pong) to 412 (Battle Zone). This sparsity also makes the
background subtraction step unnecessary; the background
typically reduces to a handful of blobs itself.

The Blob-PROST feature set is then constructed from
these primitive features in the same manner as B-PROST.
There are 153,600 Blob features (40× 30× 128), 38,182,976
Blob-PROS features ((79 × 59 × 1282 − 128)/2 + 128), and
76,365,824 Blob-PROT features (79×59×1282). This yields
a total of 114,702,400 Blob-PROST features. Though the
number of possible features is very large, most would never
be generated due to the sparsity of blobs.

5.1 Empirical Evaluation
The last column of Table 2 presents results using Blob-

PROST in the training games. In all but one of the train-

ing games, Blob-PROST outperformed both B-PROS and
B-PROST on average3. In 6 of the 9, Blob-PROST’s av-
erage performance was statistically significantly better than
B-PROST (using Welch’s t-test with p < 0.05). Asterix is
a game in which Blob-PROST notably fails; perhaps blob
detection lumps together distinct objects in a harmful way.
Q*Bert is a notable success; the scores of B-PROS and
B-PROST indicate that they rarely complete the first level,
while Blob-PROST’s score indicates that it consistently clears
the first level. Out of the 49 games evaluated by Mnih et al.,
Blob-PROST’s average performance was higher than that of
both B-PROS and B-PROST in 59% (29/49) of the games.
Its performance was statistically significantly higher than
that of B-PROST in 47% (23/49) of the games, showing the
clear contribution of even simple improvements in object de-
tection. Though object detection itself is not a feature, it
make all features based upon it carry more meaningful infor-
mation that helps our agents better “interpret” the screen.

6. COMPARISON WITH DQN
The next set of experiments compare Blob-PROST to

DQN, showing that the three enhancements investigated
above largely explain the performance gap between DQN
and earlier LFA approaches. In performing this compari-
son, we necessarily confront problematic aspects of the orig-
inal DQN evaluation (some of which we adopt for compari-
son’s sake). In Section 7 we present a more methodologically
sound ALE benchmark for comparison to future work.

6.1 DQN Evaluation Methodology
In each game, Mnih et al. trained a DQN agent once

for 200,000,000 frames. Rather than evaluating the learned
policy after the whole learning phase completed (as in ear-
lier work), they evaluated their agent’s performance every
4,000,000 frames and selected the best performing weights.
They reported the average and standard deviation of the
scores of this best learned policy in 30 evaluation episodes.

Mnih et al. also restricted their agent to the minimal set of
actions that have a unique effect in each game, game-specific
prior information not exploited by earlier work in the ALE.
Since in most games the minimal action set contains fewer
actions than the full action set, agents with access to the
minimal set may benefit from a faster effective learning rate
(this is discussed further in Section 7).

To avoid overfitting to the Atari’s determinism, Mnih et
al. randomized the initial state of each episode by taking a
random number of “no-op” actions. The number of “no-ops”
was uniformly randomly selected from {1, . . . , 30}.

Mnih et al. also modified when episodes ended. In many
Atari games the player has a number of “lives” and the game
ends when they are exhausted. DQN employed the same
episode termination criteria as Bellemare et al. [2], i.e. the
end of the game or expiration of the 5 minute time limit, but
during training also terminated episodes when the agent lost
a life (another form of game-specific prior information).We
have not specifically evaluated the impact of this mechanism,
but one might speculate that in games that have “lives” (e.g.
Breakout, Space Invaders) this modification could more
easily generate agents with an “avoid death” policy.

3The implementation of the three feature sets we introduced,
as well as the code used in our experiments is available at
https://github.com/mcmachado/b-pro.

489



DQN
Blob-PROST

Figure 2: Learning curves for Blob-PROST on the
game Up ’n Down, smoothed over 500 episodes.

The DQN experimental methodology possesses three main
problematic flaws. First, one cannot make statistical com-
parisons from a single trial. While Mnih et al. report a stan-
dard deviation, this only represents the amount of variation
observed when executing the one chosen policy, and not vari-
ation observed over different independent executions of the
inherently stochastic algorithm. DQN’s consistently high
performance across games suggests it does indeed regularly
perform well, but the reported performance numbers on any
particular game may not be representative of their expected
performance. Second, selecting the best performing param-
eterization over the whole learning period is a significant
deviation from typical RL methodology. Such a choice may
be masking instability issues where learning performance is
initially strong but later goes awry. This effect can occur
even using comparatively stable linear function approxima-
tors. For example, Figure 2 shows 24 independent learning
trials from the game Up ’n Down using our linear Blob-
PROST agent. Many learning trials in this game exhibit an
agent steadily improving its performance before a sudden
plummet from which it does not recover. The reported per-
formance of DQN and Blob-PROST is also depicted, show-
ing the impact of such instability: most trials perform much
better than the reported average at some point. We con-
tend that general competency should include consistent and
stable improvement over time, best measured by an agent’s
performance at the end of training. Third, using designer-
provided game-specific prior knowledge in the form of the
minimal action set and termination on “death” is counter to
the goal of evaluating general competency.

Some of these concerns have been addressed in emerging
follow-up work to DQN [21], which uses the final network
weights for evaluation and reports the average score over
five independent trials.

6.2 Comparing Blob-PROST and DQN
As discussed in Section 4, for comparison’s sake, we adopted

a similar methodology. We did use the minimal action set,
and did add random “no-ops” to the beginning of episodes,
but we opted not to utilize the life counter.

6.2.1 Computational Cost
We found that Blob-PROST is far more computationally

practical than DQN. We compared the algorithms’ resource
needs on 3.2GHz Intel Core i7-4790S CPUs. We ran them

for 24 hours (to allow resource usage to stabilize), then mea-
sured their runtime and memory use.

The computational cost of our implementation of Blob-
PROST can vary from game to game. The runtime of our
implementation ranged from 56 decisions per second (Alien)
to 300 decisions per second (Star Gunner), that is 280-
1500 frames per second (many times real time speed). The
memory utilization of our implementation ranged from 50MB
(Pong) to 9GB (Battle Zone). Note that Battle Zone
was an outlier; the next most memory intensive game (Star
Gunner) used only 3.7GB of memory. Furthermore, the
memory utilization of Blob-PROST can likely be effectively
controlled by simplifying the color palette or through the
use of feature hashing (e.g. [4]).

In contrast, we found DQN’s computational cost to be
quite consistent across games, running at a speed of ap-
proximately 5 decisions per second (i.e. 20 frames per sec-
ond, 3 times slower than real time), and requiring approx-
imately 9.8GB of memory. DQN already uses a reduced
color palette and is not immediately amenable to feature
hashing to control memory usage. On the other hand, it is
amenable to GPU acceleration to improve runtime. Mnih
et al. do not report DQN’s runtime but in recent follow-up
work the GPU accelerated speed has been reported to be ap-
proximately 330 frames per second [29], still slower than the
Blob-PROST agent in most games. Further note that ob-
taining enough GPUs to support multiple independent trials
in all the games (necessary for statistical comparisons) is, in
itself, a prohibitive cost. Emerging work [21] shows that a
related approach can be accelerated via CPU parallelism.

6.2.2 ALE Performance
Because only one trial of DQN was reported in each game,

and because of the prohibitively high computational cost of
independently re-evaluating DQN, a principled comparison
between our method and DQN is essentially impossible. In-
stead, we used a number of ad hoc measures aimed at form-
ing an intuitive understanding of the relative capabilities of
the two algorithms, based on available evidence.

First, for each game we record how many trials of Blob-
PROST obtained evaluation scores greater than DQN’s sin-
gle trial. If we were to compare an algorithm to itself in
this way, we would expect roughly 50% of the trials to have
greater performance. In Table 3 (available in the Appendix),
the column marked “% trials > DQN” reports the results.
The average percentage of trials better than DQN, across
all games, was 41%. That is, if you select a game uniformly
randomly and run Blob-PROST, there is an estimated 41%
chance that it will surpass DQN’s reported score.

Second, in each game we compared Blob-PROST’s middle
trial (12th best) to the single reported DQN trial. If Blob-
PROST’s evaluation score compares favorably to DQN in
this trial then this suggests that scores like DQN’s are typ-
ical for Blob-PROST. Again, if this method were used to
compare an algorithm to itself, one would expect the mid-
dle trial to be better in roughly half of the games. In Ta-
ble 3 the column marked “Middle trial” reports the results.
Blob-PROST’s middle trial evaluation score was better than
DQN’s in 43% (21/49) of the games. In 3 of the games in
which it performed worse, Blob-PROST’s score was not stas-
tically significantly different than DQN’s. So in 49% of the
games Blob-PROST’s middle trial was either not different
from or better than DQN’s single reported trial.

490



Third, in each game we compared Blob-PROST’s best
trial to the single DQN trial. Since it is possible that some
of DQN’s trials are high-performing outliers, this is intended
to give a sense of the level of performance Blob-PROST
is capable of reaching, regardless of whether it can do so
consistently. In 65% (32/49) of the games, Blob-PROST’s
best trial’s performance exceeded that of the DQN trial.
Again, in three games in which Blob-PROST did worse, the
difference was not statistically significant. So in 71% of the
games Blob-PROST’s best trial was either not different from
or better than DQN’s single reported trial.

Finally, DQN’s main result was achieving at least 75% of a
human’s performance in over half of the games (29/49). The
best trial of Blob-PROST crossed this threshold in 34/49
games. The middle trial did so in only 20/49 games.

The Blob-PROST representation was generated using sim-
ple and natural enhancements to BASS (one of DQN’s main
comparison points) aimed at incorporating similar structural
biases to those encoded by DQN’s designer-provided net-
work architecture. All told, these results seem to indicate
that this fixed representation is of comparable quality to
DQN’s learned representation across many games.

7. ALE BENCHMARK
As discussed above, besides better understanding the core

issues underlying DQN’s success in the ALE, it is important
to present a reproducible benchmark without the problem-
atic flaws discussed in Section 6 (i.e. one that reports more
than one trial, evaluates the final set of weights, and eschews
game-specific prior knowledge). Moreover, establishing this
benchmark is important for the ALE’s continued use as an
evaluation platform. The principled evaluation of compli-
cated approaches depends upon the existence of a sound
baseline for what can be achieved with simple approaches.

To this end we also present the performance of Blob-
PROST using the full action set. Our agents’ average per-
formance after 24 trials using the full action set is reported
in the first column of Table 3 in the Appendix. We rec-
ommend that future comparisons to Blob-PROST use these
results. Surprisingly, we found that when using the full ac-
tion set Blob-PROST performed slightly better in compari-
son to DQN using the measures described above than when
using the minimal action set. It is not entirely clear why this
would be; one possible explanation is that the presence of re-
dundant actions may have a positive impact on exploration
in some games.

8. CONCLUSIONS AND FUTURE WORK
While it is difficult to draw firm conclusions, the results

indicate the Blob-PROST’s performance in the ALE is com-
petitive to DQN’s, albeit likely slightly worse overall. Most
importantly, these results indicate we may have been able
to capture some of the key features of DQN in a practical,
fixed linear representation. We saw progressive and dra-
matic improvements by respectively incorporating relative
distances between objects, non-Markov features, and more
sophisticated object detection. This illuminates some im-
portant representational issues that likely underly DQN’s
success. It also suggests that the general properties of the
representations learned by DQN may be more important to
its success in ALE than the specific features it learns in each
game. This deeper understanding of the specific strengths

of DQN should aid practitioners in determining when its
benefits are likely to outweigh its costs.

It is important to note that we do not intend to dimin-
ish the importance of DQN as a seemingly stable combina-
tion of deep neural networks and RL. This is a promising
and exciting research direction with potential applications
in many domains. That said, taking into account the fact
that DQN’s performance may be inflated to an unknown
degree as a result of evaluating the best performing set of
weights, the fact of DQN’s extreme computational cost, and
the methodological issues underlying the reported DQN re-
sults, we conclude that Blob-PROST is a strong alternative
candidate to DQN both as an ALE performance benchmark
and as a platform on which to build future ALE agents when
representation learning is not the topic being studied. Our
results also suggest in general that fixed representations in-
spired by the principles underlying convolutional networks
may yield competitive, lighter-weight alternatives.

As future work, it may be interesting to investigate the
remaining discrepancies between our results and DQN’s. In
some games like Gravitar, Frostbite and Krull Blob-
PROST’s performance was several times higher than DQN’s,
while the opposite was true in games such as Star Gunner,
Breakout and Atlantis. In general, DQN seems to ex-
cel in shooting games (a large part of the games supported
by the ALE), maybe because it is able to easily encode ob-
ject velocities and to predict objects’ future positions. DQN
also excels on games that require a more holistic view of the
whole screen (e.g. Breakout, Space Invaders), some-
thing pairwise features struggle with. On the other hand,
some of the games in which Blob-PROST surpasses DQN
are games where it is fairly easy to die, maybe because
DQN interrupts the learning process after the agent loses a
life. Other games Blob-PROST succeeds in are games where
the return is very sparse (e.g. Tennis, Montezuma’s Re-
venge). These games may generate very small gradients for
the network, making it harder for an algorithm to learn both
the representation and a good policy. Alternatively DQN’s
process of sampling from the experience memory may not
be effective to draw the “interesting” samples.

These conjectures suggest directions for future work. Adap-
tive representation methods may potentially benefit from
these insights by building in stronger bias toward the types
of features we have investigated here. This would allow them
to quickly perform well, and then focus energy on learn-
ing exceptions to the rule. In the realm of linear methods,
these results suggest that there may still be simple, generic
enhancements that yield dramatic improvements. More so-
phisticated object detection may be beneficial, as might fea-
tures that encode more holistic views of the screen.

Acknowledgements
This research was supported by Alberta Innovates Technol-
ogy Futures and the Alberta Innovates Centre for Machine
Learning. Computing resources were provided by Compute
Canada through CalculQuébec.

APPENDIX
The following table reports the data used to compare Blob-
PROST to DQN’s reported results (see Section 6) as well as
our final ALE benchmark (see Section 7). A longer version
of this paper presents full tables for all experiments [15].

491



Table 3: The first column presents the average performance of Blob-PROST using the full action set for
comparison to future work (see Section 7). The standard deviation reported represents the variability over
the 24 independent learning trials. The rest of the columns present our comparison between Blob-PROST
and DQN (see Section 6 for details). In these results the Blob-PROST agent uses the minimal action set, for
the sake of comparison. The standard deviation reported for the best trial as well as for the median trial is
the standard deviation while evaluating for 499 episodes. We use bold face to denote values that are higher
than DQN’s and † to denote Blob-PROST averages that are statistically significantly different than DQN’s
average. To do the comparison for each game we used Welch’s t-test (p<0.025, which accounts for the usage
of DQN results in two tests, for an overall significance level of 0.05).

Game Avg. (std. dev.) – Full Best trial (std. dev.) Middle trial (std. dev.)
% trials

DQN Human Random
> DQN

Asterix 3996.6 (743.9) 6921.5 (4501.2) 4472.9† (2514.8) 8.3 6012.0 (1744.0) 8503.0 210.0

Beam Rider 2367.3 (815.0) 2965.5† (1376.1) 1807.6† (657.0) 0.0 6846.0 (1619.0) 5775.0 363.9

Breakout 52.9 (38.0) 190.3† (179.7) 33.2† (21.3) 0.0 401.2 (26.9) 31.8 1.7

Enduro 296.7 (7.8) 299.1 (26.9) 279.2† (28.2) 0.0 301.8 (24.6) 309.6 0.0

Freeway 32.3 (0.5) 32.6† (1.0) 31.7† (1.0) 95.8 30.3 (0.7) 29.6 0.0

Pong 20.2 (0.4) 20.5† (0.8) 20.2† (1.4) 95.8 18.9 (1.3) 9.3 -20.7

Q*Bert 8072.4 (2210.5) 14449.4† (4111.7) 5881.4† (1069.0) 12.5 10596.0 (3294.0) 13455.0 163.9

Seaquest 1664.2 (440.4) 2278.0† (294.1) 1845.1† (469.8) 0.0 5286.0 (1310.0) 20182.0 68.4

Space Invaders 844.8 (144.9) 889.8† (374.5) 712.9† (250.3) 0.0 1976.0 (893.0) 1652.0 148.0

Alien 4154.8 (532.5) 4886.6† (1151.9) 4219.1† (635.4) 95.8 3069.0 (1093.0) 6875.0 227.8

Amidar 408.4 (177.5) 825.4 (225.3) 522.3 (153.1) 12.5 739.5 (3024.0) 1676.0 5.8

Assault 1107.9 (207.7) 1829.3† (702.9) 1380.8† (449.9) 0.0 3359.0 (775.0) 1496.0 224.4

Asteroids 1759.5 (182.1) 2229.9† (937.0) 1635.1 (617.9) 50.0 1629.0 (542.0) 13157.0 719.1

Atlantis 37428.5 (11599.7) 42937.7† (13763.1) 19983.2† (5830.4) 0.0 85641.0 (17600.0) 29028.0 12850.0

Bank Heist 463.4 (93.6) 793.6† (102.9) 455.1 (100.9) 62.5 429.7 (650.0) 734.4 14.2

Battle Zone 26222.8 (4070.0) 37850.0† (7445.0) 25836.0 (6616.3) 41.7 26300.0 (7725.0) 37800.0 2360.0

Bowling 65.9 (14.2) 91.1† (13.6) 62.0 (2.5) 91.7 42.4 (88.0) 154.8 23.1

Boxing 89.4 (16.5) 98.3† (3.3) 95.8† (5.5) 87.5 71.8 (8.4) 4.3 0.1

Carnival 4322.0 (3705.0) - - - - - - - - -

Centipede 3903.3 (6838.8) 21137.0† (6722.8) 426.7† (313.8) 20.8 8309.0 (5237.0) 11963.0 2091.0

Chopper Command 3006.6 (782.0) 4898.9† (2511.2) 2998.0† (1197.7) 0.0 6687.0 (2916.0) 9882.0 811.0

Crazy Climber 73241.5 (10467.9) 81016.0† (26529.2) 59848.9† (27960.7) 0.0 114103.0 (22797.0) 35411.0 10781.0

Demon Attack 1441.8 (184.8) 2166.0† (1327.5) 1774.2† (979.8) 0.0 9711.0 (2406.0) 3401.0 152.1

Double Dunk -6.4 (0.9) -4.1† (2.3) -6.2† (2.8) 100.0 -18.1 (2.6) -15.5 -18.6

Fishing Derby -58.8 (12.0) -28.7† (19.0) -57.4† (18.3) 0.0 -0.8 (19.0) 5.5 -91.7

Frostbite 3389.7 (743.6) 4534.0† (1496.8) 3557.5† (864.3) 100.0 328.3 (250.5) 4335.0 65.2

Gopher 6823.4 (1022.5) 7451.1† (3146.1) 5006.9† (3118.9) 0.0 8520.0 (32.8) 2321.0 257.6

Gravitar 1231.8 (423.4) 1709.7† (669.7) 1390.6† (752.9) 91.7 306.7 (223.9) 2672.0 173.0

H.E.R.O. 13690.3 (4291.2) 20273.1† (1155.1) 13642.1† (48.4) 12.5 19950.0 (158.0) 25673.0 1027.0

Ice Hockey 14.5 (3.4) 22.8† (6.5) 14.5† (5.5) 100.0 -1.6 (2.5) 0.9 -11.2

James Bond 636.3 (192.1) 1030.5† (947.1) 587.8 (99.5) 50.0 576.7 (175.5) 406.7 29.0

Kangaroo 3800.3 (2211.0) 9492.8† (2918.2) 3839.1† (1601.1) 8.3 6740.0 (2959.0) 3035.0 52.0

Krull 8333.9 (5599.5) 33263.4† (15403.3) 7463.9† (1719.7) 95.8 3805.0 (1033.0) 2395.0 1598.0

Kung-Fu Master 33868.5 (6247.5) 51007.6† (9131.9) 33232.1† (7904.5) 91.7 23270.0 (5955.0) 22736.0 258.5

Montezuma’s Revenge 778.1 (789.8) 2508.4† (27.8) 400.0† (0.0) 100.0 0.0 (0.0) 4367.0 0.0

Ms. Pac-Man 4625.6 (774.3) 5917.9† (1984.0) 4667.4† (2126.0) 100.0 2311.0 (525.0) 15693.0 307.3

Name This Game 6580.1 (1773.0) 7787.0† (744.7) 6387.1† (1046.7) 20.8 7257.0 (547.0) 4076.0 2292.0

Pooyan 2228.1 (274.5) - - - - - - - - -

Private Eye 33.0 (47.6) 100.3 (4.0) 0.0 (0.0) 0.0 1788.0 (5473.0) 69571.0 24.9

River Raid 10629.1 (2110.5) 14583.3† (3078.3) 9540.4† (1053.8) 91.7 8316.0 (1049.0) 13513.0 1339.0

Road Runner 24558.3 (12369.2) 41828.0† (9408.1) 28848.5† (6857.4) 75.0 18257.0 (4268.0) 7845.0 11.5

Robotank 28.3 (2.7) 34.4† (7.7) 28.5† (8.0) 0.0 51.6 (4.7) 11.9 2.2

Skiing -29842.6 (19.8) - - - - - - - - -

Star Gunner 1227.7 (165.1) 1651.6† (435.4) 1180.0† (85.2) 0.0 57997.0 (3152.0) 10250.0 664.0

Tennis 0.0 (0.0) 0.0† (0.2) 0.0† (0.2) 100.0 -2.5 (1.9) -8.9 -23.8

Time Pilot 3972.0 (878.3) 5429.5 (1659.7) 4069.3† (647.7) 0.0 5947.0 (1600.0) 5925.0 3568.0

Tutankham 81.4 (50.5) 217.7† (33.9) 41.7† (4.2) 8.3 186.7 (41.9) 167.7 11.4

Up and Down 19533.0 (18733.6) 41257.8† (12061.8) 3716.7† (1050.8) 45.8 8456.0 (3162.0) 9082.0 533.4

Venture 244.5 (490.4) 1397.0† (294.4) 0.0† (0.0) 20.8 380.0 (238.6) 1188.0 0.0

Video Pinball 9783.9 (3043.9) 21313.0† (14916.4) 9480.7† (6563.1) 0.0 42684.0 (16287.0) 17298.0 16257.0

Wizard of Wor 2733.6 (1259.0) 5681.2† (4573.2) 3442.9 (2582.0) 50.0 3393.0 (2019.0) 4757.0 563.5

Zaxxon 8204.4 (2845.3) 11721.8† (4009.7) 9280.0† (2251.4) 87.5 4977.0 (1235.0) 9173.0 32.5

Times > DQN N/A 32/49 21/49
Times statist. ≥ DQN N/A 35/49 24/49

492



REFERENCES
[1] L. C. Baird III. Residual Algorithms: Reinforcement

Learning with Function Approximation. In
Proceedings of the International Conference on
Machine Learning (ICML), pages 30–37, 1995.

[2] M. G. Bellemare, Y. Naddaf, J. Veness, and
M. Bowling. The Arcade Learning Environment: An
Evaluation Platform for General Agents. Journal of
Artificial Intelligence Research, 47:253–279, 06 2013.

[3] M. G. Bellemare, J. Veness, and M. Bowling.
Investigating Contingency Awareness using Atari 2600
Games. In Proceedings of the Twenty-Sixth Conference
on Artificial Intelligence (AAAI), pages 864–871, 2012.

[4] M. G. Bellemare, J. Veness, and M. Bowling.
Sketch-Based Linear Value Function Approximation.
In Proceedings of the Advances in Neural Information
Processing Systems (NIPS), pages 2222–2230, 2012.

[5] M. Bowling, N. Burch, M. Johanson, and
O. Tammelin. Heads-up Limit Hold’em Poker is
Solved. Science, 347(6218):145–149, January 2015.

[6] M. Campbell, A. J. H. Jr., and F.-H. Hsu. Deep Blue.

Artificial Intelligence, 134(1âĂŞ2):57 – 83, 2002.

[7] A. Defazio and T. Graepel. A Comparison of Learning
Algorithms on the Arcade Learning Environment.
CoRR, abs/1410.8620, 2014.

[8] D. A. Ferrucci, E. W. Brown, J. Chu-Carroll, J. Fan,
D. Gondek, A. Kalyanpur, A. Lally, J. W. Murdock,
E. Nyberg, J. M. Prager, N. Schlaefer, and C. A.
Welty. Building Watson: An Overview of the DeepQA
Project. AI Magazine, 31(3):59–79, 2010.

[9] A. Gionis, P. Indyk, and R. Motwani. Similarity
Search in High Dimensions via Hashing. In
Proceedings of International Conference on Very Large
Data Bases (VLDB), pages 518–529, 1999.

[10] G. J. Gordon. Reinforcement Learning with Function
Approximation Converges to a Region. In Proceedings
of the Advances in Neural Information Processing
Systems (NIPS), pages 1040–1046, 2000.

[11] X. Guo, S. P. Singh, H. Lee, R. L. Lewis, and
X. Wang. Deep Learning for Real-Time Atari Game
Play Using Offline Monte-Carlo Tree Search Planning.
In Proceedings of the Advances in Neural Information
Processing Systems (NIPS), pages 3338–3346, 2014.

[12] M. J. Hausknecht and P. Stone. Deep Recurrent
Q-Learning for Partially Observable MDPs. CoRR,
abs/1507.06527, 2015.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
ImageNet Classification with Deep Convolutional
Neural Networks. In Proceedings of the Advances in
Neural Information Processing Systems (NIPS), pages
1106–1114, 2012.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-Based Learning Applied to Document
Recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[15] Y. Liang, M. C. Machado, E. Talvitie, and M. H.
Bowling. State of the Art Control of Atari Games
Using Shallow Reinforcement Learning. CoRR,
abs/1512.01563, 2015.

[16] N. Lipovetzky, M. Ramirez, and H. Geffner. Classical
Planning with Simulators: Results on the Atari Video

Games. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), 2015.

[17] M. C. Machado, S. Srinivasan, and M. Bowling.
Domain-Independent Optimistic Initialization for
Reinforcement Learning. In AAAI Workshop on
Learning for General Competency in Video Games,
2015.

[18] F. S. Melo, S. P. Meyn, and M. I. Ribeiro. An
Analysis of Reinforcement Learning with Function
Approximation. In Proceedings of the International
Conference on Machine Learning (ICML), pages
664–671, 2008.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari With Deep Reinforcement Learning. In
NIPS Deep Learning Workshop, 2013.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level
Control through Deep Reinforcement Learning.
Nature, 518(7540):529–533, 02 2015.

[21] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P.
Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu.
Asynchronous Methods for Deep Reinforcement
Learning. CoRR, abs/1602.01783, 2016.

[22] G. A. Rummery and M. Niranjan. On-line Q-Learning
using Connectionist Systems. CUED/F-INFENG/TR
166, Cambridge University Engineering Dept.,
September 1994.

[23] J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto,
M. Müller, R. Lake, P. Lu, and S. Sutphen. Checkers
is Solved. Science, 317(5844):1518–1522, 2007.

[24] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and
P. Moritz. Trust Region Policy Optimization. In
Proceedings of the International Conference on
Machine Learning (ICML), pages 1889–1897, 2015.

[25] N. Sprague. Parameter Selection for the Deep
Q-learning Algorithm ((Extended Abstract)). In
Proceedings of the Multidisciplinary Conference on
Reinforcement Learning and Decision Making
(RLDM), 2015.

[26] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[27] C. Szepesvári. Algorithms for Reinforcement Learning.
Synthesis lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool, 2010.

[28] G. Tesauro. Temporal Difference Learning and
TD-Gammon. Communications of the ACM,
38(3):58–68, Mar. 1995.

[29] H. van Hasselt, A. Guez, and D. Silver. Deep
Reinforcement Learning with Double Q-learning.
CoRR, abs/1509.06461, 2015.

[30] J. Veness, M. G. Bellemare, M. Hutter, A. Chua, and
G. Desjardins. Compress and Control. In Proceedings
of the Conference on Artificial Intelligence (AAAI),
2015.

[31] C. J. C. H. Watkins and P. Dayan. Technical Note:
Q-Learning. Machine Learning, 8(3-4), May 1992.

493




