
Complexity and Algorithms of K-implementation

Yuan Deng
Dept. of Computer Science

Duke University
ericdy@cs.duke.edu

Pingzhong Tang
Institute of interdisciplinary

information sciences
Tsinghua University, China

kenshinping@gmail.com

Shuran Zheng
Institute of interdisciplinary

information sciences
Tsinghua University, China

sherry.zhengshuran@gmail.com

ABSTRACT
This paper settles the complexity of K-implementation, a
ten-year open problem in AI. The problem is for a designer to
modify an existing normal-form game, in a cost-optimal way,
so as to ensure the solutions of the modified game fall into
a given set of outcomes. We first prove that the problem is
NP-complete for general games with respect to dominance
by pure strategies, and then provide an alternative proof
showing that the problem is NP-complete even for two-
player games with respect to dominance by mixed strategies.
We then consider a related but different objective, show its
hardness and develop computationally efficient algorithms
for a class of well-known games called supermodular games.
For this objective, we are able to provide an optimal algo-
rithm based on mixed-integer linear program. Interestingly,
this algorithm also provides a lower-bound approximation
guarantee for the original K-implementation problem and
approximates the optimal solution well in experiments.

General Terms
Algorithms; Economics; Theory;

Keywords
K-implementation; Complexity; Algorithm;

1. INTRODUCTION
Using monetary payment to incentivize agents’ behaviors

has now become a standard approach in artificial intelli-
gence, multi-agent systems and electronic commerces. The
foundations of this approach date back to the pioneer works
of mechanism design theory [2, 8, 11, 15, 20], where pay-
ments are used to design incentive compatible institutions
and to circumvent impossibility results [7, 16].

Building upon these seminal works is an interesting line
of research [4, 5, 6, 13, 14], rooted in the AI and MAS
community, that looks at a different type of implementa-
tion problems, where there exists an incumbent game and
the designer wants to subsidize the payoffs of the incumbent
game, in a cost-minimum way, so as to ensure the solutions
of the revised game fall into a pre-specified set of outcomes.

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

For example, consider taxation in the U.S. [10] where policy
makers do not have full flexibility in designing a new taxa-
tion policy and can only modify the current system to some
minimum extent. Similar is the case of redesign salary for
government employees in China.

Monderer and Tennenholtz [13] initiate the first problem
of this sort, called K-implementation, where the solution
concept is one-round dominance, namely, whether one can
distribute a positive1 payment K to the incumbent game
payoffs such that, by applying one round elimination of dom-
inated strategies in the modified game, the remaining out-
comes belong to a predefined sets. Clearly, the solution of
K-implementation also provides a feasible solution if the so-
lution concept is replaced by iterated dominance, since the
outcomes survive iterated dominance can only be a subset
of that of one-round dominance. They further show that the
general problem is NP-hard and study the cases where the
predefined sets are restricted to singletons or the incumbent
games are the VCG mechanisms.

This particular work generates fairly considerable inter-
ests, both within and outside the AI community, leads to
a number of extensions. For instance, Ashlagi et al. [1]
generalized to incomplete information setting and applied
their new theories to position auctions and Zhang et al. [21]
considered the case where an interested party aims to influ-
ence an agent’s decisions by making limited changes to the
agent’s environment. Furthermore, the concept is applica-
ble in dynamic mechanism design settings where, as time
goes by, the designer needs to adaptively modify an existing
game without flexibility to design a new games [9].

Unfortunately, the hardness proof from 3-SAT by Mon-
derer and Tennenholtz is incorrect. As pointed out by [5],
“while there indeed exists a 2-implementation for every sat-
isfiable formula, it can be shown that 2-implementations also
exist for non-satisfiable formulas”, showing the incorrectness
of the original proof. The complexity of K-implementation
has been open since [5, 6, 13].

In the first part of the paper, we pin down the correct
proofs of the K-implementation problem. More specifically,
we prove the following two results.

• We first show that K-implementation is NP-complete,
by reducing the 3-SAT problem to an instance of K-
implementation in a 6-player game.

• We then come up with a different proof that reduces
the 3-SAT problem to a K-implementation instance
in a 2-player game only.

1There always exists a −∞ solution to this problem.

5

The reason that we have two separate proofs is that the 6-
player proof works under both dominance by pure strategies
and dominance by mixed-strategies, while the 2-player works
only under the notion of dominance by mix-strategies.

These results confirm that, even in the simplest game-
theoretical setting with only two players2, K-implementation
is computationally hard.

In the second part of the paper, we look for practical al-
gorithms to solve a variation of K-implementation prob-
lem with approximation guarantee, called Individual K-
implementation problem. Our results are two algorithms,
one based on mixed-integer linear programming for the gen-
eral Individual K-implementation problem, the other is
a polynomial time algorithm for a certain subclass of games.
Finally, through experiments, we show that the optimal so-
lution for Individual K-implementation problem approx-
imates K-implementation well in practice.

2. PRELIMINARIES
Let G = 〈N,S, U〉 be a normal form game, where N is

the set of n player, S = S1 × · · · × Sn is the set of strategy
profiles and U = (U1, · · · , Un) is the set of utility functions
for each player. As usual, denote s = (si, s−i) ∈ S where
si ∈ Si and s−i ∈ S−i represents the strategies played by
players other than player i.

A strategy si ∈ Si is weakly dominated by pure strate-
gies if there exists s′i ∈ Si such that for all s−i ∈ S−i,
Ui(si, s−i) ≤ Ui(s

′
i, s−i). A strategy si ∈ Si is weakly dom-

inated by mixed strategies if there exists σi ∈ ∆(Si) such
that for all s−i ∈ S−i, Ui(si, s−i) ≤ Ui(σi, s−i), where ∆(Si)
is the set of mixed strategies on Si.

The designer has a set of desirable strategy profiles O ⊆ S,
and players are rational in the sense that they do not adopt
a strategy that is weakly dominated3 by another, possibly
mixed, strategy.

A non-negative vector of payoff functions V = (V1, · · · , Vn)
implements O in game G if in the new game 〈N,S, U + V 〉,
the set of strategies X = {X1 ×X2 × · · · ×Xn}, satisfies

1. for all i, Si \Xi is weakly dominated;

2. ∅ ⊂ X ⊆ O.

Such a V is called a k-implementation of O in game G,
if

∑n
i=1 Vi(x) ≤ k, ∀x ∈ X. Denote 〈G,O, k〉 as the set of

non-negative vector of payoff functions V such that V is a
k-implementation of O in game G. Moreover, if k is the
minimum cost such that 〈G,O, k〉 is not empty, we say the
implementation value (cost) of G w.r.t O is k.

In order to prove the NP-completeness of checking whether
set 〈G,O, k〉 is empty or not, it suffices to consider only the
case, where the desirable set O can be expressed as a Carte-
sian product of individual sets: O =

∏n
i=1Oi with Oi ⊆ Si.

Moreover, to develop a practically efficient algorithm, we
consider a variant, called Individual K-implementation.
V is an individual k-implementation of O in game G, if

21-agent K-implementation is computationally easy.
3Strict and weak dominance are the same w.r.t K-
implementation, since one can turn a solution of weak dom-
inance into a strict one by adding an infinitely small cost
to each outcome without changing the cost. For the same
reason, our definition of weak dominance is also the same as
the standard definition of weak dominance that requires at
least one strict inequality.

Vi(x) ≤ k, ∀x ∈ X, i ∈ N. In other words, we measure the
largest cost spent on an individual player4.

While our investigation of individual K-implementation
is of independent interests, we are also interested in the
connections between the two problems: it turns out the
Individual K-implementation admits a compact mixed
integer linear programming formation and its optimal so-
lution also provides an approximately good solution to the
original problem. Furthermore, the new problem can be
solved efficiently on certain subclasses of games. We show
this by developing an efficient algorithm for Individual K-
implementation in supermodular games [12, 18, 19].

3. THE COMPLEXITY OF K-IMPLEMENTATION

We develop two reductions, both from 3-SAT, to show
NP-completeness for K-implementation, one for 6 play-
ers and the other for 2 players.

3.1 NP-completeness for 6-player games

Theorem 1. It is NP-complete to decide whether 〈G,O, k〉
is empty in 6-player games.

It is clear that the problem is in NP, since given a V
vector, one can check whether V ∈ 〈G,O, k〉 in polynomial
time w.r.t the input size [3].

To prove completeness, we reduce from 3-SAT. 3-SAT
is the most famous NP-complete problem. An instance
of 3-SAT is a Boolean formula in conjunctive normal form,
which is “AND” operations over clauses, each of which is
“OR” operations over exactly three ground literals (ground
variables and their negations). The problem is to decide
whether there exists an assignment of truth values to the
variables such that the value of the formula is true.

Let φ = c1 ∧ c2 ∧ · · · ∧ cm be an instance of 3-SAT, where
the ith clause ci = (l1i ∨ l2i ∨ l3i) and lji = +xk or −xk, where
xk is a ground variable from {x1, · · · , xn}.

We now construct a K-implementation instance 〈G(φ), O, δ〉,
where δ is a real such that 0 < δ � 1, G(φ) is a 6-player
game 〈{1, 2, 3, 4, 5, 6}, S, U〉. The strategy sets of the players
are defined as follows:

• S1 = S2 = S3 =
⋃n
i=1{+xi} ∪

⋃n
i=1{−xi} ∪ {ε};

• S4 =
⋃m
i=1{ci} ∪ {ε}, S5 = S6 =

⋃n
i=1{+xi};

We now define the utility function for each player. In fol-
lowing definitions, we use ∗i to denote an arbitrary strategy
of player i. The undefined utility entries are 0.

• Players 5 and 6 only care about each other, ∀xi:

– U5(∗1, ∗2, ∗3, ∗4,+xi,+xi) = 1

– U6(∗1, ∗2, ∗3, ∗4,+xi,+x(i+1) mod n) = 1

• Player 1 only cares about player 6, ∀xi:

– U1(+xi, ∗2, ∗3, ∗4, ∗5,+xi) = 1

– U1(−xi, ∗2, ∗3, ∗4, ∗5,+xi) = 1

4Our techniques can be extended to the case where the re-
quirements are Vi(x) ≤ ki, ∀x ∈ X, i ∈ N and the goal is to
minimize

∑
i ki. For simplicity, we only consider the special

case with k = ki for all i.

6

• Player 2, 3 care about player 1, ∀l:

– U2(l, l, ∗3, ∗4, ∗5, ∗6) = 1

– U3(l, ∗2, l, ∗4, ∗5, ∗6) = 1

– U2(∗1, ε, ∗3, ∗4, ∗5, ∗6) = 0.1

– U3(∗1, ∗2, ε, ∗4, ∗5, ∗6) = 0.1

• Player 4 care about players 1, 2, 3, ∀ci = (l1i ∨ l2i ∨ l3i):

– U4(l1i , l
2
i , l

3
i , ci, ∗5, ∗6) = 1

– U4(∗1, ∗2, ∗3, ε, ∗5, ∗6) = 0.1

The set of desirable outcomes are defined by:

O4 = {ε} and for all k 6= 4, Ok = Sk

We complete the reduction by showing that φ is satisfiable
if and only if 〈G(φ), O, δ〉 6= ∅. The easier direction is proved
in the following lemma.

Lemma 1. If φ is satisfiable, then 〈G(φ), O, δ〉 6= ∅.

Proof. Let literals (l′1, · · · , l′n) be a feasible assignment
that satisfies φ. We show that the following V is in 〈G(φ), O, δ〉.
(the undefined entries are 0)

• V1(−l′i, ∗2, ∗3, ∗4, ∗5, ∗6) = δ,∀0 ≤ i < n ;

• V2(l′i, ε, ∗3, ∗4, ∗5, ∗6) = 1,∀0 ≤ i < n;

• V3(l′i, ∗2, ε, ∗4, ∗5, ∗6) = 1,∀0 ≤ i < n;

• V4(l1j , l
2
j , l

3
j , ε, ∗5, ∗6) = 1, ∀cj = (l1j ∨ l2j ∨ l3j);

We can verify the following,

• By our construction of U5 and U6, no action of player
5 or 6 is weakly dominated, thus X5 = O5, X6 = O6.

• By our construction of V1 and U1, for player 1, l′i is
strictly dominated by −l′i since we now add δ to play-
ing −l′i. Therefore X1 =

⋃
i{−l

′
i}.

• By our construction of V2, V3, for both players 2 and 3,
l′i is now strictly dominated by ε, therefore X2 = X3 =⋃
i{−l

′
i} ∪ {ε}. In other words, all the literals that are

true in the satisfying assignment are eleminated.

• For player 4, ci is strictly dominated by ε, X4 = {ε}.

Clearly, for each i, we have Xi ⊆ Oi, therefore X ⊆ O, as
required by K-implementation.

Finally, we prove that k = maxx∈X
∑
i Vi(x) = δ. Since

l′i /∈ X1, (l′i, ∗2, ∗3, ∗4, ∗5, ∗6) /∈ X, i.e., V2 or V3 do not
contribute to the implementation cost maxx∈X

∑
i Vi(x).

In addition, since (l′1, · · · , l′n) satisfies φ, we have for all j,
at least one of l1j , l

2
j , l

3
j is true. Notice that X1, X2 and X3

only contain negations of l′i’s, then (l1j , l
2
j , l

3
j , ε, ∗5, ∗6) /∈ X.

In other words, V4 does not contribute to the implementa-
tion cost either.

It then follows that the implementation k is at most the
maximum cost resulting from V1(·), which is exactly δ. In
other words, V is in 〈G(φ), O, δ〉.

To establish the other direction, we have:

Lemma 2. If 〈G(φ), O, δ〉 6= ∅, then φ is satisfiable.

Proof. Let such a δ-implementation be V and set a lit-
eral l to be true if and only if l /∈ X1 or l /∈ X2 or l /∈ X3.
We prove this is a satisfying assignment for φ.

Claim 1. X5 = O5, X6 = O6.

Proof. Notice that the payoffs of player 5 and player 6
is independent of the actions played by the other players,
and thus, one can think of a 2-player game between player 5
and player 6 and compute X5 and X6 in this 2-player game.

Since S5 and S6 only contain positive variables and the
fact that both X5 and X6 are nonempty, it is with loss of
generality to assume that there exists +xk ∈ X6. We then
have +xk ∈ X5 as well, since otherwise, in order to eliminate
+xk from X5 given +xk ∈ X6, there must exist a j 6= k,
+xj ∈ X5 such that V5(∗1, ∗2, ∗3, ∗4,+xj ,+xk) ≥ 1 > δ,
which contradicts to our assumption that largest cost is less
than or equal to δ. Similarly, suppose +xk ∈ X5, we must
have +x(k+1) mod n ∈ X6 as well by similar arguments.

Therefore, if +xk ∈ X6, +xk ∈ X5, +x(k+1) mod n ∈ X6

and +x(k+1) mod n ∈ X5... By repeating this argument, we
conclude that X5 = O5 and X6 = O6.

The intuition of the lemma above should be clear: elimi-
nation of any actions of player 5 and player 6 is costly.

The next claim guarantees that the constructed assign-
ment is well-defined in the sense that it never simultaneously
assigns true to a variable and its negation.

Claim 2. ∀i, either we have +xi ∈ X1 and +xi ∈ X2

and +xi ∈ X3 hold simultaneously; or we have −xi ∈ X1

and −xi ∈ X2 and −xi ∈ X3 hold simultaneously.

Proof. First of all, by Claim 1, for player 1, +xi and −xi
cannot be both strictly dominated, i.e., at least one of +xi
and −xi is in X1; since otherwise, there must exist x′ ∈ X1

such that x′ 6= +xi,−xi and V1(x′, ∗2, ∗3, ∗4, ∗5,+xi) ≥ 1 >
δ, which again contradicts to δ-implementation.

For player 2, we must have l ∈ X2 if l ∈ X1; since other-
wise, there must exist l′ ∈ X2 such that V2(l, l′, ∗3, ∗4, ∗5, ∗6)
≥ 1 > δ, a contradiction; or V2(l, ε, ∗3, ∗4, ∗5, ∗6) ≥ 1−0.1 =
0.9 > δ, also a contradiction to δ-implementation.

For player 3, we can apply the same argument to conclude
that l ∈ X3 if l ∈ X1.

To complete the proof of the lemma, we need to prove
that for any clause ci = (l1i ∨ l2i ∨ l3i), at least one of l1i , l

2
i , l

3
i

is assigned true. According to our construction at the be-
ginning of the proof, it is equivalent to that ∃j, lji /∈ Xj .
Suppose otherwise that l1i ∈ X1, l

2
i ∈ X2, l

3
i ∈ X3, we must

have ci ∈ X4; since otherwise, there exists c′ ∈ X4 such
that V4(l1i , l

2
i , l

3
i , c
′, ∗5, ∗6) ≥ 1 > δ or V4(l1i , l

2
i , l

3
i , ε, ∗5, ∗6) ≥

0.9 > δ. In other words, we need to cost at least 0.9 to elim-
inate ci in S4 in presence of l1i ∈ X1, l

2
i ∈ X2, l

3
i ∈ X3. Note

that however, ci ∈ X4 is unacceptable since we need X4 =
{ε}. We therefore conclude that l1i ∈ X1, l

2
i ∈ X2, l

3
i ∈ X3

cannot hold simultaneously, that is, at least one of l1i , l
2
i , l

3
i

is assigned true in any clause, i.e., the assignment we con-
structed is indeed a satisfying assignment.

Combining Lemma 1 and Lemma 2, we show φ is satisfi-
able if and only if 〈G(φ), O, δ〉 6= ∅, completing the proof.

Remark 1. The K-implementation defined by [13] is w.r.t
dominance by pure strategies. The above proof is general in
the sense that it applies to either dominance by pure strate-
gies or mixed strategies.

7

U1 \ U2 x1 x2 x3 +x1 −x1 +x2 −x2 +x3 −x3 c1 c2
(+x1, c1) (0,εb) (r+x1,c1x2 ,0) (r+x1,c1x3 ,0) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,εa) (0,0)
(+x2, c1) (r+x2,c1x1 ,0) (0,εb) (r+x2,c1x3 ,0) (0,0) (0,0) (0,1) (0,0) (0,0) (0,0) (0,εa) (0,0)
(+x3, c1) (r+x3,c1x1 ,0) (r+x3,c1x3 ,0) (0,εb) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,εa) (0,0)
(−x1, c2) (0,εb) (r−x1,c2x2 ,0) (r−x1,c2x3 ,0) (0,0) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,εa)
(−x2, c2) (r−x2,c2x1 ,0) (0,εb) (r−x2,c2x3 ,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,0) (0,0) (0,εa)
(+x3, c2) (r+x3,c2x1 ,0) (r+x3,c2x2 ,0) (0,εb) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,0) (0,εa)

x1+ (0,1) (0,1) (0,1) (2,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
x1− (0,1) (0,1) (0,1) (0,0) (2,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
x1∗ (0,0) (0,0) (0,0) (1.5,0) (1.5,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
x2+ (0,1) (0,1) (0,1) (0,0) (0,0) (2,0) (0,0) (0,0) (0,0) (0,0) (0,0)
x2− (0,1) (0,1) (0,1) (0,0) (0,0) (0,0) (2,0) (0,0) (0,0) (0,0) (0,0)
x2∗ (0,0) (0,0) (0,0) (0,0) (0,0) (1.5,0) (1.5,0) (0,0) (0,0) (0,0) (0,0)
x3+ (0,1) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (2,0) (0,0) (0,0) (0,0)
x3− (0,1) (0,1) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (2,0) (0,0) (0,0)
x3∗ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1.5,0) (1.5,0) (0,0) (0,0)

Table 1: Gε,δ(φ) for A = {x1, x2, x3} and c1 = (+x1 ∨+x2 ∨+x3), c2 = (−x1 ∨ −x2 ∨+x3).

3.2 NP-completeness for 2-player games

Theorem 2. It is NP-complete to decide whether 〈G,O, k〉
is empty in 2-player games.

Let φ be an instance of 3-SAT. Let A be the set of its
variables x1, · · · , xn, L be the corresponding literals and C
be the set of clauses. Moreover, let L+ be the set of positive
literals and L− be the set of negative ones. Define function
v : L → A to return the corresponding variable of a literal,
that is, v(+xi) = v(−xi) = xi. We construct Gε,δ(φ) with
0 < ε � δ � 1 to be the following 2-player game, with an
example shown in Table 1.

In Gε,δ(φ), the action set of the column player is S2 =
A ∪ L ∪ C. As for the row player, define a product set B =
{(l, c) ∈ L×C|l ∈ c}, and the action set of the row player is
S1 = B ∪ (A× {−,+, ∗}). For convenience, denote by sl,c a
strategy in B, and v−, v+ v∗ for elements in (A×{−,+, ∗}).
Let the desirable sets be O1 = B ∪ (A × {−,+}) ⊆ S1 and
O2 = A ∪ L ⊆ S2. Payoff functions U is defined as follows,

• U2(sl,c, l) = 1, U2(sl,c, c) = εa, ∀(l, c) ∈ B;

• U2(sl,c, v) = εb, ∀(l, c) ∈ B, v ∈ A with v(l) = v;

• U1(v−, l) = 2, ∀l ∈ L−, v ∈ A with v(l) = v;

• U1(v+, l) = 2, ∀l ∈ L+, v ∈ A with v(l) = v;

• U1(v∗, l) = 1.5 ∀l ∈ L, v ∈ A with v(l) = v;

• U2(v+, v
′) = 1, U2(v−, v

′) = 1 ∀v, v′ ∈ A;

• For each sl,c ∈ B, set U1(sl,c, v) = rl,cv for v ∈ A. The
vector rl,c satisfies that

– rl,cv(l) = 0;

– Let r′
l,c

as a (|A| − 1)-dimension vector by re-
moving the v(l)-th element from rl,c, we require

‖r′l,c‖2 = 1 and ‖r′l,c − 1√
|A|−1

1‖2 = δ,

(where 1 is a vector with 1s);

– 5For all possible pairs (l′, c′), (l, c) with l′ 6= l but

v(l′) = v(l), rl
′,c′ 6= rl,c;

5This requirement ensures that for all pairs (l, c), their cor-
responding rl,c are distinct.

where εb = 1 − 1
2
ε, εa is a number that satisfies 1

3
εb + ε <

εa <
εb

2+εb
+ ε,6 and undefined payoff entries are 0. Choose

ε according to δ by the following lemma.

Lemma 3. Given 0 < δ � 1, there exists a sufficiently
small ε with 0 < ε � δ such that given any non-negative
vector of payoff functions V , if a row strategy b ∈ B but b /∈
X1, then there exists v ∈ A, d ∈ X1 such that V1(d, v) > ε.7

We complete the reduction by showing that φ is satisfiable
if and only if 〈Gε,δ(φ), O, ε〉 6= ∅. The “only if” direction
is relatively straightforward (Lemma 4): if φ is satisfiable,
one can directly construct V matrices that guarantee a ε-
implementation. The “if” direction is more involved.

To prove the “if” direction, we show that, given any V ∈
〈Gε,δ(φ), O, ε〉 and its X1, X2, assigning truth to literals in
X2 ∩ L forms a satisfying assignment. To verify this claim,
we show that our construction enjoys two properties:

1. For all v ∈ A, +v and −v cannot be in X2 simultane-
ously, which guarantees that the assignment induced
by X2 ∩ L is well-defined (Claim 3).

2. For each clause c = (l1 ∨ l2 ∨ l3) ∈ C, at least one
lj ∈ X2 for j ∈ {1, 2, 3}. This property is achieved by
first showing that B ⊆ X1 (Claim 4). Together with
property 1 above, we are able to conclude if none of lj
is in X2, we must have c is in X2, contradicting to our
definition of O2.

Lemma 4. If φ is satisfiable, then 〈Gε,δ(φ), O, ε〉 6= ∅.

Proof. Suppose the literals (l′1, · · · , l′n) is a satisfying as-
signment for φ. We show that the following V is in
〈Gε,δ(φ), O, ε〉 (the undefined entries are simply 0)

• V2(sl,c, l
′
i) = ε, ∀i, (l, c) ∈ B;

• V2(sl,c, v) = ε, ∀(l, c) ∈ B, v ∈ A;

• V1(vb,−l′i) = 2, ∀i, v(l′i) = v, l′i /∈ Lb;

First, we prove that the constructed V implements O.

6Such an εa always exists cause 1
3
εb <

εb
2+εb

when 0 < εb < 1
7Missing proofs are deferred to the full version.

8

• C∩X2 = ∅: For each clause c = (l1∨ l2∨ l3) ∈ C, since
(l′1, · · · , l′n) satisfies φ, at least one l′j ∈ ci. Without
loss of generality, suppose l1 is assigned true. We claim
that the column strategy c is dominated by the convex
combination of the column strategy l1, v(l2), v(l3) with
probability (p, 1−p

2
, 1−p

2
), where p = εb

εb+2
. Notice that

in utility matrix U2 +V2, column c only has three non-
zero entries with value εa in rows sl1,c, sl2,c, sl3,c and
the utilities of l1, v(l2), v(l3) in these three rows are
(1 + ε, ε, ε), (ε, ε+ εb, ε), (ε, ε, ε+ εb).

p(1 + ε, ε, ε) +
1− p

2
(ε, ε+ εb, ε) +

1− p
2

(ε, ε, ε+ εb)

= (p+ ε, p+ ε, p+ ε) ≥ (εa, εa, εa),

since 1−p
2
· εb = p and εa < ε+ p.

• A× {∗} ∩X1 = ∅: Either v+ or v− can dominate v∗.

Next, we show that V has implementation cost ε. Note
that each column −l′i is dominated by column v(−l′i), since
εb + ε > 1, implying V1 does not contribute to the imple-
mentation cost. Thus, the implementation cost is ε.

Lemma 5. If 〈Gε,δ(φ), O, ε〉 6= ∅, then φ is satisfiable.

Proof. Suppose V ∈ 〈Gε,δ(φ), O, ε〉. We prove that giv-
ing truth to literals in X2 ∩L forms a satisfying assignment
for φ. First, we show that such assignment is well-defined.

Claim 3. For all v ∈ A, {+v,−v} * X2.

Proof. Suppose not, then the row player’s utility on rows
v+, v−, v∗ on column +v and −v forms a gadget v+ : (2, 0),
v− : (0, 2), v∗ : (1.5, 1.5). In order to dominate v∗, the
implementation cost is at least 0.5 > ε such that v+ changes
to (2.5, 0.5), v− changes to (0.5, 2.5) and thus, (1

2
v+ + 1

2
v−)

weakly dominates v∗.

Claim 4. B ⊆ X1.

Finally, we prove that at least one literal is assigned true
in each clause. Suppose not, and there exists c = (l1∨l2∨l3)
such that lj /∈ X2 for all j ∈ {1, 2, 3}. Since V implements
O, we have c /∈ X2, which means that there exists a convex
combination of strategies in X2 that can weakly dominate
c. Notice that in utility matrix U2, column c only has three
non-zero entries (εa, εa, εa) in rows sl1,c, sl2,c, sl3,c. Given
that lj /∈ X2 for all j, the only strategies inX2 that have non-
zero entries in these three rows are v(l1), v(l2), v(l3), with
utilities (εb, 0, 0), (0, εb, 0), (0, 0, εb) respectively. Based on
{sl1,c, sl2,c, sl3,c} ⊆ B ⊆ X1 and εb

3
+ε < εa, it is impossible

to dominate c with implementation cost ε.

Based on a similar construction (let U1(v∗, ci) = 1, for all
ci ∈ C to enforce C ∩X2 = ∅), we conclude

Corollary 1. It is NP-complete to decide whether
〈G,O, k〉 is empty in 2-player case even if O1 = S1.

Moreover, the construction still holds if we apply itera-
tive elimination of dominated strategies. In fact, we remark
without proof that the two notions of dominance are equiv-
alent with respect to K-implementation.

Corollary 2. It is NP-complete to decide whether
〈G,O, k〉 is empty even in the 2-player case, under iteratively
elimination of strictly dominated strategies.

4. INDIVIDUAL K-IMPLEMENTATION

We now turn to the Individual K-implementation prob-
lem. As mentioned, while this problem is of independent
interest, it turns out that one can also connect the two
problems, by using an exact algorithm of Individual K-
implementation to return approximately optimal solutions
to the original problem. A polynomial time algorithm is
further developed for a special subclass of games. With the
same proof as that of Theorem 1, we have,

Theorem 3. It is NP-complete to decide whether 〈G,O, k〉
is empty for Individual K-implementation.

The following proposition establishes the approximation
guarantee for K-implementation problem via solving In-
dividual K-implementation.

Proposition 1. Given n-player games, the optimal In-
dividual K-implementation solution is an n-approximation
solution of K-implementation.

4.1 A mixed-integer linear program
We propose an exact algorithm via mixed-integer linear

program (MILP), starting with the following observation.

Observation 1. For Individual K-implementation, if
V ∈ 〈G,O, ε〉, then let V ′ = V except V ′i (x) = ε for all
1 ≤ i ≤ n and x ∈ X, we still have V ′ ∈ 〈G,O, ε〉.

The above observation states that for every x ∈ X, we can
increase Vi(x) to ε without violating implementability.

4.1.1 Two-player, product desirable set
For ease of presentation, we first consider two player normal-

form game with product desirable set O = O1×O2. Let the
strategy sets be S1 = [n] and S2 = [m] while O1 ⊆ S1,
O2 ⊆ S2, respectively. Moreover, let the payoff matrix
be A for row player and B for column player. That is,
U1(i, j) = Ai,j and U2(i, j) = Bi,j .

Without loss of generality, suppose all utilities are positive
and let M be the largest utility. Divide each utility by M
to normalize the utility so that no utility is greater than 1.

To formulate MILP, we first introduce an indicator vector
r ∈ {0, 1}n to indicate whether row player actions are in
X or not. Formally, ri = 1 if and only if action i ∈ X1.
Similarly, we define such a indicator vector c ∈ {0, 1}n for
column actions and cj = 1 if and only if action j ∈ X2.

We must ensure that, row player action i is indeed weakly
dominated if and only if ri = 0. This step is done by a well-
known linear program by Conitzer and Sandholm [3] and
restated in [17]. For each row player action k, define a vector
of probability variables pk ∈ [0, 1]n, where pki represents the
probability assigned to row strategy i. One can check weak
dominance for row strategy k by following linear program,

min 0
s.t. ATpk ≥ AT:,k

pk ≥ 0, |pk|1 = 1

Here, AT:,k denotes the k-th column of matrix AT . To extend
this linear programming to Individual K-implementation
setting, we first need to ensure that if ri = 0, then pki = 0
and if ri = 1, pki ∈ [0, 1]. In other words, if an action is

9

dominated, it cannot appear as support in any mixed strat-
egy for the purpose of checking dominance. The constraints
can be conveniently presented as follows:

0 ≤ pki ≤ ri 1 ≤ i, k ≤ n

Moreover, for indicator ri, if i /∈ O1, ri must be 0. Thus,
the integer constraints are

ri ∈ {0, 1} 1 ≤ i ≤ n
ri = 0 ∀i /∈ X1

To put the Conizter-Sandholm LP framework under the
context of ε-implementation, and further incorporate Obser-
vation 1, the constraints for the row players become:

(AT + Vε)p
k ≥ AT:,k

where Vε is a matrix with ε in all entries, equivalent to

ATpk ≥ AT:,k − ε1

where 1 is a vector with all 1’s.
The constraint above is otherwise correct with one impor-

tant exception. If a column strategy j /∈ X2, since we only
count the implementation cost for action profiles in X in
individual implementation, there is no implementation cost
to dominate row player action k on the j-th column, since
one can set sufficient large value of V1 on column j without
worrying about the objective value. Due to normalization, 1
is sufficiently large for this purpose and can be conveniently
represented as 1−cj if this case happens (i.e., cj = 0). Thus,
the correct constraints for the row players are

ATpk + (1− c) ≥ AT:,k − ε1

Similarly, the linear constraints on columns are

Bql + (1− r) ≥ B:,l − ε1

To sum up, the MILP is described as follows:

min ε
s.t. ATpk + (1− c) ≥ AT:,k − ε1 1 ≤ k ≤ n

Bql + (1− r) ≥ B:,l − ε1 1 ≤ l ≤ m

0 ≤ pki ≤ ri, 0 ≤ qlj ≤ cj 1 ≤ i, k ≤ n, 1 ≤ j, l ≤ m
|pk|1 = 1, |ql|1 = 1 1 ≤ k ≤ n, 1 ≤ l ≤ m
ri, cj ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ j ≤ m
ri = 0, cj = 0 ∀ i /∈ X1, ∀ j /∈ X2

(1)
The implementation cost to Individual K-implementation
is ε∗M , where ε∗ is the optimal value of the above program
and M is largest utility in the original payoff matrices.

Theorem 4. The MILP(1) correctly computes the opti-
mal solution of Individual K-implementation in two-player,
product desirable set setting.

4.1.2 Multi-player, general desirable set
In a n-player normal-form game, player k’s strategy set is

Sk = [mk] and his utility in strategy profile s = (sk, s−k) is
Ak(s−k, sk), where Ak is a matrix with size (

∏
i6=kmi)×mk,

and the desirable set is O ⊆ S =
∏n

1 Si. Without loss of
generality, suppose all utilities are positive and let M be the
largest utility. Divide each utility by M to normalize the
utility so that no utility is greater than 1.

• gk ∈ {0, 1}mk is a indicator vector that indicates whether
player k’s strategies are in X or not. Formally, gki = 1
if and only if action i ∈ Xk;

• pk,l is the probability assigned to player k’s strategies
for the purpose of checking dominance of player k’s
l-th strategy;

Similar to two-player games, constraints on pk,li are,

0 ≤ pk,li ≤ gki ∀k, 1 ≤ i, l ≤ mk

Moreover, note that a strategy profile s /∈ X if and only if
¬(∀k, sk ∈ Xk). Thus, the desirable set requirements can be
presented by indicator vectors gk as follows:∑

k

gksk ≤ n− 1 ∀s /∈ O

Finally, when consider player k, if s−k /∈ X−k, there is no
implementation value and one can set a sufficiently large
value without worrying about the objective value. Due to
normalization, 1 is enough and

zks−k
:=

∑
j 6=k

(1− gjs−kj
) ≥ 1 ∀k, s−k ∈ S−k

if and only if s−k /∈ X−k holds8. To sum up, the MILP for
multi-player general cases can be described as follows:

min ε
s.t. Akpk,l + zk ≥ Ak:,l − ε1 ∀k, 1 ≤ l ≤ mk

zks−k
=

∑
j 6=k(1− gjs−kj

) ∀k, s−k ∈ S−k
0 ≤ pk,li ≤ gki , |pk,l|1 = 1 ∀k, 1 ≤ i, l ≤ mk∑
k g

k
sk ≤ n− 1 ∀s /∈ O

gki ∈ {0, 1} ∀k, 1 ≤ i ≤ mk

(2)

Theorem 5. The MILP(2) correctly computes the opti-
mal solution of Individual K-implementation in multi-
player, general desirable set setting.

4.2 Supermodular games
In this subsection, we show that in finite supermodular

games [12, 18, 19], Individual K-implementation with a
consecutive product desirable set can be solved efficiently.

Definition 1. A n-player finite game with player i’s strat-
egy set Si = [m] is supermodular if for all i, player i’s utility
function Ai has increasing difference, i.e., ∀s, s′ ∈ S and
s ≥ s′ (that is, ∀j, sj ≥ s′j),

Ai(s−i, si)−Ai(s−i, s′i) ≥ Ai(s′−i, si)−Ai(s′−i, s′i).

We say a product outcome set O =
∏
Oi is consecutive if

it is in the form of Oi = {li, li + 1, · · · , ri} ⊆ Si. Without
loss of generality, assume for all s ∈ S, 0 ≤ Ai(s) ≤ 1.

Note that, we can compute the cost of Individual K-
implementation by enumerating all X ⊆ O and solving the
following variation of MILP(2) to exactly implementX (that

8In the formula, we abuse the notation and use s−kj to
represent player j’s strategy in strategy profile s−k.

10

is, for all i, any strategy in Si \Xi is weakly dominated):

min ε
s.t. Akpk,l + zk ≥ Ak:,l − ε1 ∀k, 1 ≤ l ≤ mk

zks−k
=

∑
j 6=k(1− gjs−kj

) ∀k, s−k ∈ S−k
0 ≤ pk,li ≤ gki , |pk,l|1 = 1 ∀k, 1 ≤ i, l ≤ mk

gki = 0 ∀k, i /∈ Xk
gki = 1 ∀k, i ∈ Xk

(3)

Suppose the optimal solution of MILP(3) w.r.t X ⊆ O is
OPT (X). Then, the optimal implementation value ε∗ for O
can be computed by ε∗ = minX⊆O OPT (X).

The next lemma states that we can compute the cost of In-
dividual K-implementation in finite supermodular games
with a consecutive product desirable set by only enumerat-
ing all possible consecutive product outcome sets X ⊆ O.

Lemma 6. If X =
∏
Xi ⊆ O and X ′ =

∏
X ′i where X ′i =

{minXi, minXi + 1, · · · ,maxXi}, OPT (X ′) ≤ OPT (X).

Proof. We prove this lemma via MILP(3). Our idea is to
show that if ε∗ is the optimal solution for MILP(3) w.r.t X
and its corresponding variables are (ε∗,p, z,g), then one can
construct a feasible solution (ε∗,p′, z′,g′) of MILP(3) w.r.t
X ′. It immediately follows that OPT (X ′) ≤ OPT (X). The
variables p′ are constructed from p as follows:

• p′ = p, except when l ∈ X ′k:

p′
k,l
l = 1 and ∀i 6= l, p′

k,l
i = 0;

Notice that the indicator vectors g and g′ are determined
by X and X ′, respectively. We need to show that in our

construction of p′, the constraints 0 ≤ p′
k,l
i ≤ g′

k
i still hold.

Notice that, according to our construction, X ⊆ X ′, so we

have g′
k
i 6= gki if and only if strategy i ∈ X ′k \Xk and thus,

when g′
k
i 6= gki , it is certain that g′

k
i = 1 and gki = 0. Thus,

for all k and l /∈ X ′k, 0 ≤ p′
k,l
i ≤ gki ≤ g′

k
i . As for the case

l ∈ X ′k, since g′
k
l = 1, we conclude 1 = p′

k,l
l ≤ g′

k
l = 1 and

∀i 6= l, 0 = p′
k,l
i ≤ g′

k
i .

Moreover, the vector z′ are determined by g′. Thus, the
only remaining constraints needed to check are

Akp′
k,l

+ z′
k ≥ Ak:,l − ε′1 ∀k, 1 ≤ l ≤ mk

Note that when l /∈ X ′k, it does not hold only if for some

s−k, 0 = z′
k
s−k

< zks−k
, that is s−k ∈ X ′−k while s−k /∈ X−k.

Suppose there exists player k = k∗ and strategy l = l∗

in which the assignments ε′ = ε∗ and our construction of
(p′,g′, z′) violate the above constraint.

• Case 1: minX ′k ≤ l∗ ≤ maxX ′k. In this case, accord-
ing to our construction of X ′, strategy l∗ ∈ X ′k∗ . Thus,
strategy l∗ can weakly dominate itself on its own and

actually, in our construction, p′
k∗,l∗

l∗ = 1 if l∗ ∈ X ′k∗ ;

Intuitively, in Case 2 and 3, we argue that for player k∗,
the optimal cost only depends on the weak dominance of
smin
−k∗ = minX−k∗ or smax

−k∗ = maxX−k∗ .

• Case 2: l∗ < minX ′k∗ . In this case, l∗ /∈ X ′k∗ and thus,

according to our construction, p′
k∗,l∗

= pk
∗,l∗ . Con-

sider smin
−k∗ = minX ′−k∗ , i.e. s−k∗ j = minXj . Since

(ε∗,p, z,g) is a feasible solution for MILP(3) w.r.t X
and smin

−k∗ ∈ X−k∗ , it is true that,

Ak
∗
pk
∗,l∗ + zk

∗
≥ Ak

∗
:,l∗ − ε∗1.

Henceforth, for a specific smin
−k∗ , we have

Ak
∗

smin
−k∗ ,:

pk
∗,l∗ + zk

∗

smin
−k∗
≥ Ak

∗

smin
−k∗ ,l

∗ − ε∗

which is equivalent to∑
i∈Xk∗

(Ak
∗

smin
−k∗ ,i

−Ak
∗

smin
−k∗ ,l

∗)p
k∗,l∗

i ≥ −ε∗

since
∑
i∈Xk∗

pk
∗,l∗

i = 1 and because of smin
−k∗ ∈ X−k∗ ,

zk
∗

smin
−k∗

= 0. Notice that, what we want to prove is, for

all s−k∗ , the following inequality holds

Ak
∗
s−k∗ ,:p

k∗,l∗ + z′
k∗

s−k∗ ≥ A
k∗
s−k∗ ,l

∗ − ε∗

Recall that the constraint is violated only if z′
k∗

s−k∗ = 0.
Therefore, the above constraint is equivalent to,∑

i∈Xk∗

(Aks−k∗ ,i −A
k∗
s−k∗ ,l

∗)pk
∗,l∗

i ≥ −ε∗

and in additional, we have s−k∗ ∈ X ′−k∗ and thus,

smin
−k∗ ≤ s−k∗ . Applying the definition of supermodu-

larity, we can conclude this case by∑
i∈Xk∗

(Ak
∗
s−k∗ ,i −A

k∗
s−k∗ ,l

∗)pk
∗,l∗

i

≥
∑
i∈Xk∗

(Ak
∗

smin
−k∗ ,i

−Ak
∗

smin
−k∗ ,l

∗)p
k∗,l∗

i ≥ −ε∗

• Case 3: l∗ > maxX ′k∗ . Consider smax
−k∗ = maxX ′−k∗ ∈

X−k∗ and the proof is similar to the one in Case 2.

Therefore, our construction of (p′, z′,g′) along with ε∗ is
a feasible solution to MILP(2) w.r.t X ′.

With Lemma 6, one can reduce computing the optimal im-
plementation cost of O to computing OPT (X) for all consec-
utive outcome sets X ⊆ O, which can be done in polynomial
time. Note {X | X is a consecutive outcome set, X ⊆ O} =
O(m2n), a polynomial w.r.t. the size of game O(mn).

Theorem 6. In supermodular games with consecutive prod-
uct desirable sets, the cost of Individual K-implementation
can be computed in polynomial time, precisely, O(m2nn).

5. EXPERIMENTS
We implement our MILP algorithm proposed in the previ-

ous section. We measure the time efficiency and optimality
of our MILP algorithms, by comparing it to the algorithm
implemented in [5, 6], called BRUTE-FORCE-pure.

The BRUTE-FORCE-pure is a double-exponential al-
gorithm that computes general K-implementation under
dominance by pure-strategies, by exhaustively enumerating
all possible X ⊆ O (which could be exponentially many)
and using an exponential algorithm to compute the cost of
exact K-implementation w.r.t each X.

5.1 Experiments Setup
All our experiments are performed on a PC with 2.6 GHz

Intel Core i5 processor, and 8 GB 1600 MHz DDR3 memory.
We use MATLAB 2014b to serve as MILP solver. We focus
on 2-player normal-form games with product desirable sets.

We implemented two versions of MILP(1) that corresponds
to Individual K-implementation problem w.r.t dominance

11

Sample ID
0 50 100 150 200 250 300 350 400 450 500

A
d

d
it
iv

e
 l
o

s
s

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Additive loss relative to BRUTE-FORCE-pure

(MILP-mixed) - (BRUTE-FORCE-pure)
(MILP-pure) - (BRUTE-FORCE-pure)

Sample ID
0 50 100 150 200 250 300 350 400 450 500

M
u

lt
ip

lic
a

ti
v
e

 l
o

s
s

0.4

0.6

0.8

1

1.2

1.4

1.6
Multiplicative loss relative to BRUTE-FORCE-pure

(MILP-mixed) / (BRUTE-FORCE-pure)
(MILP-pure) / (BRUTE-FORCE-pure)

Figure 1: Additive/multiplicative losses of MILP-mixed and MILP-pure compared to BRUTE-FORCE-pure

by pure strategies and mixed strategies respectively. To bet-
ter approximate the original K-implementation, the Indi-
vidual K-implementation we implement here is a more
general, player-specific version in the sense that we impose
individual implementation cost upper bound Vi(x) ≤ ki, ∀x ∈
X, i ∈ {1, 2} and measure the sum of individual cost k1 +k2
as objective. The MILP for this more general problem can
also be straightforwardly adjusted from MILP(1).

To measure the time efficiency of our MILP, we randomly
generate 20 cases of N×N 2-player normal-form games with
every utility uniformly drawn from [0, 1], while the proba-
bility that a strategy j is in the desirable set is 1/2. We
measure the running time as a function of N .

To measure the optimality of our MILP, due to the run-
ning time of brute-force-pure, we can only repeat the
experiments w.r.t a relatively small game size. In particu-
lar, we general 500 cases of 2-player normal-form games with
N = 10 with same utility distribution as before. Moreover,
we randomly generate O satisfying 1 ≤ |O1|, |O2| ≤ 5. To
sum up, we compare the following:

1. MILP algorithm with respect to dominance by mixed
strategies, called MILP-mixed,

2. MILP algorithm with respect to dominance by pure
strategies, called MILP-pure,

3. BRUTE-FORCE-pure. This algorithm serves as base-
line for the following loss calibrations.

5.2 Experimental Results
The average running time of our MILP according to N

is shown in Table 2. For time efficiency, our MILP runs
considerably fast when N is small and reasonably fast as N
increases up to 70, while the base-line algorithm finished in
580s on average for N = 9.

Size 10 20 30 40
Time(s) 0.0879 0.3391 1.7455 9.6937

Size 50 60 70 · · ·
Time(s) 33.4201 89.4129 216.3254 · · ·

Table 2: Running time of MILP

As for the comparison of implementation cost, the results
are shown in Figure 1 with two calibrations of loss,

• Additive: (Algorithm) - (Baseline);

• Multiplicative: (Algorithm) / (Baseline);

Moreover, the average additive loss and multiplicative loss
between MILP-mixed and BRUTE-FORCE-pure are−5.1397×
10−5 and 0.9975, while between MILP-pure and BRUTE-
FORCE-pure are 0.0017 and 1.0077. One can see that, in
randomly generated cases under the notion of dominance by
pure strategies, optimal solution Individual K-implementation
approximates K-implementation pretty well while MILP-
mixed can sometimes perform better than BRUTE-FORCE-
pure due to that dominance by mixed strategies is allowed
in the MILP. By the experimental results between MILP-
pure and BRUTE-FORCE-pure, we expect that MILP-
mixed approximates K-implementation reasonably well.

6. CONCLUSION
In this paper, we pin down the correct hardness proofs

to show that K-implementation problem is indeed NP-
complete. In addition, we study a variation of K-implemention
problem called Individual K-implementation problem,
which provides an approximation guarantee to K-implemention
problem and enjoys a mixed-integer linear programming for
general Individual K-implementation problem and a poly-
nomial time runnable algorithm for supermodular games
with a consecutive product desirable set. Finally, our ex-
periments confirm that the optimal solution with respect to
Individual K-implementation problem approximates K-
implementation problem well in practice.

Acknowledgments
This work was supported by the National Basic Research
Program of China Grant 2011CBA00300, 2011CBA00301,
the Natural Science Foundation of China Grant 61033001,
61361136003, 61303077, 61561146398, a Tsinghua Initiative
Scientific Research Grant and a China Youth 1000-talent
program.

12

REFERENCES
[1] I. Ashlagi, D. Monderer, and M. Tennenholtz.

Mediators in position auctions. In Proceedings of the
8th ACM conference on Electronic commerce, pages
279–287. ACM, 2007.

[2] E. H. Clarke. Multipart pricing of public goods. Public
Choice, 2:19–33, 1971.

[3] V. Conitzer and T. Sandholm. Complexity of
(iterated) dominance. In Proceedings 6th ACM
Conference on Electronic Commerce (EC-2005),
Vancouver, BC, Canada, June 5-8, 2005, pages 88–97,
2005.

[4] R. Eidenbenz, Y. A. Oswald, S. Schmid, and
R. Wattenhofer. Manipulation in games. In Algorithms
and Computation, pages 365–376. Springer, 2007.

[5] R. Eidenbenz, Y. A. Oswald, S. Schmid, and
R. Wattenhofer. Mechanism design by creditability. In
Combinatorial Optimization and Applications, pages
208–219. Springer, 2007.

[6] R. Eidenbenz, Y. A. Pignolet, S. Schmid, and
R. Wattenhofer. Cost and complexity of harnessing
games with payments. International Game Theory
Review, 13(01):13–44, 2011.

[7] A. Gibbard. Manipulation of voting schemes: A
general result. Econometrica, 41(4):587–601, July
1973.

[8] T. Groves. Incentives in Teams. Econometrica,
41:617–631, 1973.

[9] J. M. Kleinberg and S. Oren. Time-inconsistent
planning: a computational problem in behavioral
economics. In ACM Conference on Economics and
Computation, EC ’14, Stanford , CA, USA, June
8-12, 2014, pages 547–564, 2014.

[10] N. G. Mankiw, M. Weinzierl, and D. Yagan. Optimal

taxation in theory and practice. Technical report,
National Bureau of Economic Research, 2009.

[11] E. Maskin and T. Sjostrom. Implementation theory,
volume 1 of Handbook of Social Choice and Welfare.
Elsevier, March 2002.

[12] P. Milgrom and J. Roberts. Rationalizability,
Learning, and Equilibrium in Games with Strategic
Complementarities. Econometrica, 58(6):1255–77,
November 1990.

[13] D. Monderer and M. Tennenholtz. K-implementation.
J. Artif. Intell. Res. (JAIR), 21:37–62, 2004.

[14] T. Moscibroda and S. Schmid. On mechanism design
without payments for throughput maximization. In
INFOCOM 2009, IEEE, pages 972–980. IEEE, 2009.

[15] R. B. Myerson. Optimal auction design. Mathematics
of Operations Research, 6(1):58–73, 1981.

[16] M. A. Satterthwaite. Strategy-proofness and arrow’s
conditions: Existence and correspondence theorems for
voting procedures and social welfare functions. Journal
of Economic Theory, 10(2):187–217, April 1975.

[17] Y. Shoham and K. Leyton-Brown. Multiagent
Systems: Algorithmic, Game theoretic and Logical
Fundations. Cambridge Uni. Press, 2009.

[18] P. Tang and F. Lin. Two equivalence results for
two-person strict games. Games and Economic
Behavior, 71(2):479–486, 2011.

[19] D. Topkis. Supermodularity and Complementarity.
Frontiers of Economic Research. Princeton University
Press, 2011.

[20] W. Vickrey. Counterspeculation, Auctions and
Competitive Sealed Tenders. Journal of Finance,
pages 8–37, 1961.

[21] H. Zhang, Y. Chen, and D. C. Parkes. A general
approach to environment design with one agent. In
IJCAI 2009, pages 2002–2014, 2009.

13

	Introduction
	Preliminaries
	The complexity of K-implementation
	NP-completeness for 6-player games
	NP-completeness for 2-player games

	Individual K-implementation
	A mixed-integer linear program
	Two-player, product desirable set
	Multi-player, general desirable set

	Supermodular games

	Experiments
	Experiments Setup
	Experimental Results

	Conclusion

