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ABSTRACT
Intelligent systems that interact with humans typically re-
quire input in the form of demonstrations and/or advice for
optimal decision making. In more traditional systems, such
interactions require detailed and tedious effort on the part
of the human expert. Alternatively, active learning systems
allow for incremental acquisition of the demonstrations from
the human expert where the learning system generates the
queries. However, active learning allows for only labeled ex-
amples as input, significantly restricting the interaction be-
tween expert and learning algorithm. Advice-based learning
systems increase the expressiveness of the interaction, but
typically require all the advice about the domain in advance.
By combining active learning and advice-based learning, we
consider the problem of actively soliciting human advice. We
present the algorithm in an inverse reinforcement learning
setting where the utilities are learned from demonstrations.
We show empirically the contribution of a more expressive
advice over traditional active learning approaches.

Keywords
Inverse Reinforcement Learning; Advice-based Learning; Ac-
tive Advice Seeking

1. INTRODUCTION
In Inverse Reinforcement Learning (IRL), an autonomous

agent tries to explicitly learn the reward function (utilities)
of a Markov Decision Process (MDP) by observing demon-
strations. The observations include the demonstrator’s be-
havior over time (i.e., actions), measurements of the demon-
strator’s sensory inputs (i.e., states) and the model of the
environment. IRL was introduced [16] as a linear program-
ming problem for finite state spaces and was later extended
in different directions including apprenticeship learning [1],
Bayesian learning [17], multi-task learning [14], and learning
in partially observable environments [4]. While successful,
these methods assume optimality of the trajectories, which
are simply sequences of current state and action pairs.

A recent approach [9] went beyond the simplifying as-
sumption of optimality of trajectories, by considering the
presence of a human expert who specifies reasonable advice.
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The pieces of advice were given as preferences over states
and actions and were inspired by the preference elicitation
frameworks [2, 24, 18]. A key feature of this approach is
that the experts are domain experts and not machine learn-
ing experts. As an example, the expert could specify “com-
pletely stop at all stop signs - do not make a rolling stop” in-
stead of specifying that “the reward of stopping completely
at this specific stop sign is twice that of making a rolling
stop” 1. While capturing more expressive communication
between the expert and learning algorithm, this approach
required the expert to list all the advice in advance before
any learning takes place. The domain experts often lack the
machine learning knowledge to understand the most useful
advice. They may instead provide the broad trends as advice
that would otherwise clearly follow from the demonstrations.
This is a disservice not only to the learning algorithm, which
may not get informative advice, but also to the expert who
has their time squandered.

An ideal human-in-the-loop agent should determine where
to solicit advice and when it has accumulated sufficient ad-
vice. We propose to employ the concept of active learning
[20] for this task. Active Learning is a paradigm that has
been extensively applied to supervised learning where the
learning algorithm works by (actively) selecting a small but
representative set of examples to be labeled by the expert.
While active learning has been traditionally applied to solic-
iting example labels, it has not been considered in the realm
of seeking advice from an expert which is crucial in reducing
the burden of the expert when providing the combination of
trajectories and advice.

We introduce active advice-seeking where the goal is to
select areas in the feature space to solicit advice from the
expert. Actively seeking advice has two distinct advantages
over active learning. (1) While active learning is constrained
to selecting a single example to label, an active advice-seeker
can get advice over a larger section of the feature space. This
allows the learner to query about similar areas of the feature
space together, potentially reducing the number of advice
that the learning algorithm requires. (2) Traditional active
learning is also limited from the perspective of the commu-
nication with the expert as the only information the expert
is allowed to provide is a label for a given example. Advice
can be much more expressive, for example, by allowing a set
of optimal labels instead of a single label.

We make the following key contributions: (1) We present
the first algorithm for actively soliciting advice from experts.

1The framework is capable of expressing both forms of ad-
vice.
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(2) We show how the algorithm automatically clusters states
and computes uncertainty over these states to solicit this ad-
vice. (3) We show how the advice can then be incorporated
into the IRL setting. (4) Finally, we demonstrate the efficacy
of the proposed approach in standard IRL problems and a
real-world drone navigation task. The results clearly show
the robustness of the approach as compared to obtaining all
the advice in advance.

2. BACKGROUND

2.1 Inverse Reinforcement Learning
Inverse Reinforcement Learning (IRL) is a learning frame-

work that learns a reward function based on demonstrations
of an expert policy [16]. IRL relies on the expert to act op-
timally (or near-optimally) and to visit many states in the
world. Together, these allow the learner to generate appro-
priate rewards for the states. IRL is related to Imitation
Learning [6, 8, 15] which learns the policy directly from the
demonstrations as opposed to learning the reward function.
The reward function, used to obtain the optimal policy, mir-
rors the internal reward function of the demonstrator. IRL
is useful in domains where defining the reward function is
difficult or tedious, but providing demonstrations of the cor-
rect behavior is more practical.

Early work on IRL used linear programs to solve for the
reward function [16]. The demonstrations were broken down
into constraints on the value of each state. These constraints
relied on the vector form of the Bellman equation:

vπ = (I − λPa∗)
−1r

where vπ is a vector that represents the value function, I is
the identity matrix, Pa is the probability transition matrix
for action a, Pa∗ is the expert’s probability transition ma-
trix, and r is the reward function. This form of the equation
is used to create a set of constraints on the optimal policy
(π∗(s) = a∗) [16] where A is the set of actions.

(Pa∗ − Pa)(I − λPa∗)r ≥ 0 ∀a ∈ A \ a∗

These constraints are used in the resulting linear program
along with bounds on the range of possible reward values.
These original constraints (shown in red in equation 1) max-
imize the difference between the value of the demonstrated
action and all other actions. Unfortunately, the standard
IRL formulation relies on having correct constraints for each
state in order to learn an accurate reward function. Noisy
demonstrators or rarely visited states that are not visited by
near-optimal policies can violate this assumption.

max
r,ξi,ζj

− ‖r‖1 + λt

n∑
i=1

ξi + λa
∑
j∈Se

ζj

s. t.

(P ia∗ − P
i
a)B r ≥ ξi, ∀ a ∈ A \ a∗, i = 1, . . . , n,

(P ja − P ja′)B r ≥ ζj + δj , ∀ a ∈ Prj , a
′ ∈ Avj , j ∈ Se,

ζj ≥ 0, ∀ j ∈ Se,
|ri| ≤ rmax, ∀ i = 1, . . . , n.

(1)
Kunapuli et al. [9] extended the IRL formulation to in-

clude expert advice that is capable of correcting sub-optimal

demonstrations. They include additional constraints2 (shown
in blue in equation 1) that allow an expert to specify a set
of preferred and avoided actions for a given state. Similar to
the original constraints, they enforce that the value of pre-
ferred actions be higher than the value of avoided actions.
This is captured in the following inequality:

min
a∈Prj

qπ(j, a)− max
a′∈Avj

qπ(j, a′) ≥ 0

where Prj and Avj are the set of preferred and avoided
actions for state j. These two sets should be mutually ex-
clusive (Prj ∩ Avj = ∅). While each set should not be
empty, the set of preferred and avoided actions need not be
exhaustive (2 ≤ |Prj | + |Avj | ≤ |A|). Furthermore, advice
can be given for as many (or as few) states as the expert
defines.

Their method of advice-giving has two key drawbacks: 1)
they assume that the expert must give each advice individ-
ually (Prj and Avj are only for state j) and 2) the expert
is responsible for defining the set of useful advice. While
knowledgeable about the domain, an expert may not be fully
aware of what advice the learning algorithm would find most
useful. Furthermore, giving advice over single states is not
practical in large domains.

To deal with these key issues, our ADVISE framework
queries the expert for advice in a particular set of states
automatically instead of requiring the advice up-front. This
allows for Prj and Avj to be given with respect to set j.
Furthermore, the responsibility for giving the correct advice
is off-loaded from the expert and placed squarely on the
learning algorithm.

2.2 Active Learning
In standard machine learning, a labeled dataset is pro-

vided. However, in many problems such as information ex-
traction or medical diagnoses, it is not trivial to obtain la-
beled examples. In many of these problems, there is a wealth
of unlabeled examples, such as free text, that can be used
for learning. Active Learning [20] relies on the fact that if
an algorithm can only solicit the label of a limited number
of examples, then not all examples provide the same amount
of information. The goal of active learning is to iteratively
select the most informative examples to be labeled.

One of the most common ways of selecting an example
is uncertainty sampling [10] where the learning algorithm
selects examples based on the quality of its prediction (pos-
sibly entropy or disagreement among an ensemble of classi-
fiers). After receiving additional labels, the updated predic-
tions result in different uncertainties.

Active learning has been applied to SVMs [19], Bayesian
Networks [22, 23], and in sequential decision-making tasks
including IRL [13] and imitation learning [3, 8, 5]. As previ-
ously shown, active learning has unique challenges in IRL [13].
IRL learns a reward function based on trajectories as an
intermediate step. Standard reinforcement learning tech-
niques can then be used to achieve a final policy. Unfor-
tunately many reward functions may result in similar poli-
cies so uncertain reward functions do not imply uncertain
policies. We handle this issue by defining an uncertainty

2Their formulation allows for providing advice to state, ac-
tions or rewards. We present only the action advice since it
is the formulation we consider in this work.
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function that considers the multiple levels of potential un-
certainty. This is described in detail later.

Active advice-seeking is distinct from standard active learn-
ing as it solicits more expressive advice than mere labels.
Advice is more general (applying to a set of states vs a single
state) as well as more expressive (allowing for label prefer-
ences as opposed to a single label). Note that the expert
is responsible for providing advice that is most characteris-
tic of a set of states. Therefore, more information can pass
between the advice-giver and learning algorithm with each
query. The generality of the queries posed to the human
expert can depend on their availability. The more available
the expert, the more specific the questions. Alternatively,
the advice-seeker can be more general when constrained to
fewer queries.

3. ACTIVE ADVICE-SEEKING
The goal of the active ADVIce-SEeking (ADVISE) agent

is to iteratively accrue advice about different areas of the
state space. As the advice accumulates, the learning agent
should become more confident about its current policy. While
it may be possible to acquire advice about every state, such a
strategy is not practical for the advice-giving expert. There-
fore, the agent’s learning algorithm targets areas of the state
space that it believes are uncertain. Conceptually, it is im-
portant to select both useful areas to query as well as areas
which are likely to have similar advice as the expert will give
advice about the entire area jointly. As in active learning,
the overall goal of ADVISE is to achieve high performance
with few queries to the expert.

There are two key reasons why our advice is more expres-
sive than the examples used by standard active learning.
First, the expert is queried over a set of states. This means
that the expert must generalize advice over these (possibly
significantly different) states. Second, the expert’s response
is over the set of (possibly partial) label preferences. Thus,
there could be multiple reasonable responses that an ex-
pert could give. As our advice is more expressive, more
information can be received by the learning agent for every
interaction with the expert.

For example, consider an agent learning to drive a car. In
the active learning framework, the agent might solicit which
action to take at a yellow light at the intersection of Sev-
enth Ave and Broadway. However, any such advice is not
broadly applicable as it fits only to the specific situation. Al-
ternatively, in our ADVISE framework, an agent could ask
for advice at any yellow light at any (or a set of) intersec-
tion(s). Notice that the advice is able to cover significantly
more states which all share similar advice. The expert might
respond that braking is the preferred action and accelerating
is the avoided action. This intentionally leaves out turning
the wheel as the driver might be preparing for a right turn.
However, current classical active learning methods cannot
handle such advice and are limited to specific example la-
bels.

The framework (shown in figure 1) begins by learning a
policy from only the expert demonstrations. This allows the
algorithm to calculate the best advice query using only the
demonstrations. Next, the algorithm seeks advice to correct
any deficiencies in the policy by: calculating the uncertainty
of the state-clustering, soliciting more advice, and finally
updating the current policy.

The algorithm can continue collecting advice as long as

Figure 1: A framework for active advice-seeking.

necessary to learn a high-quality policy. While we do not
explicitly address the problem of discovering how much ad-
vice is sufficient to learn a good policy, there is a frame-
work called Knows-What-It-Knows (KWIK) [11] that rea-
sons about the sufficient amount of training data. Such an
approach could be extended to apply to our advice-based
framework. However, this is beyond the scope of this work.

3.1 Problem Formulation
Now, we will formally define the problem and describe it

with an intuitive running example.

Goal : Iteratively solicit advice from the expert to

learn a better policy.

Input : Demonstrations, the set of states/actions,

and limited time of expert access.

Output : A final policy.

The main goal of our framework is to learn a more robust
policy by iteratively soliciting advice from the human ex-
pert. In previous work [9], experts would be responsible
for providing all the relevant advice up-front. This places
immense burden on the expert to deeply understand both
the domain problem and the learning problem to provide
accurate and relevant advice. In many real situations, the
domain expert may not be aware of the data available to the
learning algorithm. Thus, while the advice will be accurate,
it may not be relevant.

We instead formulate the problem of active advice-seeking
as an iterative process that aims to solicit relevant advice at
each step. Advice received in the previous rounds could ef-
fect the advice needed in subsequent rounds. As often in
active learning, we assume that there is an advice budget
and after that budget is exhausted, the final policy is re-
turned. Our hypothesis, which we verify empirically, is that
this policy represents both the best of the advice as well as
the best of the data. The framework is shown in figure 1.
The key steps of the algorithm are emphasized in grey and
will be explained in detail later. We now introduce a running
example and use it to explain our algorithm.

Illustrative Example: Consider the example grid nav-
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Figure 2: Illustrative example of the ADVISE algorithm for
the WumpusWorld domain. The arrows show the actions
demonstrated by the human expert. The colors show an
ideal clustering of the states. Ideally the algorithm will se-
lect the dark grey cluster early to correct the sub-optimal
actions.

igation problem in figure 2. The goal is to begin in the
upper left state and navigate the grid to reach the lower
right state. The arrows inside each cell show the most likely
action demonstrated by the expert3 in that cell (state). No-
tice how in most of the states the expert gives the correct
demonstration. However, the expert makes a mistake on the
three middle states in the bottom row (shown in dark grey).
The first goal of the algorithm is to cluster the states into
sets of similar states. We hypothesize that this will allow for
noisy demonstrations to be clustered together. One example
clustering is shown through highlighted colors. The second
step is to select the cluster with the most uncertainty. Ide-
ally, the dark grey cluster will be selected first and advice
will be given to correct the policy in these states yielding
a better policy than the one obtained with only the noisy
trajectories.

We now define the key concepts of our system using the
above example. As we are utilizing an advice-based IRL
framework [9] (introduced in the background), the form of
our advice is action preferences (sets of preferred and avoided
actions). It is important to note that while we share a sim-
ilar form of advice with Kunapuli et al [9], the goal of this
work is to solicit advice from the expert automatically. We
now formally define advice using previous notations,

Definition 1. Advice is a set of preferences (ai ∈ Adv).
Each piece of advice is given relative to a cluster of states
(ci). It consists of a set of preferred actions (Prci) and a
set of avoided actions (Avci).

The ADVISE algorithm automatically identifies states of in-
terest (j of the blue constraints in equation 1)4. Note that
our framework allows j to be a set of states (as opposed to a
single state). The expert then provides the set of preferred
(Prj) and avoided (Avj) actions for these states. Note that
the states in a cluster could be diverse and the expert is
responsible for giving the best representative advice for the
entire cluster. Following standard terminology, we refer to
a grouping of states as a cluster. A single piece of advice is
provided to cover the entire cluster. More formally,

3Note that this expert who is generating the demonstrations
may be different from the advice-giving expert.
4We denote sets as bold.

Definition 2. Cluster c is a set of states, < s1, s2, ..., sn >
such that π(si) ≈ π(sj)∀si, sj ∈ c

Recall that a policy (π) defines a distribution over the ac-
tions for each state [21]. As advice is provided over the entire
cluster, it is key that the states in the cluster have similar op-
timal (or near-optimal) policies. There is a trade-off between
the size of the clusters and the accuracy of the clusters. As
the size of the clusters are increased, the learning algorithm
receives more information. However, as smaller clusters will
be more accurate, the learning algorithm receives a higher
quality of information.

Example 1. In our illustrative example (figure 2), advice
1 could be comprised of c1 =< s12, s13, s14 > where s11 is
the lower left state (states shown in dark grey). The pre-
ferred action should be Prc1 = {RIGHT} while the avoided
actions should be Avc1 = {UP,DOWN,LEFT}.

Given a set of clusters, the algorithm must decide how to
prioritize (or rank [12]) the clusters so that it is receiving the
most useful information at each step. This is important as
the advice-giving expert may have limited availability with
which questions can be answered. This is similar to the ac-
tive learning problem discussed earlier [20]. As used in active
learning, our proposed approach calculates the uncertainty
of each cluster and solicits advice for the most uncertain
clusters.

IRL has two sources of uncertainty. (1) The inputs (demon-
strations) can be ambiguous in some states about the cor-
rect actions due to either too few demonstrations in those
states or through mistakes– incorrect actions. (2) The other
source of uncertainty is that the output (final policy) may
not clearly delineate an action for the agent. Therefore, we
define the uncertainty of a state as a combination of these
two types of uncertainty.

Definition 3. State-level uncertainty Us(si) is given by
Us(si) = wpF (si) + (1−wp)G(si) where F (si) is the uncer-
tainty w.r.t the number of demonstrations provided for state
si, wp is the corresponding weight and G(si) is the uncer-
tainty w.r.t the policy learned for state si.

Uncertainty at the cluster level is a function of the uncer-
tainty of each state assigned to that cluster.

Definition 4. The cluster-level uncertainty Uc is given

by Uc(cj) =

∑
si∈cj

Us(si)

|cj |
.

The two types of uncertainty will be discussed in detail
later. The overall goal of active advice seeking is to identify
a set of advice out of all possible advice (a ⊆ Advice),
limited by the access to the expert, that minimizes the total
uncertainty of all states in the problem. The quality of the
advice is also a major concern. Let us denote sa = {c1 ∪
c2, ...,∪ck} as the set of states covered by the k pieces of
advice a = {a1, a2, ..., ak} and sb = S − sa. Formally the
goal is to find:

arg min
a

f(a)[Uc(sa) + Uc(sb)] (2)

where f is a function of the quality of the advice which
includes both the size and consistency of the cluster of states
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over which the advice is defined, and Uc is the cluster-level
uncertainty.

Unfortunately, this global optimization problem of mini-
mizing cluster-level uncertainty is not tractable. If the size
of the example space is n, then the number of possible clus-
ters of examples (and thus the potential advice given) is
exponential in n. Furthermore, the advice-quality function
is not trivial as it involves estimating the cohesion of the
individual clusters (how similar are the states in the cluster
in terms of their optimal policy).

Instead, we present an approximate method that involves
generating clusters of examples without considering their
quality (i.e. uncertainty). After the clusters have been spec-
ified, our agent ranks the generated clusters and solicits ad-
vice over the clusters in that order. This gives rise to the two
important components of active advice-seeking (ADVISE is
shown in algorithm 1): 1) stateClustering - Clustering
the states over which to ask for advice, 2) selectQuery -
Deciding what order to query the clusters for advice. We
will discuss each component respectively.

3.2 Creating the State-Clustering
One key difficulty for ADVISE is deciding the parts of the

state/action space where advice would be most beneficial.
Assuming that there are a set of n states (s1, s2, ..., sn), the
goal of group discovery is to find m clusters (c1, c2, ..., cm)
that are likely to have similar optimal actions (ie ∀ si, sj ∈
ck, π(i) ≈ π(j)). Since the optimal policy is unknown, π has
to be approximated.

Our approach is to use the demonstrator’s action distri-
bution as an estimation of π. Furthermore, we assume that
experts do not always choose sub-optimal actions randomly,
but instead they make systematic errors in certain kinds of
states. For instance, if a driver rolls through a stop-sign
at one intersection, he is likely to roll through most inter-
sections. Note that it is trivial to add any structural in-
formation about the states that exist in the world. Such
information could have significant utility in identifying sim-
ilar states. However, as this information does not exist in all

Algorithm 1 ADVISE Algorithm

function advise(AdvBudget,Expert,States,D)
aDist = parseDem(D)
advice = ∅
π0 = IRL(D,adv)
clusters = stateClustering(aDist)
for k = 1 to AdvBudget do

query = selectQuery(clusters,aDist,πk−1)
newAdv = Expert(query)
adv = adv ∪ newAdv
πk = IRL(D,adv)

end for
return πk

end function
function selectQuery(clusters,size,aDist,π)

for i = 1 to size do
Uc(i) =

∑
s∈clusters(i)uncertainty(aDist,π,s)

end for
return arg maxi Uc(i)

end function
function uncertainty(aDist,π,s)

F (s) = entropy of aDist(s)
G(s) = entropy of π(s)
return wp · F (s) + (1− wp) ·G(s)

end function

domains, we use the same information that is used in IRL to
learn the reward functions - the state id. We use k-means [7]
to cluster states based on the policy of the demonstrator.
However, any clustering algorithm could be used to replace
k-means. While this will not produce optimal state-clusters,
the goal is only to create a reasonable clustering. Our em-
pirical evaluation will show that this approach can create
reasonable clusters that are useful in learning.

It must be mentioned clearly that the goal of this work is
not to propose an interesting clustering algorithm but mo-
tivate the need for clustering the states so that they could
be queried for advice. As experiments show, a basic algo-
rithm such as k-means can possibly suffice in many domains.
Investigating specialized clustering techniques that can bet-
ter cluster the states is an interesting direction for future
research.

3.3 Ordering the Clusters
Now that the state-clusters have been created, the algo-

rithm must decide the order in which to query the clusters.
A common method in traditional active learning is called un-
certainty sampling [20] that selects examples based on the
entropy of the predicted labels (or another uncertainty mea-
sure). In IRL, we calculate the uncertainty w.r.t. each state
in the feature space. The idea is to ask for more informa-
tion about states for which the learner is less likely to know
the correct action. While the first step of IRL is to learn a
reward function, the final output of interest is still a policy,
i.e., a mapping from each state to a distribution over the ac-
tions. The uncertainty with respect to the reward function
may not be equivalent to the uncertainty with respect to the
policy as there are many reward functions that result in the
same policy [13]. To counter this issue, our approach seeks
to combine two potential sources of uncertainty in IRL. The
uncertainty might be either due to the paucity of demon-
strations or due to the final policy learned from the reward
function.

Uncertainty w.r.t. the demonstrations (F (si)) can be cal-
culated as the entropy [F (s) = −

∑
a∈A Ps(a)log(Ps(a))] of

the distribution of actions a taken by the expert in state s.
As not all states may be visited, Laplace smoothing can be
used to ensure there is a valid action distribution in each
state. We expect that as the number of actions taken in a
particular state by the demonstrator increases, there will be
less uncertainty about the reward learned in that particular
state.

Uncertainty w.r.t. the policy is more complicated as the
final policy is only optimal w.r.t. the learned reward func-
tion [21] which is calculated from the set of demonstrations
and advice. As the advice changes, new reward functions
must be induced leading to different uncertainty over the
policy space unlike the uncertainty over the demonstrations
which remains constant. There are also various policy strate-
gies once the value function (or q-values) have been learned
including ε-greedy or Boltzmann distribution. We use the
Boltzmann policy:

p(si, a) =
eQ(si,a)∑
b∈A e

Q(si,b)
(3)

Then, entropy is used to calculate policy uncertainty.
It is important to mention that the states chosen to solicit

advice are the best states to get advice w.r.t. the most
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Figure 3: Experimental Domains: WumpusWorld (LEFT), Sailing (CENTER), Traffic (RIGHT)

current reward function. After getting advice, the learner
should be able to learn an improved reward function that
will in turn provide a potentially different set of uncertain
states from which to collect additional advice.

As we will show in several experiments, the ADVISE algo-
rithm is simple, yet effective, in reducing the burden on the
expert in two ways. First, while our advice is propositional,
we seek general (applying to multiple states) advice as op-
posed to querying about each state individually. When the
state-clusters are large, this reduces the number of queries
posed to the expert. The size of these groupings can be
controlled based on the query budget. Second, we select
the most uncertain queries first. Our hypothesis, which we
verify empirically, is that we get sufficient advice even with
very few queries.

4. EXPERIMENTS
To evaluate our ADVISE system, we aim to answer the

following questions:

General

Q1: Is cluster-level advice effective?

Q2: Does our algorithm correct sub-optimal behaviors?

Q3: Is our algorithm effective in large, realistic problems?

Clustering/Uncertainty Measure

Q4: How effective is the stateClustering in identifying
states with similar optimal actions?

Q5: Does the uncertainty function correctly order clusters?

Q6: How sensitive is the algorithm to sub-optimal state-
clusterings?

We demonstrate the performance of ADVISE in three
standard domains and one real-world application. In con-
trast with earlier work [9] focusing on random noise, the
demonstrations in our experiments were systematically noisy
in certain states. Thus the demonstrator would choose sub-
optimal actions in those states. Random actions are also
selected with ∼10% chance to ensure that they cover the
state space. We use GLPK 5 LP solver to learn the rewards
and perform value iteration [21]. We consider our expert to
be always correct for the purposes of the experiments and
use parameter settings λt = 1000, λa = 500.

WumpusWorld (figure 3.LEFT) is an adaptation [9] of
a classic domain [21] containing a 5 × 5 grid with several

5http://www.gnu.org/software/glpk

obstacles. The goal is to navigate the grid, avoid the ob-
stacles, and reach the goal state. If the agent enters a state
with an obstacle, it loses. The agent can move in four direc-
tions. Noise is introduced in specific states by performing
sub-optimally. As the goal of this domain is to reach the
goal state, performance is measured by the number of times
the learned policy is able to reach this state. The results in
this domain are from 100 independent trials for learning the
reward function.

The sailing domain (figure 3.CENTER) is a navigation
domain where the goal is to sail from one side of a lake to
the other. Running aground on the lake causes the agent to
crash. The domain is stochastic as wind causes an uncertain
transition function, pushing the agent off course depending
on the direction of the wind. Our sailing domain consists of a
5 × 5 grid with 2 configurations of the wind. The agent may
choose to sail across or laterally for 3 possible actions. As
the goal is to reach the dock on the other side, performance
is measured as the number of times the agent reaches this
state. The main experiment is over 100 independent trials
while cluster quality experiments are run 250 times 6.

The traffic signal domain (figure 3.RIGHT) controls
the signals at two intersections. Each stoplight has four
possible configurations to let cars through the light by letting
cars coming from a single cardinal direction through at once.
The different roads around these intersections have different
levels of traffic throughput resulting in 256 possible states.
The goal of this domain is to reduce the wait time of the cars
waiting at the intersection. All the results in this domain
are over 100 independent trials.

Finally, we consider a real-world drone flying domain
where the goal is to fly a quad-copter in a particular path.
The position of the drone is collected using a built-in GPS
sensor. In our experiments, we consider moving in the four
possible cardinal directions. We considered only a constant
altitude. The goal of the domain is to navigate the drone
through a sequential set of waypoints on the way to the fi-
nal position. We consider 3 waypoints (in each corner of a
room). The optimal path is shown in figure 4 along with
an image of the drone as it is navigating. Note that per-
formance is measured in the percentage of time the agent
reaches the waypoints in order and flies to the final desti-
nation. The agent has a finite number of opportunities to
reach the final state before the battery resource is depleted.
This domain is difficult for the demonstrator as the drone
controls can be imprecise. Therefore, the demonstrations
are noisy 40% of the time.

Methods considered: We compare the performance of
our ADVISE system (called Clustered Advice) to several

6Note that similar results can be shown with 100 runs.
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Figure 5: Results for varying the amount of advice in the WumpusWorld (UPPERLEFT), Sailing (UPPERRIGHT),
Traffic (LOWERLEFT), and Drone (LOWERRIGHT) domains. Performance is measured in domain-specific performance
measures. In all cases, our clustered advice outperforms the baselines.

Figure 4: The LEFT image shows an example of the op-
timal path that the drone should follow. It must visit the
waypoints (flags) in order before returning to the starting
position. The RIGHT image shows a screenshot of the drone
in action.

baselines including only (1) learning from the demonstra-
tions (called Only Trajectories), (2) learning from advice
over single states instead of advice over the entire clus-
ter (called Single Advice), and (3) learning with advice on
randomly selected states (called Random Advice). When
querying about a single state, the expert returns the advice
about that particular state. When querying about a group
of states, the human expert is responsible for giving advice

that is most relevant to the cluster. One possible metric that
we use in our experiments is providing preferred actions that
appear as optimal actions in the most number of states in
the cluster. While this is one strategy, human experts may
identify more important states in a cluster. Exploration of
these strategies is a area for future work.

Results: We will first discuss results from WumpusWorld,
Sailing and Traffic before explaining our progress in the
Drone Flying domain. Following the prior work on advice
giving, the domains we consider have systematic noise in
them. The hypothesis is that ADVISE will correct these
behaviors in the learned reward function and therefore in
the final policy. Please note that advice is provided only on
solicitation by the algorithm and not apriori. Consequently,
we evaluate our ADVISE algorithm in different ways: to
test whether the advice contributes to the policy, we com-
pare against only using the trajectories; to test whether
the stateClustering generates good advice, we compare
against soliciting single pieces of advice; to test the uncer-
tainty measure, we compare against random advice.

The results are shown in figure 5. Please note that in
WumpusWorld and Sailing, a higher goal reached % means
higher performance, while in Traffic, a lower wait time means
higher performance. There are several general trends across
all the domains. As the amount of advice increases, the
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Figure 6: Results for varying the quality of the cluster in the
WumpusWorld (LEFT) and Sailing (RIGHT) domains.
Performance is measured relative to the ideal clustering.

performance of the advice methods (other than random) in-
crease. It is clear that advice significantly contributes to the
learned policy in all domains (Q2). Furthermore, clustered
advice yields significantly higher gains much more quickly
than soliciting a single piece of advice (Q1). Not only is
performance higher with clustered advice, it also decreases
the number of queries an expert has to answer. This results
in significant time savings for the human expert.

For further analysis of these results, we computed the
quality of the learned clusters. We defined the quality of
the clusters to be the fraction of states which are in a clus-
ter with similar states (states with similar optimal actions).
Note we consider the plurality of the cluster to be similar and
all other states to be dissimilar. For reference, the minimum
possible value for this metric is 25% (WumpusWorld), 33.3%
(Sailing), 6.3% (Traffic). For these experiments (100 inde-
pendent trials), the quality of the clusters is the following:
94.2% (WumpusWorld), 91.3% (Sailing), 69.58% (Traffic).
Each of these domains has a fairly high value suggesting that
our algorithm is able to identify similar states (Q4). There
is also room for improvement suggesting that our algorithm
could perform better if the clustering algorithm could be
improved.

Ideally, the algorithm should target the sub-optimal re-
gions of the state space when requesting advice. Unfortu-
nately, this is very difficult to capture correctly. However,
as seen in the experiments, with only a few clustered pieces
of advice the algorithm significantly outperforms all of the
baselines. This is especially true in the Sailing and Traffic
domains. This suggests that our algorithm is able to target
these regions, thus answering Q5 affirmatively.

Varying Cluster Quality: As our method is dependent
on the quality of the clusters generated, we investigate how
varying the cluster quality impacts the performance. We re-
place the automatic clustering (StateClustering function
in algorithm 1) with a static clustering defined by experts.
These clusterings will be optimal in the sense that states ap-
pearing in the same cluster will require the same advice. We
then measure the performance of the algorithm as we per-
turb the static clustering. For example when cluster quality
is 50%, half of the states will be displaced into incorrect
clusters (and thus receive incorrect advice). We compare
the performance (goal reached % used in previous experi-
ments) of each sub-optimal clustering to the ideal clustering.
Therefore, a performance of 1.0 means that the performance
is equal to using an ideal clustering.

We present results for two domains: WumpusWorld (fig-

ure 6.LEFT) and Sailing (figure 6.RIGHT). As expected,
in both domains, as the cluster quality decreases, the perfor-
mance decreases. This confirms the suspicion that the clus-
tering technique is vital to taking the most advantage of ex-
pert advice. This answers question Q6 that the algorithm is
reasonably sensitive to sub-optimal state-clusterings. How-
ever, as seen in the previous experiments, our algorithm is
still able to improve performance by using reasonable ap-
proximations of the clusterings.

Real-World Application: In order to show the appli-
cability of our approach on realistic problems and not just
on standard benchmarks, we focus on a drone flying domain
where the goal is to control a drone as it flies to particu-
lar waypoints. This is an especially difficult problem as the
drone must visit the waypoints in a particular order to suc-
cessfully complete the task. We compare only our clustered
advise and using only trajectories as this domain represents
a proof of concept (figure 5.LOWERRIGHT). The diffi-
culty of the problem is clear as noisy trajectories are not
sufficient to learn a reasonable policy. However, our clus-
tered advice is capable of guiding the drone more reliably.
This domain suggests that our algorithm is effective in large,
realistic domains (Q3).

5. CONCLUSION
We have presented a new formalism for active advice-

seeking. Like traditional active learning, the learning al-
gorithm is responsible for querying the expert about areas
of uncertainty. However, unlike active learning, advice is
solicited over an area of the state space (multiple states) to
further reduce the queries directed to the expert. We demon-
strate our algorithm through an advice-taking for inverse re-
inforcement learning framework and develop an uncertainty
function for learning a policy through demonstrations. We
demonstrate the validity of our approach in three standard
domains and show its applicability to a real-world task. Im-
proving both the clustering technique and the uncertainty
measure are clear areas for future improvement. Also, our
technique could be improved through relational techniques
that would increase the expressiveness of our advice. Our
clustering of the ground states is a way of approximating the
underlying structure that relational techniques could make
use of more faithfully.
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