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ABSTRACT
We investigate the repeated version of Shubik’s [34] dollar
auctions, in which the type of the opponent and their level of
rationality is not known in advance. We formulate the prob-
lem as an adversarial multi-armed bandit, and we show that
a modified version of the ELP algorithm [25], tailored to our

setting, can achieve Õ(
√
|S0|T ) performance loss (compared

to the best fixed strategy), where |S0| is the cardinality of the
set of available strategies and T is the number of (sequential)
auctions. We also show that under some further conditions,
these bound can be improved to Õ(|S0|1/4

√
T ) and Õ(

√
T ),

respectively. Finally, we consider the case of spiteful play-
ers. We prove that when a non-spiteful player bids against a
malicious one, the game converges in performance to a Nash
equilibrium if both players apply our strategy to place their
bids.

CCS Concepts
•Theory of computation→Online learning algorithms;
Computational pricing and auctions;

Keywords
dollar auction; online learning; multi-armed bandits

1. INTRODUCTION
Conflicts are an integral part of human culture [8]. Whether
it is a competition of rival technological companies [38],
a battle of lobbyists trying to acquire a government con-
tract [15] or the arms race of modern empires [31], conflict
analysis has always been of interest to game theorists and
economists alike [18]. The analysis of conflict is also of nat-
ural interest analysed in AI and, especially, in Multi-Agent
Systems (MAS) literature [27, 37, 11]. Typically conflicts
in MAS used to be considered as failures or synchronisation
problems [40, 36]. More recently, however, the need for more
advanced studies has been recognized [10], including analy-
ses of conflict generation, escalation, or detection in MAS.

A very simple dollar auction introduced by Shubik [34]
provides a powerful framework to formalise and study con-
flict situations. In this auction two participants compete for
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a dollar by making bids just as in the regular English auc-
tion. However, both the winner and the loser have to pay
their final bids. In other words, this is an all-pay auction
which means that, once a player decides to participate and
make her first bid, any invested resources are irretrievably
lost. Consequently, the only way to gain any profit (or min-
imize the loss) is to win the dollar. However, since both
players are in the same situation, the dollar auction often
ends up with an irrational conflict escalation [23].

Interestingly, however, in a celebrated work, O’Neill [31]
proved that the first player has a winning strategy in the
dollar auction assuming pure strategies. In particular, if she
makes a bid that is a specific combination of the auction’s
stake, the budget of both players and the minimal bid incre-
ment, her opponent will never win the auction and should
therefore pass. For instance, if the price increment is $0.05
and both players have budgets of $2.50 each, then the first
player that has a chance to bid should offer precisely $0.60
and the other player should drop out. As a result, escala-
tion should never occur. The result by O’Neill suggests that
conflict escalation should never occur and if it does so in
real-life experiments, it has to be related to human bounded-
rationality or other factors not accounted for by the auction
model.

However, O’Neil’s result was re-examined by Leininger [23]
who showed the advantage of the first bidder vanishes con-
sidering mixed strategies equilibria and the auction esca-
lates. Demange [13] proved the same for settings where play-
ers are uncertain about each other’s strength. In addition,
Waniek et al. [39] showed that when used against a spite-
ful or malicious player, the optimal strategy proposed by
O’Neill can lead to severe loss.

One of the key deficiencies of all of the above results is
that they concern one-shot auction case, where the goal is
to investigate what would be an optimal bidding strategy in
the single auction. However, many real-world applications
consist of a sequence of auctions repeatedly played against
the same opponent [7, 20, 17]. In fact, many examples of
R&D competition, arms races, lobbying, or interactions in
MAS can be seen not as a single instance of an auction, but
rather as a series of confrontations. We will show later in
this paper that the nature of repeated encounters can be
leveraged in order to achieve good performance.

Typically in such repeated settings, there is little (if any)
prior knowledge about the opponent’s incentives, nor about
her rationality level. Second, while it is typical to assume
some (perfect or bounded) rationality model of the players,
it might be the case that the chosen bids do not follow such
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assumptions (e.g., due to lack of computational power, or
lack of perfect execution). As such, efficient bidding strate-
gies need to consider the uncertainty in both the incentive
and rationality of the opponent.

In this paper, we reconsider Shubik’s dollar auction but
now in the repeated setting. We ask whether it is possible
to design efficient bidding strategies, given the high level
of uncertainty and no prior knowledge of the opponent. Put
differently, we investigate whether a participant’s knowledge
about the opponent (gained in the previous encounters) can
give the participant an edge over her opponent so that the
escalation does not occur. To this end, we view the problem
from the perspective of online learning theory, where the
auctions are played against an adversary.

More specifically, we formulate the problem using an ad-
versarial multi-armed bandit model [5, 25], where at each
round we choose from a (finite) set of possible strategies S0

to play against the opponent. At the end of each round, we
observe the outcome of the auction and update our estima-
tion on the strategy’s fitness (i.e., how much expected profit
the strategy can achieve). Our model also assumes that there
is some level of interdependence between the different strate-
gies. That is, by observing an outcome of a specific strategy,
we can get some side information about the fitness of other
strategies. For example, if a particular strategy wins the auc-
tion with a (final) bid b, then any other strategies that shares
the same behaviour as the current one up to b (i.e., the lat-
ter is a prefix of the former), would also win the auction. As
such, we can also update our fitness estimate of the interde-
pendent strategies as well.

Given this, we prove that by applying ELP (i.e., “Expo-
nentially weighted algorithm with Linear Programming”)—a
state-of-the-art online learning algorithm proposed by [25]—

we can achieve Õ(
√
|S0|T ) performance loss 1 against the

best fixed bidding strategy (i.e., playing the same strategy
each round) in hindsight. In particular, since the regret is

sub-linear due to the square root in Õ(
√
|S0|T ), it implies

that the average regret per time step is converging to 0 as
T tends to infinity. Thus, the behaviour of ELP converges
to that of the best fixed strategy in hindsight. While this
result is a direct consequence of the performance analysis of
ELP from [25], our main contributions are to improve this
result to more concrete cases where we have some additional
conditions. Specifically:

• By allowing some additional side-information structure
(about the other strategies) that we obtain when ob-
serving the outcome of the chosen strategy, we prove
that the performance loss can be bounded with
Õ(|S0|1/4

√
T ), which is an improvement of |S0|1/4 (note

that this improvement is significant, especially when
|S0| is large);

• When S0 is the class of non-spiteful optimal bidding
strategies with different budget limits, and the oppo-
nent is deterministic (i.e., she chooses the next bids in
a deterministic manner), the performance loss of the

ELP-based bidding strategy is at most Õ(
√
T ).

Finally, we show that when the auction is played between a
non-spiteful and a malicious player, if both use ELP, they
will converge to a Nash equilibrium.

1The logarithmic terms are hidden in the Õ notation.

The remainder of the paper is organised as follows. We
start by introducing the basic definitions and notation, and
then outline our multi-armed bandit based bidding model.
We then describe the ELP algorithm, and analyse its perfor-
mance in different settings. The case of non-spiteful against
malicious player is discussed afterwards, followed by the con-
clusions. Appendix provides notation table for the reader’s
convenience.

2. PRELIMINARIES
In this section, we formally describe the two building blocks
of our problem, namely the dollar auction and the multi-
armed bandit model.

2.1 The Dollar Auction
The dollar auction [34] is an all-pay auction between two
players N = {0, 1}. We will often denote them by i and
j. The winner of an auction is given the stake s ∈ N. The
players can make bids that are multiples of a minimal bid
increment δ. Without loss of generality, we assume that
δ = 1.

While Shubik [34] considered the dollar auction without
any budget limit, following O’Neill [31], most subsequent
studies considered the setting in which players have limited
budgets b0, b1 ∈ N. In this paper, we assume that both play-
ers have equal budgets, i.e., b0 = b1 = b.

The players move in turns and the starting player is de-
termined randomly at the beginning of the auction. More-
over, the starting player i can either make the first bid,
pass and leave the auction, or let j move first. Once the
first bid has been made, any player making the move can
either make a bid higher than the opponent, or pass. In
other words, offering the turn to the opponent is only per-
mitted before the first bid is made. We denote by Xb the set
{(x, y) ∈ {0, . . . , b − 1} × {0, . . . , b − 1} : y > x} ∪ {(0, 0)}
where x is the last bid of the player currently choosing her
bid and y is the last bid of her opponent. Whenever it is a
player’s turn to make a bid, the dollar auction would be in
one of the states in Xb.

We assume that all the strategies in our setting are deter-
ministic. Let us now consider S the set of all possible strate-
gies in the dollar auction. We have S ⊂ Xb → {0, . . . , b},
where for any strategy f ∈ S, the value f(x, y) represents
the bid to be made by the player whose last bid was x and
the last bid of her opponent was y. For valid strategies we
have f(x, y) ≥ y, where f(0, 0) = 0 represents the decision
to let the opponent move first if the player starts (as it is
never rational for any player to pass if her opponent has not
made any bids yet), and f(x, y) = y represents the deci-
sion to pass in all other cases. Set of strategies S contains
all valid strategies, i.e., strategies that meet conditions de-
scribed above.

An auction ends when one of the players either passes or
makes the bid that her opponent cannot top (in a setting
with equal budgets this would mean bidding the entire bud-
get). The stake is then given to the higher bidder. However,
since this is an all-pay auction, both players have to pay
their final bids. The profit of player i from an auction that
ends with bids yi and yj is therefore:

pi =

{
s− yi if yi > yj ,
−yi if yi < yj .
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2.2 The Multi-Armed Bandit Model
We now describe the adversarial bandit model [6], a varia-
tion of the multi-armed bandit problem [33]. In particular,
it consists of T rounds, and a player can choose one of K
actions (traditionally described as different slot machines, or
bandits, hence the name of the multi-armed bandit model)
to play at each round. However, before the player chooses
her action to play, an adversary assigns an arbitrary reward
vector r(t) ∈ [0, 1]K , where r(t) = (r1(t), . . . , rK(t)), with-
out revealing it to the player. After the player chooses her
action it to play, the value rit(t) ∈ [0, 1], which represents
reward for performing action it in round t, is revealed to the
player as her (collected) reward. The goal of the player then
is to maximise her total collected reward over T rounds.

Let A denote the algorithm of playing actions chosen by
the player, which selects action it+1 at each in round t +
1 to perform (the choice of action may be based on the
observed results ri1(1), . . . , rit(t) of the previously chosen
actions i1, . . . , it). The total collected reward, or the return,
of algorithm A after T rounds is as follows:

RA(T ) =

T∑
t=1

rit(t).

Since the value of each r(t) is not revealed to the player, it
is impossible to maximise the term above without having any
additional information about r(t). Instead, the performance
of an algorithm is measured with a regret, which is defined
as the difference between the return of the best fixed action
over time and the return of the algorithm, namely:

UA(T ) = max
i

T∑
t=1

ri(t)−
T∑
t=1

rit(t).

Within our bandit formulation, the repeated dollar auc-
tion problem provides side information. Within the bandit
literature, the first work that fits our setting is the work of
Mannor and Shamir [25], which introduced the multi-armed
bandit model with side information. In particular, within
their model, action j is a neighbour of action i chosen by
the algorithm in round t if and only if for some fixed param-
eter d we are able to create unbiased estimator r̂j(t) of the
reward rj(t), i.e., E[r̂j(t)|action i chosen in round t] = rj(t)
and P(|r̂j(t)| ≤ d) = 1. Intuitively, we can use the knowledge
gained from the execution of action i to estimate the reward
of actions in its neighbourhood.

This extra information can be represented as a sequence
of graphs G1, . . . , GT with K nodes each. Let Ni(t) denote
the neighbourhood of node i in graph Gt, i.e., an edge from
i to j exists in graph Gt if and only if j ∈ Ni(t). Mannor
and Shamir proposed an algorithm, called ELP, to efficiently
tackle this bandit model. Here we will rely on the model of
Mannor and Shamir and the ELP algorithm, and fit them
to our setting of the repeated dollar auction.

3. META-BIDDING ALGORITHM
We now turn to the description of our bidding algorithm.
In particular, this algorithm is a meta-strategy that consists
of multiple dollar auction strategies played at each round,
in order to minimize the regret from the series of auctions.
To do so, we first describe the multi-armed bandit formula-
tion of our problem. We then define the neighbourhood of a

strategy within the strategy space. Finally we discuss how
to tailor the ELP algorithm to our setting.

3.1 Model Description
In our setting, a player takes part in a series of T dollar auc-
tions against the same opponent, each auction corresponds
to a single round in the multi-armed bandit model. We as-
sume that the player has at her disposal a set of strategies
S0 ⊆ S. Before each round t the player has to choose a
strategy ft ∈ S to be used in this particular round. Choice
of strategy corresponds to the choice of an action (a play-
ing arm) in the multi-armed bandit model. On the other
hand, her opponent also chooses her strategy (equivalent of
setting payoffs for each action). We do not put any explicit
restrictions on the strategy of the opponent.

The auction is played using chosen strategies and the
player achieves profit pft(t) ∈ {−b + 1, . . . , s}. The profit
is then mapped to reward rft(t), corresponding to the re-
ward in the multi-armed bandit model. We assume that al-
ways rft(t) ∈ [0, 1] (we normalise the rewards for the sake of
simplicity). In case of a non-spiteful player (i.e., player who
just wishes to maximize her profit) reward depends only on
her profit. We discuss the case of a malicious player, whose
reward depends on the profit of her opponent in Section 6.

Given this, a meta-strategy is an algorithm that chooses a
strategy to be used in each auction, based on the knowledge
about previous auctions. Note that it corresponds to the
algorithm of choosing an arm for each round in the multi-
armed bandit model. The goal of the meta-strategy A is to
minimize the regret after a series of auctions, regret being
the difference between sum of rewards after using single best
strategy in hindsight and after using a sequence of strategies
chosen by the meta-strategy:

UA(T ) = max
g∈S0

T∑
t=1

rg(t)−
T∑
t=1

rft(t).

3.2 Neighbourhood of a Strategy
We now define the relation of being a prefix strategy. In
particular, strategy g ∈ S is a prefix of strategy f ∈ S if and
only if ∀(x,y)∈Xbg(x, y) = f(x, y) ∨ g(x, y) = y. Intuitively,
in every moment of the auction g either makes the same
bid as f or passes. We can notice that f is also the prefix of
itself. We can finally define neighbourhood of the strategy f as
Nf = {g ∈ S : g is a prefix of f}. In fact, the following lemma
justifies that playing a strategy provides side information
about its prefixes.

Lemma 1. Assuming that player used strategy f in the
dollar auction, we know the result of an auction if player
used strategy g, that is a prefix of f .

Proof. After the auction using strategy f in round t we
know a sequence of states (x1, y1), . . . , (xn, yn) when player
was asked for a bid. If ∀ig(xi, yi) = f(xi, yi) then reward
rg(t) for using g in auction would have been exactly the
actual reward for using f , i.e., rg(t) = rf (t). Otherwise,
reward for using g would have been rg(t) = −xj , where j
is the lowest index such that g(xj , yj) = yj , as the player
would pass earlier than when using strategy f .

3.3 The ELP Algorithm
We now describe how the ELP algorithm [25] can be adapted
as a meta-bidding method in the dollar auction. The adapta-
tion is based on the usage of previously defined set of prefixes
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Algorithm 1 The ELP algorithm

Input: S0 ⊆ S, β, (γ(t))Tt=1, (∪f∈S0{qf (t)})Tt=1

∀f∈S0wf (1)← 1
|S0|

for t = 1, . . . , T do
for g ∈ S0 do

Pg(t)← (1− γ(t))
wg(t)∑

h∈S0
wh(t)

+ γ(t)qg(t)

ft ∼ P (t)
Play ft getting reward rft(t)
for g ∈ Nft do

Compute r̂g(t)

for g ∈ S0 do
if ft ∈ Ng then

r̃g(t)← r̂g(t)∑
h∈Ng(t) Ph(t)

else
r̃g(t)← 0

for g ∈ S0 do
wg(t+ 1)← wg(t) exp(βr̃g(t))

as the neighbourhood of the strategy, in order to determine
the potential profit of other strategies.

Algorithm 1 presents the pseudocode of ELP. The algo-
rithm uses strategies from the provided set S0 ⊆ S to play
a series of T dollar auctions, selecting a single strategy for
each auction. Typically for multi-armed bandits algorithms,
the ELP algorithm chooses between exploration (checking
new strategies) and exploitation (using so far most promis-
ing strategies to generate profit). This trade-off is expressed
by parameters γ(t) and qf (t) of the algorithm. We will dis-
cuss the exact values of these parameters, that provide low
regret bounds, later in the paper.

In round t algorithm selects strategy ft ∈ S0 using a prob-
ability distribution P (t) incorporating knowledge gained in
previous rounds. Knowing reward rft(t) received for using
selected strategy, algorithm computes reward r̂g(t) that would
have been received for playing strategy g from the neigh-
bourhood of ft in round t. Method of computing this reward
is given in the proof of Lemma 1. Basically, for auction where
player was making decision in states (x1, y1), . . . , (xn, yn) we
have r̂g(t) = rf (t) if ∀ig(xi, yi) = f(xi, yi) and r̂g(t) = −xj
(where j is the lowest index such that g(xj , yj) = yj) other-
wise.

This reward is used to construct probability distribution
in the next round. The higher the reward, the more probably
the strategy is going to be used in the subsequent rounds.

3.4 Regret Analysis
We now give an upper bound for the regret of the ELP
algorithm:

Theorem 2. Assume that the ELP algorithm is run us-
ing β ∈ (0, 1

2|S0|
), with (qf (t))f∈S0 parameters set such that

∀fqf (t) ≥ 0,
∑
f qf (t) = 1 and the value of

min
f∈S0

∑
g∈Nf (t)

qg(t)

is maximal (such values can be computed with linear pro-
gramming). Moreover assume that γ(t) parameters are set

to

γ(t) =
β

minf∈S0
∑
g∈Nf (t) qg(t)

.

In addition, let ε = mint,g γ(t)qg(t) > 0. Then the upper
bound on the regret of ELP is

UA(T ) ≤ 9βTα(G) log
6|S0|
α(G)ε

+
log(|S0|)

β
.

where α(G) is the independence number of the underlying
neighbourhood graph G of the strategies in S0.

Proof. Following the proof of Theorem 3 in [25]2, we can
show that

UA(T ) ≤ βTαG+ 2β

T∑
t=1

Pf (t)∑
s∈Nf (t) Ps(t)

+
log |S0|
β

From Lemma 13 of [2], we can further bound the second
term of the RHS as follows:

β
T∑
t=1

Pf (t)∑
s∈Nf (t) Ps(t)

≤ 2α(G) log
(
1 +

|S0|2
α(G)ε

+ |S0|+ 1

α(G)

)
+ 2α(G)

By using elementary algebra, the RHS can be further bounded
as:

β

T∑
t=1

Pf (t)∑
s∈Nf (t) Ps(t)

≤ 2α(G) log
(
e2
|S0|2
α(G)ε

+ |S0|+ α(G) + 1

α(G)

)
which can be further bounded with

β

T∑
t=1

Pf (t)∑
s∈Nf (t) Ps(t)

≤ 2α(G) log
(

9
4 |S0|

2

α(G)ε2

α(G)

)
= 2α(G) log

( 6|S0|
α(G)ε

)
Here we exploit the facts that 1 ≤ α(G) ≤ |S0| and 0 < ε <
1. This implies that

UA(T ) ≤ 9βTαG log
( 6|S0|
α(G)ε

)
+

log |S0|
β

which concludes the proof.

Choosing the value of β such that both components of the
bound are equal, we get the following:

Corollary 3. For β =
√

log(|S0|)
9Tα(G) log

6|S0|
α(G)ε

the bound de-

fined in Theorem 2 equals to

UA(T ) ≤ 6

√
α(G) log

6|S0|
α(G)ε

log(|S0|)T .

Note that here we have UA(T ) = Õ(
√
α(G)T ). However,

as S0 can be arbitrary, in the worst case scenario (when
there is no side information at all by playing any particular
strategy from S0), we have UA(T ) = Õ(

√
|S0|T ), which can

be quite large if the set of possible strategies S0 is large. A

2Note that the original proof of this theorem only consid-
ers oblivious opponents. However, by using the argument
introduced in [32], we can apply the proof to adaptive ad-
versaries as well.
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possible way to improve the bound is to make the underly-
ing neighbourhood graph denser. However, it is not trivial
to provide such improvements. For example, assuming that
even with a neighbourhood graph with a minimum degree
of constant m (i.e., m is independent from |S0|) would not
help much. In fact, we state the following:

Theorem 4. There exists S0 ∈ S with minimum neigh-
bourhood degree of m and a (randomised) opponent strategy,

such that if T > 374|S0|3, we have UA(T ) ≥ 0.6
√
|S0|
m+1

T for

any meta-strategy A.

Proof. From Theorem 4 of [25], we know that under the
conditions given in the theorem, the following holds:

UA(T ) ≥ 0.06
√
α(G)T

Now, we just need to show that there exists S0 with mini-

mum neighbourhood degree of m but α(G) ≥ |Str0|
m+1

. To do
so, consider a set of groups of m + 1 strategies such that
within each group, there is one chosen strategy and the rest
are a prefix of the chosen one. It is clear that the underly-

ing neighbourhood graph G has at least |S0|
m+1

cliques, which

implies that α(G) ≥ |Str0|
m+1

.

That is, even in this case, we still have UA(T ) = Ω(
√
|S0|T ).

Nevertheless, in the following sections, we investigate some
special cases of the problem, in which this regret bound can
be significantly improved.

4. BIDDING WITH RANDOM NEIGHBOUR-
HOOD GRAPH

We first start with the scenario when some additional infor-
mation are randomly added to the model. In particular, we
assume that apart from the side information observed for
prefixes of the chosen strategy, we have access to some ad-
ditional information that can reveal the potential outcome
of strategies other then the prefixes of the chosen one.

4.1 Random Neighbourhood
By random additional information, we mean that there is an
oracle in the system, to whom we can send our requests to in-
fer about the outcome of other (not-played) strategies, after
observing the outcome of our chosen one. This assumption
of having such an oracle is quite common in the online learn-
ing literature [42, 25]. Note that we do not consider query
costs here in our model. In addition, we also assume that
the result of a query is probabilistic, that is, it is revealed
with some probability v > 0. As such, we can represent
the neighbourhood graph of the dollar auction as a random
graph G(S0, v).

Random neighbourhood can model some additional ex-
pert knowledge acquired by the player. For example, dur-
ing the negotiations (modelled by the dollar auction) some
strategies can be considered more aggressive than others
(and likely giving similar result), despite not being the pre-
fix of each other (in the strict sense described in the pre-
vious sections). Another possible interpretations of the ad-
ditional information include results of intelligence gathering
in the arms race scenario (identifying the maximal number
of troops or weapon units that our opponent can use during
the conflict) or industrial espionage in the R&D competi-
tion scenario (abandoning research on technologies already
tested by the competition).

4.2 Regret Analysis
Given the random neighbourhood model, we now turn to
the regret analysis of the algorithm. In particular, we add
the following conditions to the model:

|S0| ≥ 8000 (1)

1 ≥ v ≥ |S0|−
1
10 (2)

The first condition is reasonable as we typically consider
large sets of strategies. The second condition guarantees that
the neighbourhood graph is quite dense in general. We state
the following:

Theorem 5. Suppose that conditions (1)-(2) hold. Under
the same conditions of Theorem 2, with probability at least
1− o(|S0|), we have the following regret bound for ELP 3:

UA(T ) ≤ 3|S0|
1
4

√
2 log

36|S0|
ε2

log(|S0|)T .

Proof. From [16] we have that with at least 1 − o(|S0|)
probability, the following holds:

α(G) ≤ 2

v

(
log |S0|v − log log |S0|v − log 2 + 2

)
Since |S0| > 8000 and v ≥ |S0|−

1
10 , this can further bounded

as:

α(G) ≤ 2

v

(
log |S0|v + 2

)
≤ 4

log |S0|
v

Note that we use v ≤ 1 here. Now, since v ≥ |S0|−
1
10 , we

have that

α(G) ≤ 4
log |S0|
|S0|−

1
10

≤
√
|S0|

The last inequality holds if |S0| ≥ 8000. Applying this to
Theorem 2 concludes the proof.

Note that here we have UA(T ) = Õ(|S0|
1
4

√
T ), which is a

|S0|
1
4 improvement, compared to the regret bound of the

general case. In the next section, we will show how this
bound can be further improved by taking a different ap-
proach of modifying the neighbourhood model.

5. BIDDING WITH THRESHOLD
Beside adding further side information to the model, another
way to simplify the underlying structure of the neighbour-
hood graph, and thus, to improve the induced regret bound,
is to restrict the type of behaviour each player can follow.
In this spirit, in this section we investigate a class of meta
strategies that provides this simplification.

To do so, we first discuss the optimal non-spiteful strat-
egy, proposed by O’Neill, that provides the basis of our class
of behaviours. We then describe how to create a class of
strategies, which we call optimal strategies with threshold.
Finally, we show that by restricting to this class of strate-
gies, we can further improve the previous regret bound with

another factor of |S0|
1
4 .

3Note that the o(·) notation here means that o(|S0|)→ 0 as
|S0| tends to infinity.
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5.1 The Optimal Non-Spiteful Strategy
We first start with the discussion of the pure strategy in
the dollar auction against a non-spiteful opponent that was
proposed by O’Neill [31]. In particular, O’Neill proved that
this strategy is optimal in terms of maximising the expected
utility of the non-spiteful player, when played against a non-
spiteful opponent.

Let the initial bid of the strategy be x0 = (b− 1)mod(s−
1) + 1, where b is the budget of both players, s is the stake
and 1 is the minimal bid increment. In addition, let xi =
x0 + i(s − 1) for i > 0 and let x−1 = 0. Given this, the

optimal strategy of O’Neill f̂ for y ∈ {xi−1, . . . , xi − 1} is:

f̂(x, y) =

{
xi if x = xi−1,
y otherwise.

5.2 Optimal Strategies with Threshold
Based on the optimal strategy of O’Neill, we now propose a
special class of strategies, using of which allow us to achieve
better regret bound for ELP. In particular, let f̂ ∈ S be
the optimal strategy by O’Neill described in the previous
section. We call a strategy fθ ∈ S a strategy with threshold
θ if and only if ∀y<θfθ(x, y) = f̂(x, y) and ∀y≥θfθ(x, y) = y

Note that a strategy with threshold follows the optimal
strategy by O’Neill up to a moment, when opponent’s bid
exceed threshold and then passes. The underlying intuition
of this class of strategies is that in many cases, the bidder is
rational (i.e., bidding optimally), but is also risk-aware. To
model the latter, we assume that the bidder is only willing
to bid up to a certain threshold value, although her bidding
budget would allow her to go beyond that threshold. As
such, we argue that this class of strategies with threshold
represents a realistic behaviour in many real-world situa-
tions.

5.3 Regret Analysis
We now turn to the regret analysis of ELP for the case of
bidding with threshold. In particular, we assume that we
only have access to the above defined class of non-spiteful
strategies with threshold.

Theorem 6. Assume that set S0 contains all strategies
with threshold θ ∈ {0, . . . , b} and no other strategies. Un-
der the abovementioned conditions and the settings of The-
orem 2, the regret bound of the ELP algorithm is at most:

UA(T ) ≤ 9βT log
6|S0|
ε

+
log(|S0|)

β
.

Proof. From Theorem 2 we have:

UA(T ) ≤ 9βTαG log
( 6|S0|
α(G)ε

)
+

log |S0|
β

where α(G) is the independence number of the information
graph G.

Given two strategies with threshold fθ and fΘ, where
θ < Θ, there is always an edge fΘ → fθ in the informa-
tion graph for all rounds. If auction was lost while using fΘ,
then auction would have also been lost using fθ and the re-
sult would be equal to −x, where x is a last bid of fθ. If
auction was won while using fΘ, we know the last bid of
opponent’s strategy y. Since fθ and fΘ follow the same se-
quence of bids, then for θ ≤ y auction would have been lost
with the result of −x (x being the last bid made by fθ) and

for θ > y auction would have been won with the result of
s − x (x being the lowest bid made by fθ higher than y).
Therefore, for the setting describe in the theorem, G is a
clique and α(G) = 1, which concludes the proof.

Again, choosing the value of β such that both components
of the bound are equal, we get the following:

Corollary 7. For β =
√

log(|S0|)
9T log

6|S0|
ε

the bound defined

in Theorem 6 equals:

UA(T ) ≤ 6

√
log

6|S0|
ε

log(|S0|)T .

Note that UA(T ) = Õ(
√
T ), which is an improvement of a

factor of |S0|
1
2 , compared to the regret bound of the general

case.

6. AUCTION AGAINST MALICIOUS OPPO-
NENT

So far we have shown that by applying ELP, we can still
achieve low regret performance, despite the fact that there
is no prior knowledge about the opponent’s motives, nei-
ther about her rationality. We now introduce the concept
of spitefulness and consider an auction against a malicious
opponent. As argued by Waniek et al. [39], there are vari-
ous real-world applications, in which the dollar auctions are
played between spiteful players, whose objective function
involves some linear combination of maximising one’s own
utility and minimising the opponent’s utility. For instance,
one may argue that certain moves of the USA or the So-
viet Union during the Cold War were designed to harm the
opponent even if it meant incurring some extra cost.

6.1 The Concept of Spitefulness
We interpret spitefulness as the desire of a player to hurt her
opponent. We follow the definition of spitefulness introduced
by Brandt et al. [9].

Any spiteful player i is characterised by a spitefulness co-
efficient σi ∈ [0, 1]. The higher the coefficient, the more the
player i is interested in minimizing the profit of her opponent
j. The utility function of a spiteful player is then:

ui = (1− σi)pi − σipj .

where pi and pj are the profits of corresponding players.
A player with the spitefulness coefficient σ = 0 is called a

non-spiteful player, and she is only interested in maximizing
her own profit. On the other hand, a player with spitefulness
coefficient σ = 1 is called a malicious player, and she is only
interested in minimizing the profit of her opponent.

6.2 Mixed Nash Equilibrium
We now consider a case when a non-spiteful bidder plays the
repeated dollar auctions against a malicious opponent, not
knowing that the opponent is malicious. In addition, our
opponent might not have full information about our non-
spitefulness either and might not follow a rational behaviour.
Given this, we assume that her strategy is taken from a set
of S1 ⊆ S.

If we knew the set S1 in advance (and the opponent also
knows our set of strategies S0), a mixed Nash equilibrium
can be easily calculated using standard arguments. However,
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as this knowledge is typically not available in advance, it is
impossible to calculate the Nash equilibrium. Nevertheless,
we show that if both players apply the ELP algorithm to
play their strategies, we can converge to a Nash equilibrium
point in performance.

Theorem 8. Let fi(t) ∈ Si, i ∈ {0, 1} denote the bidding
strategy of player i at round t, and we denote by fj(t) the
strategy chosen by i’s opponent. Let

f̃i =
1

T

T∑
t=1

fi(t),

f̃j =
1

T

T∑
t=1

fj(t)

mixed strategies denote the average of these chosen strate-
gies. Given this, for each T , there exists a mixed Nash equi-
librium profile (f∗i , f

∗
j ) such that

∣∣∣ri(f∗i , f∗j )− ri(f̃i, f̃j)
∣∣∣ ≤ Õ(√ |S0|

T

)
Proof. For the sake of simplicity we now map the profit

of a player i to reward ri ∈ [−1, 1] (instead of ri ∈ [0, 1] as
before). Reward ri = 1 of the non-spiteful player i corre-
sponds to a profit equal to the budget pi = b, and reward
ri = −1 of the non-spiteful player corresponds to a loss
equal to the budget pi = −b. Reward of the malicious player
is expressed as utility described in the previous section, i.e.,
reward ri = 1 of the malicious player i corresponds to a loss
of the non-spiteful player j equal to the budget pj = −b,
and reward ri = −1 of the malicious player i corresponds
to a profit of the non-spiteful player j equal to the budget
pj = b.

Given that assumption, note that when a non-spiteful
player bids against a malicious one, our problem can be re-
garded as a repeated zero-sum game. In fact, within this
game, each player i (with i ∈ {0, 1}) chooses from set of
bidding strategies Si, the received reward of player i is ri,
and the received reward of her opponent (due to the mali-
cious behaviour) is rj = −ri.

It is well known that in a 2-player zero-sum game, the
minimax value exists and does coincide with the (mixed)
Nash equilibrium. Given this, we only need to show that
the average behaviour of the players, when both apply ELP,
converges in performance to the minimax solution. To do so,
let u∗ denote the minimax value, which can be defined as
follows:

u∗ = max
fi

min
fj

ri(fi, fj) = min
fj

max
fi

ri(fi, fj)

where fi and fj are mixed strategies of players i and j, re-
spectively. For now we consider the case that player i (non-
spiteful) uses ELP, and player j can play any meta-strategy
{fj(t)}Tt=1. In addition, let BR(fi(t)) denote the best re-
sponse mixed strategy against player i’s fi(t) bidding strat-
egy. By denoting

∆T = 6

√
α(G) log 6|S0|

α(G)ε
log(|S0|)

T
,

from Theorem 2 we have that

1

T

T∑
t=1

ri(t) ≥ 1

T
max
f∈Si

∑
t

ri(f, fj(t))−∆T

=
1

T
max

f

∑
t

ri(f , fj(t))−∆T

where f is a mixed strategy over Si. The first inequality is
obtained from Theorem 2, while the second one is from the
fact that the mixed strategy belongs to the convex hull of
the pure strategies, and thus, cannot exceed the best pure
strategy. This can be further bounded as follows:

1

T
max

f

∑
t

ri(f , fj(t))−∆T ≥ 1

T
max

f

∑
t

min
g
ri(f ,g)−∆T

where g is a mixed strategy over Sj . This can be further
bounded as:

1

T
max

f

∑
t

min
g
ri(f ,g) ≥ max

f
min
g
ri(f ,g)−∆T

= u∗ −∆T

That is, we have

1

T

T∑
t=1

ri(t) ≥ u∗ −∆T

Similarly, we can prove (from the malicious player’s perspec-
tive) that

1

T

T∑
t=1

ri(t) ≤ u∗ + ∆T

which concludes the proof.

Note that this convergence in performance is a weaker
property, compared to the convergence in strategy (i.e., the
average behaviour of the players converge to the distribution
of the mixed strategy in the equilibrium point), as the latter
automatically implies the former, while the other way is not
true in general.

7. RELATED WORK
In this section we describe the bodies of literature concerning
important aspects of our setting: all-pay auctions, repeated
auctions and multi-armed bandit models.

7.1 All-Pay Auctions and the Dollar Auction
All-pay auctions were studied as a model multiple settings
where expenditure of the resource does not always guaran-
tee profit [24]. Some of them include political campaigns,
R&D competitions of oligopolistic companies [38], realizing
crowdsourcing enterprises [14] and international situation
analysis [34]. Aside from theoretical studies, there is also
experimental research [12]. The dollar auction is a widely
studied type of an all-pay auction[23, 22]. It is often used in
a classroom experiments serving a study of conflict escala-
tion among people [29, 19].

Recently, Waniek et al. [39] offered a preliminary study
of a dollar auction in which a spiteful player plays against
a rational opponent. The authors considered the setting in
which a non-spiteful bidder unwittingly bids against a spite-
ful one. In various scenarios in this setting the conflict esca-
lates. In particular, the spiteful bidder is able to force the
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non-spiteful opponent to spend most of the budget. Still, it
is the spiteful bidder who often wins the prize. Furthermore,
a malicious player with a smaller budget is likely to plunge
the opponent more than a malicious player with a bigger
budget. Thus, a malicious player should not only hide his
real preferences but also the real size of his budget.

7.2 Repeated Auctions
Modelling various processes as repeated auctions is a well
established idea [41]. Among other applications, it was used
for allocating tasks to robots [30] and assigning channels in
radio network [17]. Many authors concentrate on the prob-
lem of possible collusion in repeated auctions [3, 35, 26], fo-
cusing their attention on the effect of cooperation between
players on the income of an auctioneer [7]. Most of the pub-
lished results consider second-price auctions [20, 7], however
all-pay auction format was also studied [28].

7.3 Multi-Armed Bandits
The first multi-armed bandit models were designed to tackle
problems with stochastic rewards [33, 1, 4]. The first adver-
sarial setting was proposed by Auer et al. [5, 6]. However, in
the early years, adversarial bandit models were believed to
be only suitable against non-adaptive opponents. The argu-
ment that justified the usage of multi-armed bandits against
adaptive opponents was first proposed by Poland [32], whose
techniques was adopted by many more recent works. Man-
nor and Shamir[25] extended the adversarial bandit model
to the case when additional side information is provided to
improve the regret bounds of the model. Their work was
later improved by [2] and [21]. In particular, the former im-
proved the regret bound, while the latter focuses on the cases
when the neighbourhood graph cannot be fully revealed in
advance (i.e., before the chosen arm is played).

8. CONCLUSIONS
In this paper, we investigated the problem of repeated dollar
auctions in which players do not have prior knowledge about
the opponent’s spitefulness, neither her rationality level. We
proposed an adversarial multi-armed bandit model to effi-
ciently tackle this problem, in which the goal is to max-
imise the players’ total utility over time. We showed that
by using an adversarial bandit based meta-strategy, ELP,
we can indeed provably achieve good performance. We then
further improved this performance by considering additional
settings of the model: (i) dollar auctions with random neigh-
bourhood graphs; and (ii) playing optimal strategies with
thresholds. We also proved that in a special case of non-
spiteful player versus malicious player, if both use ELP to
make their decisions, the game converges to a mixed Nash
equilibrium in performance.

As a potential future work, we aim to extend our work to
repeated auctions where the auctions share the same budget.
That is, apart from making decision about which strategy
to use per each auction, the players also have to choose the
budget allocated to a particular auction, without exceeding
an a priori given global limit. As our current techniques
significantly rely on the fact that the current budgets are
given, it seems to be highly not trivial how to extend our
model to such settings. Furthermore, until now, the litera-
ture on the dollar auction focused on the case of two players.
Hence, it would be very interesting to extend all the results
to multiple players.
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APPENDIX

Table 1: Notation
Symbol Meaning
i,j Players participating in the auction
s Stake of the auction
δ Minimal bid increment
b Budget of both players
Xb States where player can make a bid
S Set of all valid strategies in the auction
S0 Set of available strategies
pi Profit of player i
T Number of rounds (separate auctions)
A Algorithm selecting strategies

RA(T ) Total reward of algorithm A after T rounds
UA(T ) Regret of algorithm A after T rounds
rf (t) Reward for using strategy f in round t
G Neighbourhood graph

α(G) Independence number of graph G
Nf Neighbourhood of strategy f
ft Strategy selected to use in round t

β,γ(t),qf (t) Parameters of the ELP algorithm
wf (t) Weight of choosing strategy f in round t
Pg(t) Probability of selecting strategy f in round t
r̂f (t) Estimated reward for using str. f in round t
v Prob. of revealing additional information

G(S0, v) Random neighbourhood graph of strat. S0

θ Threshold of a strategy
σi Spitefulness coefficient of player i
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