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ABSTRACT
This paper develops a strategy-proof and Pareto efficient
mechanism for a school choice program called Top Trading
Cycles among Representatives with Supplementary Seats
(TTCR-SS). We consider a setting where minimum quo-
tas are imposed for each school, i.e., a school is required
to be assigned at least a certain number of students to oper-
ate, and the obtained matching must respect initial endow-
ments, i.e., each student must be assigned to a school that is
at least as good as her initial endowment school. Although
minimum quotas are relevant in school choice programs and
strategy-proofness is important to many policymakers, few
existing mechanisms achieve both of them simultaneously.
Furthermore, existing mechanisms require that all students
consider all schools acceptable to obtain a feasible match-
ing that respects minimum quotas and cannot guarantee
Pareto efficiency. TTCR-SS is based on Top Trading Cy-
cles (TTC) mechanism, while it is significantly extended to
handle the supplementary seats of schools while respecting
minimum quotas. Our simulation results show TTCR-SS is
significantly better than an existing TTC-based mechanism
in terms of students’ welfare.

Keywords
Mechanism design; School choice; Resource allocation; Top
trading cycles

1. INTRODUCTION
Traditionally, a student is assigned to a public school

based on where she lives. School choice programs are imple-
mented to give students/parents an opportunity to choose
public schools. A seminal work [3] introduces the idea of
using a mechanism design approach for this issue by formal-
izing it as a problem of allocating indivisible objects with
multiple supplies (e.g., schools with seats) to agents (e.g.,
students).
In this paper, we consider the case where minimum quo-

tas are imposed, i.e., a school is required to be assigned at
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least a certain number of students to operate. Also, we as-
sume each student has a default school (that she would have
attended without the school choice program), which we call
her initial endowment. We also assume the initial endow-
ments satisfy all minimum quotas and require that a student
be allocated to a school that is at least as good as her ini-
tial endowment school. This requirement is natural since a
student would not want to attend a public school located
remotely away from her residence unless it offers some very
appealing characteristics.

Although minimum quotas are relevant in school choice
programs and strategy-proofness (i.e., no student ever has
any incentive to misreport her preference, regardless of other
students’ reports) is important to many policymakers, there
is a lack of strategy-proof mechanisms that consider them. A
notable exception [10] develops strategy-proof mechanisms
based on the Deferred Acceptance mechanism [11] that can
handle minimum quotas. However, there are two limita-
tions for applying their mechanisms in our setting. First, to
guarantee that their mechanisms obtain feasible matchings
(which respect minimum quotas), students must consider all
of the schools acceptable. This requirement is unrealistic
in our setting. The school choice program is intended to
provide more choices to students/parents. However, with
this requirement, students/parents are not allowed to de-
clare that some schools are unacceptable. Second, their
mechanisms cannot guarantee Pareto efficiency, which is a
standard efficiency criterion in economics.

Our newly developed mechanism is based on Top Trad-
ing Cycles (TTC) mechanism [26], which is a standard way
to improve students’ welfare with initial endowments. In
our setting, a school may have supplementary/empty seats,
i.e., it can accept more students than the initial endowment
students. By allocating supplementary seats, the welfare of
students can be improved. To the best of our knowledge,
there exists no TTC-based mechanism that can handle both
initial endowments and supplementary seats while respect-
ing minimum quotas.

Our mechanism is general enough to be applied to any
allocation problem of indivisible objects with multiple sup-
plies, where each agent has her initial endowment and mini-
mum quotas are imposed on the number of supplies for each
object. One possible application domain of our mechanism
is reallocation in a student-laboratory assignment problem.
In many universities in Japan, an undergraduate engineer-
ing student must be assigned to a laboratory to conduct a
project. However, it is difficult for a student to choose an
appropriate laboratory since her knowledge is limited. One
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possible remedy is to apply the following three-step proce-
dure: (i) students are assigned to laboratories using some
mechanism (e.g., [10]), (ii) students experience a certain
trial period, and (iii) each student has a chance to apply
to another laboratory if her interest changes or her current
laboratory fails to meet her expectations. Our new mecha-
nism can be used in Step (iii). It is natural to require that
no student is reallocated to a laboratory that is worse than
her current assignment. Also, it is natural to assume the
current allocation is feasible.
The rest of this paper is organized as follows. We show

a more detailed literature review in the rest of this section.
Then we introduce a formal model of our problem setting
(Section 2). Next we show a simple mechanism based on
TTC (Section 3), introduce our newly developed mechanism
(Section 4), and show its theoretical properties (Section 5).
Finally, we evaluate our mechanism by computer simulation
(Section 6).

1.1 Related literature
The problem of allocating objects to agents, when objects

are initially owned by agents who have strict preferences over
objects, is formulated as a housing market problem [26]. In
the paper, they introduce TTC due to David Gale, to show
that the core is nonempty. Roth and Postlewaite [25] fur-
ther show that the core is a singleton for strict preferences.
For the incentive property, Roth [23] shows that TTC is
strategy-proof. Ma [19] shows that a trading mechanism
is individual rational, Pareto efficient and strategy-proof if
and only if it is TTC. Later, TTC is generalized to the hi-
erarchical exchange mechanism [21] and to trading cycles
mechanism [22]. Abdulkadiroğlu and Sönmez [2] consider a
setting that resembles ours. In their setting, some houses are
initially owned by tenants while others are not. They mod-
ify TTC to this setting. The differences between [2] and our
work are that we consider the setting where multiple copies
of objects (seats of schools) exist and minimum quotas are
imposed. Erdil and Ergin [9] consider a setting in which
priorities are not strict. They also modify TTC to this set-
ting and develop the stable improvement cycles mechanism.
This mechanism is stable, but not strategy-proof.
School choice programs are identified as an important ap-

plication domain of TTC [3]. This work formulates a school
choice problem, in which the seats of schools are allocated to
students. Here, a school can have multiple seats, and each
school can have an idiosyncratic priority among students.
They also introduce a modified version of the original TTC
that is specific to a school choice problem, and the mecha-
nism is Pareto efficient and strategy-proof. Since then, TTC
in the setting of a school choice problem has drawn inde-
pendent research interest, and there are many directions of
research. One direction of research is to design the priority
structure of students for a given mechanism [13, 15]. An-
other direction of research is using an axiomatic approach
to characterize TTC [1, 6, 20].
In our paper, we consider a new kind of institutional con-

straint: minimum quotas. The scenario applies to the situa-
tion where for a group, institute, or school to be operational,
some minimum number of agents must be assigned to that
group, institute, or school. An example is Hungary’s college
admission [4].
In the context of school choice, minimum quotas are of-

ten imposed on different types of students (e.g., gender,

socioeconomic status) [5, 7, 8, 14, 16, 18, 27]. The crucial
difference between our setting and these works is that we
assume minimum quotas are hard constraints that must be
satisfied by any matching, while they treat minimum quo-
tas as “soft” constraints that may or may not actually be
satisfied.

Ehlers et al. [8] show that if the constraints are interpreted
as hard constraints, no mechanism that is fair and satis-
fies a definition that they call constrained nonwastefulness
can simultaneously be strategy-proof. Due to this impos-
sibility result, Fragiadakis et al. [10] develop two strategy-
proof mechanisms that renounce fairness or nonwastefulness.
Based on their work, Goto et al. [12] develop a strategy-proof
mechanism that can handle hierarchical minimum quotas.
We cannot use these mechanisms in our setting since they
do not respect initial endowments. Furthermore, they are
not Pareto efficient (note that Pareto efficiency implies non-
wastefulness but not vice versa).

For school choice programs, fairness is another important
criterion, and there exists a trade-off between fairness and
efficiency. If the welfare of students is the primary con-
cern, a policymaker should use a Pareto efficient mechanism.
For example, a school choice program in New Orleans uses
TTC [24]. The uniqueness of our work is that we consider
a situation where students are initially endowed with some
schools and a trading mechanism is used to achieve Pareto
efficiency, while minimum quotas need to be satisfied.

2. MODEL
A market is a tuple (S,C,X, qC , pC , ω,≻S).

• S = {s1, . . . , sn} is a finite set of students.

• C = {c1, . . . , cm} is a finite set of schools.

• X = S × C is a finite set of contracts. Contract
x = (s, c) ∈ X represents that student s is assigned
to school c. For any X ′ ⊆ X, let X ′

s denote {(s, c) ∈
X ′ | c ∈ C}, i.e., the sets of contracts related to
student s who is involved in X ′, and let X ′

c denote
{(s, c) ∈ X ′ | s ∈ S}, i.e., the sets of contracts related
to school c involved in X ′.

• qC = (qc)c∈C is a vector of the schools’ maximum quo-
tas.

• pC = (pc)c∈C is a vector of the schools’ minimum quo-
tas.

• ω: S → C is an initial endowment function. ω(s) re-
turns c ∈ C, which is s’s initial endowment. When
ω(s) = c, we say school c is student s’s initial endow-
ment school, and student s is school c’s initial endow-
ment student. Let X∗ denote

∪
s∈S{(s, ω(s))}, i.e., X

∗

is the set of contracts, where each element is a contract
between a student and her initial endowment school.

• ≻S= (≻s)s∈S is a profile of the students’ preferences.
For each student s, ≻s represents the preference of
s over Xs. We assume ≻s is strict for each s. We
say (s, c) is acceptable for s if (s, c) ≻s (s, ω(s)) or
c = ω(s) holds. We sometimes use such notations as
c ≻s c′ instead of (s, c) ≻s (s, c′).

We assume
∑

c∈C pc ≤ n ≤
∑

c∈C qc holds. Also, we assume
X∗ satisfies minimum/maximum quotas, i.e., for all c ∈ C,
pc ≤ |X∗

c | ≤ qc holds.
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With a slight abuse of notation, for two sets of contracts,
X ′ and X ′′, we denote X ′

s ≻s X ′′
s if either (i) X ′

s = {x′},
X ′′

s = {x′′}, and x′ ≻s x′′ for some x′, x′′ ∈ Xs that are
acceptable for s, or (ii) X ′

s = {x′} for some x′ ∈ Xs that is
acceptable for s and X ′′

s = ∅. We denote X ′
s ⪰s X ′′

s if either
X ′

s ≻s X ′′
s or X ′

s = X ′′
s . Also, for X ′

s ⊆ Xs, we say X ′
s is

acceptable for s if X ′
s = {x} and x is acceptable for s.

Definition 1 (feasibility). X ′ ⊆ X is student-feasible
if for all s ∈ S, X ′

s is acceptable for s. X ′ is school-feasible
if for all c ∈ C, pc ≤ |X ′

c| ≤ qc holds. X ′ is feasible if it is
student- and school-feasible.

We call a feasible set of contracts a matching. Note
that by definition, any matching is individually rational, i.e.,
every student is matched with a school that is at least as
good as her initial endowment school. Also note that X∗ is
school-feasible and therefore a matching.
A mechanism is a function that takes a profile of stu-

dents’ preferences as input and returns a matching.

Definition 2 (strategy-proofness). A mechanism is
strategy-proof if no student ever has any incentive to mis-
report her preference, regardless of other students’ reports.

Definition 3 (Pareto efficiency). Matching X ′

Pareto dominates another matching X ′′ if ∀s ∈ S,X ′
s ⪰s

X ′′
s and ∃s ∈ S,X ′

s ≻s X ′′
s hold, i.e., compared with X ′′, X ′

makes all students weakly better off and at least one student
strictly better off. A matching is Pareto efficient if there
is no other matching that Pareto dominates it. A mecha-
nism is Pareto efficient if it always selects a Pareto efficient
matching.

Directed graph G is a pair (V,E) where V is a set of
vertices and E ⊆ {(i, j) | i, j ∈ V } is a collection of ordered
pairs of vertices in V . An ordered pair (i, j), where i, j ∈ V ,
is called a directed edge from i to j.
In a directed graph (V,E), a sequence of vertices (i1, . . . , ik),

k ≥ 2, is a directed path from vertex i1 to vertex ik if
(ih, ih+1) ∈ E for h = 1, . . . , k − 1. If i1 = ik, then we
call this directed path a cycle. In particular, (i, i), where
(i, i) ∈ E, is called a self-loop cycle.

3. TOP TRADING CYCLES AMONG REP-
RESENTATIVES

Before introducing our new mechanism, let us introduce a
simpler mechanism based on TTC, which we call Top Trad-
ing Cycles among Representatives (TTCR). Since a student
is indifferent between multiple seats within the same school,
we cannot directly apply the standard TTC mechanism.
TTCR is a special case of Algorithm III in [15].
TTCR utilizes ≻ML, which is a strict common priority

ordering among students called master list (ML). With-
out loss of generality, we assume ≻ML is defined as follows:
s1 ≻ML s2 ≻ML .... ≻ML sn.
This mechanism repeats several rounds. At Round k,

Y k−1 represents the set of remaining initial endowment con-
tracts and Z represents the set of contracts that have already
been finalized. TTCR is defined in Mechanism 1.

Mechanism 1 Top Trading Cycles among Representatives
(TTCR)

Initialize Y 0 = X∗, Z = ∅, k = 1

Round k

Step 1 Create directed graph Gk = (V k, Ek) as follows:

• V k is a set of contracts, each of which is selected from
each school. More specifically, for each school c ∈ C
s.t. Y k−1

c ̸= ∅, select (s, c) where s has the highest
priority among students in Y k−1

c according to the ML.

• Ek is the set of directed edges between contracts in
V k. There exists a directed edge ((s, c), (s′, c′)) ∈ Ek

if c′ is the most preferred school according to ≻s within
schools in V k.

Step 2 Let C k denote a set of contracts, each of which is
included in a cycle within Gk.

Step 3 For each contract (s, c) ∈ C k, let ((s, c), (s′, c′))
denote the direct edge from (s, c). Add (s, c′) to Z.
Y k ← Y k−1 \ C k.

Step 4 If Y k = ∅, then return Z. Otherwise, k ← k + 1
and go to the next round.

Intuitively, we can assume in TTCR, each school chooses
one representative student from its initial endowment stu-
dents based on ML. Then, within these representative stu-
dents, the standard TTC mechanism is applied. By choos-
ing one representative for each school, we can ignore the fact
that a student is indifferent between multiple seats within
the same school. Since a student considers her initial en-
dowment school acceptable, there always exists at least one
cycle. TTCR can be considered one instance of Algorithm
III in [15]. In the algorithm, each school has its own priority
ordering among students. Student s, who has the highest
priority in school c’s ordering, obtains all the seats of c.
Then the standard TTC mechanism is applied among the
students who own seats. When a student is involved in a
cycle and obtains her desired seat, she returns the remain-
ing seats to each school. Then the mechanism repeats the
same procedure for the remaining students. If we assume
the number of seats available for a school equals the num-
ber of its initial endowment students, and school c gives the
highest priority to student s according to ML within her ini-
tial endowment students, this algorithm becomes identical
to the above mechanism.

The obtained matching of TTCR satisfies all minimum/
maximum quotas, since for the obtained matching Z, |Zc| =
|X∗

c | holds for all c ∈ C. However, this mechanism is not
Pareto efficient, as shown in the following example:

Example 1. Assume S = {s1, s2, s3, s4, s5, s6, s7}, C =
{c1, c2, c3}, where ω(s1) = ω(s2) = ω(s3) = c1, ω(s4) =
ω(s5) = ω(s6) = c2, and ω(s7) = c3. qc = 3 for all c ∈ C.
pc1 = 2 and pc2 = pc3 = 0.

The preferences of students are given as follows:

≻s1 : c2 c1,
≻s2 ,≻s3 : c3 c1,

≻s4 ,≻s5 ,≻s6 : c3 c2,
≻s7 : c1 c3.
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First, Y 0 is determined: {(s1, c1), (s2, c1), (s3, c1), (s4, c2),
(s5, c2), (s6, c2), (s7, c3)}.
At Step 1 of Round 1, since Y 0

c ̸= ∅ for all c ∈ C, the
mechanism selects each (s, c) where s has the highest priority
according to ML within students in Y 0

c for all c ∈ C and
adds (s1, c1),(s4, c2), and (s7, c3) to V 1. Then each selected
student points to her most preferred school according to ≻s

within schools in V 1; s1, s4, and s7 point to c2, c3, and c1,
respectively. Therefore, G1 is determined as follows:

V 1 = {(s1, c1), (s4, c2), (s7, c3)},
E1 = {((s1, c1), (s4, c2)), ((s4, c2), (s7, c3)), ((s7, c3),

(s1, c1))}.

There exists one cycle: ((s1, c1), (s4, c2), (s7, c3), (s1, c1)). At
Step 2, C 1 is {(s1, c1), (s4, c2), (s7, c3)}. At Step 3, (s1, c2),
(s4, c3), and (s7, c1) are added to Z and the contracts in C 1

are removed from Y 0. Therefore, Z and Y 1 are determined
as follows:

Z = {(s1, c2), (s4, c3), (s7, c1)},
Y 1 = {(s2, c1), (s3, c1), (s5, c2), (s6, c2)}.

At Step 4, go to Round 2 because Y 1 ̸= ∅.
At Step 1 of Round 2, since Y 1

c3 = ∅, there is no represen-
tative student from c3. The mechanism selects (s2, c1) and
(s5, c2) according to ML and adds them to V 2. Then each
selected student points to her most preferred school according
to ≻s within schools in V 2. Therefore, G2 is determined as
follows:

V 2 = {(s2, c1), (s5, c2)},
E2 = {((s2, c1), (s2, c1)), ((s5, c2), (s5, c2))}.

There are two self-loop cycles. At Step 2, C 2 is {(s2, c1),
(s5, c2)}. Therefore, at Step 3, Z and Y 2 are given as fol-
lows:

Z = {(s1, c2), (s4, c3), (s7, c1), (s2, c1), (s5, c2)},
Y 2 = {(s3, c1), (s6, c2)}.

At Step 4, go to Round 3 because Y 2 ̸= ∅.
At Step 1 of Round 3, G3 is determined as follows:

V 3 = {(s3, c1), (s6, c2)},
E3 = {((s3, c1), (s3, c1)), ((s6, c2), (s6, c2))}.

There are two self-loop cycles. At Step 2, C 2 is {(s3, c1),
(s6, c2)}. Therefore, at Step 3, Z and Y 3 are given as fol-
lows:

Z = {(s1, c2), (s4, c3), (s7, c1), (s2, c1), (s5, c2),
(s3, c1), (s6, c2)},

Y 3 = ∅.

At Step 4, return Z because Y 3 = ∅.
In the end, obtained matching Z becomes:

Z = {(s1, c2), (s2, c1), (s3, c1), (s4, c3), (s5, c2),
(s6, c2), (s7, c1)}.

Consider another matching Z′:

Z′ = {(s1, c2), (s2, c3), (s3, c1), (s4, c3), (s5, c3),
(s6, c2), (s7, c1)}.

We can find that Z′
s ⪰s Zs for all s ∈ S and Z′

s ≻s Zs

for s ∈ {s2, s5} hold. Therefore, Z is not Pareto efficient.
Also, |Zc| = |X∗

c | for all c ∈ C.

4. TOP TRADING CYCLES AMONG
REPRESENTATIVES WITH
SUPPLEMENTARY SEATS

TTCR’s limitation is that it cannot allocate supplemen-
tary seats, as shown in the previous example. However, if we
allocate supplementary seats too generously, minimum quo-
tas can be violated. In this section, we develop a new Pareto
efficient mechanism called Top Trading Cycles among Rep-
resentatives with Supplementary Seats (TTCR-SS), which
utilizes the notion of a dummy student to control supple-
mentary seats at each school. In TTCR-SS, if a school has
already “consumed” its initial endowment students and has
supplementary seats, it selects a dummy student as its rep-
resentative.

TTCR-SS repeats several rounds like TTCR. We divide
each school c at Round k into the following four categories:

minimum: |Y k−1
c | > 0 and |Zc| + |Y k−1

c | = pc, i.e., c has
the remaining initial endowment contracts and the to-
tal number of students in the finalized contracts and
the initial endowment contracts equals the minimum
quota. Thus, a student in its initial endowment con-
tracts cannot move to another school without violating
the minimum quota.

decrementable: |Y k−1
c | > 0 and |Zc| + |Y k−1

c | > pc, i.e.,
c has the remaining initial endowment contracts and
a student in its initial endowment contracts can move
to another school.

maximum: |Y k−1
c | = 0 and |Zc| = qc, i.e., c has no remain-

ing initial endowment contracts and it has already ac-
cepted students up to its maximum quota.

incrementable: |Y k−1
c | = 0 and |Zc| < qc, i.e., c has no

remaining initial endowment contract and can accept
another student without violating its maximum quota.

Let Ck
min, C

k
dec, C

k
max, and Ck

inc represent the sets of schools
in each of the above categories, respectively.

TTCR-SS resembles TTCR, but if school c has exhausted
its initial endowment students (i.e., Y k−1

c = ∅ holds), while
it has a supplementary seat (i.e., |Zc| < qc), the school is
incrementable and can send dummy student sd as its rep-
resentative. If a dummy student points to (s, c) and ob-
tains c’s seat, in reality, it means that the number of as-
signed students in c is decremented by one. To ensure that
the obtained matching respects minimum quotas, we care-
fully design the “preference” of each dummy student. If
|Y k−1

c | + |Zc| = pc holds for school c, i.e., if c is minimum,
then c cannot afford to “accept” a dummy student. Thus,
each dummy student points to the contract, in which the
student has the highest priority among students whose ini-
tial endowment schools are decrementable. Note that all
dummy students point to the same contract. Thus, there
exists at most one cycle that includes a dummy student.
TTCR-SS is defined in Mechanism 2.
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decrementable incrementable

minimum maximum

Figure 1: Transition of school categories

Mechanism 2 Top Trading Cycles among Representatives
with Supplementary Seats (TTCR-SS)

Initialize Y 0 = X∗, Z = ∅, k = 1

Round k

Step 1 Create directed graph Gk = (V k, Ek) as follows:

• V k is a set of contracts, each of which is selected
from each school. More specifically, for each school
c ∈ Ck

min ∪ Ck
dec, select (s, c) where s has the high-

est priority among students in Y k−1
c according to ML.

Also, for each school c ∈ Ck
inc, select (sd, c), where sd

is a dummy student, as long as Ck
dec ̸= ∅.

• Ek is the set of directed edges among contracts. There
exists a directed edge ((s, c), (s′, c′)) ∈ Ek if c′ is the
most preferred school according to ≻s within schools
in V k. For each contract related to a dummy student
(sd, c), there exists a directed edge ((sd, c), (s, c

′)) ∈
Ek, where s has the highest priority according to ML
within students in V k and c′ ∈ Ck

dec.

Step 2 Let C k denote a set of contracts, each of which is
included in a cycle within Gk.

Step 3 For each contract (s, c) ∈ C k, let ((s, c), (s′, c′)) de-
note the direct edge from (s, c). Add (s, c′) to Z when
s is not a dummy student. Y k ← Y k−1 \ C k.

Step 4 If Y k = ∅, then return Z. Otherwise, k ← k + 1
and go to the next round.

Figure 1 shows the possible transition of school categories.
Typically, school c is initially decrementable. If |X∗

c | = pc,
c is initially minimum. Also, if |X∗

c | = 0, c is initially incre-
mentable. As long as all schools are decrementable or mini-
mum, no dummy student is introduced. Thus, for each con-
tract in a cycle, the related school is either decrementable or
minimum. Then at some Round k, Y k

c eventually becomes ∅
for some school c. c typically becomes incrementable, and a
dummy student is introduced. After a dummy student is in-
troduced, for each contract in a cycle, the related school can
be incrementable, decrementable, or minimum, and a stu-
dent whose initial endowment school is decrementable can
obtain a seat of an incrementable school from a dummy stu-
dent. A decrementable school can become minimum, and
an incrementable school can become maximum. As an ex-
ceptional case (represented by a dotted line in Fig. 1), if for
school c, the number of initial endowment students exactly
equals qc, and no student whose initial endowment is c gives
a seat to a dummy student, then c becomes maximum when
Y k
c becomes ∅. As another exceptional case (represented

by a dotted line in Fig. 1), if pc = qc holds for school c,
then c is initially minimum and directly moves to maximum
when Y k

c becomes ∅. The assignment of maximum schools
becomes fixed. When there exits no decrementable school,
no dummy student is introduced. Thus, for each contract in
a cycle, the related school is minimum. Once this happens,
there will be no decrementable school in the later rounds.
Thus, no dummy student will be introduced at any later
round.

Let us describe how TTCR-SS works.

Example 2. Consider the same instance as Example 1.
Y 0 is the same as Example 1.

The mechanism behaves exactly the same as the previous
example until a dummy student is introduced. The following
is the result of Round 1:

Z = {(s1, c2), (s4, c3), (s7, c1)},
Y 1 = {(s2, c1), (s3, c1), (s5, c2), (s6, c2)}.

At Step 1 of Round 2, c1 and c2 are decrementable, and
c3 is incrementable. Schools c1 and c2 select their represen-
tative students s2 and s5, and (s2, c1) and (s5, c2) are added
to V 2. Since there exist decrementable schools, c3 sends a
dummy student and (sd, c3) is added to V 2. Then each se-
lected student points to her most preferred school according
to ≻s within schools in V 2; s2 and s5 point to c3. On the
other hand, dummy student sd points to the school whose
initial endowment student has the highest priority according
to ML within C2

dec; sd of c3 points to c1. Therefore, G2 is
given as follows:

V 2 = {(s2, c1), (s5, c2), (sd, c3)},
E2 = {((s2, c1), (sd, c3)), ((s5, c2), (sd, c3)), ((sd, c3), (s2, c1))}.

There is one cycle ((s2, c1), (sd, c3), (s2, c1)). At Step 2, C 2

is {(s2, c1), (sd, c3)}. Therefore, at Step 3, Z and Y 3 are
given as follows:

Z = {(s1, c2), (s4, c3), (s7, c1), (s2, c3)},
Y 2 = {(s3, c1), (s5, c2), (s6, c2)}.

At Step 1 of Round 3, c1 is minimum, c2 is decrementable,
and c3 is incrementable. Thus, the mechanism adds (s3, c1),
(s5, c2), and (sd, c3) to V 3. Then, s3 and s5 point to c3.
Here, although s3 has higher priority than s5 according to the
ML, since s3’s initial endowment school c1 is minimum, sd
points to c2 instead of c1. Therefore, G3 is given as follows:

V 3 = {(s3, c1), (s5, c2), (sd, c3)},
E3 = {((s3, c1), (sd, c3)), ((s5, c2), (sd, c3)), ((sd, c3), (s5, c2))}.

There is one cycle ((s5, c2), (sd, c3), (s5, c2)). At Step 2, C 3

is {(s5, c2), (sd, c3)}. Z and Y 3 are given as follows:

Z = {(s1, c2), (s4, c3), (s7, c1), (s2, c3), (s5, c3)},
Y 3 = {(s3, c1), (s6, c2)}.

At Step 1 of Round 4, c1 is minimum, c2 is decrementable,
and c3 is maximum. Then the mechanism adds (s3, c1) and
(s6, c2) to V 4. Since c3 is maximum, it cannot send its rep-
resentative. Thus, no dummy student is added. Therefore,
G4 is given as follows:

V 4 = {(s3, c1), (s6, c2)},
E4 = {((s3, c1), (s3, c1)), ((s6, c2), (s6, c2))}.
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There are two self-loop cycles. At Step 2, C 4 is {(s3, c1),
(s6, c2)}. Z and Y 4 are determined as follows:

Z = {(s1, c2), (s4, c3), (s7, c1), (s2, c3), (s5, c3),
(s3, c1), (s6, c2)},

Y 4 = ∅.

At Step 4, since Y 4 = ∅, the mechanism returns Z.
The obtained matching is identical to Z′ in Example 1.

5. THEORETICAL PROPERTIES
In this section, we clarify the theoretical properties of

TTCR-SS. We first show its feasibility. Note that there ex-
ists at most one cycle that includes a dummy student.

Theorem 1. TTCR-SS always produces a feasible match-
ing.

Proof. It is clear that the outcome is student-feasible
since a student never selects a contract that is related to her
unacceptable school.
As for the school-feasibility of Z, we show that {Y k∪Z} is

school-feasible for any k by induction. For k = 0, it is clear
that {Y 0 ∪Z} is school-feasible because Y 0 = X∗ is school-
feasible and Z = ∅. Suppose {Y k ∪ Z} is school-feasible for
some k. The induction completes if we show that for any
c ∈ C it holds that pc ≤ |Y k+1

c | + |Zc| ≤ qc after Round
k+1. If a contract related to c is not included in C k+1, the
assignment related to c never changes. Thus, assume (s, c) is
included in C k+1. Then, it is clear that c is not maximum. If
c is incrementable, Y k

c = Y k+1
c = ∅, and pc ≤ |Zc| < qc holds

at the beginning of Round k+ 1. Zc is incremented by one.
Thus, pc ≤ |Zc| ≤ qc holds at the end of Round k+1. If c is
decrementable, pc < |Y k

c |+ |Zc| ≤ qc holds at the beginning
of Round k+ 1. Also, |Y k

c | − 1 = |Y k+1
c | holds, and Zc does

not change if a dummy student obtains the seat of c or is
incremented by one if a non-dummy student obtains the seat
of c. In either case, pc ≤ |Y k+1

c |+ |Zc| ≤ qc holds at the end
of Round k+1. If c is minimum, pc = |Y k

c |+ |Zc| ≤ qc holds
at the beginning of Round k + 1. |Y k

c | − 1 = |Y k+1
c | holds,

and Zc is always incremented by one since a dummy student
never obtains a seat of c. Thus, pc = |Y k+1

c |+|Zc| ≤ qc holds
at the end of Round k + 1.

School c is available at Round k if either Ck
dec ̸= ∅ and

c ∈ C\Ck
max or Ck

dec = ∅ and c ∈ Ck
min hold. Let Ck

ava denote
the set of all available schools. It is clear that at Round k,
a contract related to school c is included in V k if and only
if c is available at Round k.
It is obvious that the following lemma holds from the cat-

egory transition of schools and the definition of Ck
ava.

Lemma 1. For any two rounds k and k′ with k < k′,

Ck
dec ⊇ Ck′

dec and Ck
ava ⊇ Ck′

ava hold.

Intuitively, this lemma means that the possible choices for
a student weakly monotonically shrinks in the later rounds.
As a result, the following lemma says the choice of a student
is the best within all schools that are available in the later
rounds.

Lemma 2. Suppose TTCR-SS obtains X ′. For any k and

any c ∈ Ck
ava, and any student s who is included in C k′

, i.e.,
a cycle at Round k′ ≤ k, X ′

s ⪰s {(s, c)} holds.

Proof. From Lemma 1, Ck
ava ⊆ Ck′

ava holds. Also, the

fact that s is included in C k′
means that {(s, c′)} = X ′

s

and c′ is the most preferred school for s within Ck′
ava. Thus,

X ′
s ⪰s {(s, c)} holds.

The following lemma implies if there exists a directed path
toward a contract at some round, the path remains in the
later rounds unless the contract is removed by being included
in a cycle. Thus, if a student can obtain a seat of a partic-
ular school in a round (either by truth-telling or by manip-
ulation), she can also obtain the seat in the later rounds.

Lemma 3. Suppose there is a directed path from a con-

tract (s, c) to (s′, c′) in Gk, and suppose (s′, c′) ∈ V k′
for

some k′ > k. Then exactly the same directed path from (s, c)

to (s′, c′) exists in Ek′
.

Proof. It is sufficient to show that ((s, c), (s′, c′)) ∈ Ek

and (s′, c′) ∈ V k+1 imply ((s, c), (s′, c′)) ∈ Ek+1, since a di-
rected path is a sequence of directed edges. First, suppose
s ̸= sd. From Lemma 1, Ck+1

ava ⊆ Ck
ava holds. Since c′ is

the most preferred school for s within Ck
ava, if c

′ ∈ Ck+1
ava ,

c′ remains the most preferred school for s within Ck+1
ava .

Thus, ((s, c), (s′, c′)) ∈ Ek+1 holds. Second, suppose s = sd.
The fact that ((sd, c), (s

′, c′)) ∈ Ek implies that c′ is decre-
mentable and that s′ has the highest priority in ML within
all the remaining students in all the decrementable schools.
According to Lemma 1, the set of decrementable schools
never expands. As long as (s′, c′) remains in V k+1, c′ re-
mains decrementable and s′ still has the highest priority
in ML within all the remaining students in all the decre-
mentable schools at Round k + 1. Thus, ((s, c), (s′, c′)) ∈
Ek+1 holds.

The following lemma means that the declared preference
of a student does not affect the outcome of the rounds before
she is included in a cycle.

Lemma 4. Fix the reported preferences of all students ex-
cept s at ≻−s= (≻s′)s′∈S\{s}. Suppose that (s, ω(s)) ∈ C k if

she reports ≻s and (s, ω(s)) ∈ C k′
if she reports ≻′

s, where
k ≤ k′. Then Ck

∗ , where “∗” can be either “max”, “min”,
“inc”, “dec”, or “ava”, does not change regardless of whether
student s reports ≻s or ≻′

s.

Proof. Since (s, ω(s)) ̸∈ C k̂ holds for any k̂ < k, the
same contracts form cycles before Round k whether student
s reports ≻s or ≻′

s. Then in both cases, the same contracts
remain in Y k−1 and the same contracts are added to Z,
which implies Ck

∗ does not change.

Now, we are ready to prove that TTCR-SS is strategy-
proof and Pareto efficient.

Theorem 2. TTCR-SS is strategy-proof.

Proof. Fix the reported preferences of all students ex-
cept s at ≻−s= (≻s′)s′∈S\{s} and denote ≻= (≻−s,≻s) and
≻′= (≻−s,≻′

s), where ≻s is her true preference and ≻′
s is a

fake preference. For some Round k, explicitly write V k(≻),
Gk(≻), Ek(≻), and C k(≻) to denote V k, Gk, Ek, and C k

when the reported preference profile is ≻ and so on. Explic-
itly write Ck

∗ (≻) to denote Ck
∗ when the reported preference

profile is ≻ and so on. Suppose that (s, ω(s)) ∈ C k(≻), i.e.,
if s reports her true preference ≻s, she belongs to a cycle at

64



 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18  20

R
a
ti

o
 o

f 
s
tu

d
e
n

ts

Rank

TTCR

TTCR-SS

Figure 2: CDFs of students’ welfare (α = 0.6)
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Round k, and (s, ω(s)) ∈ C k′
(≻′), i.e., if she reports some

other preference ≻′
s, she belongs to a cycle at Round k′.

First, assume k ≤ k′. Since (s, ω(s)) ∈ C k(≻), s must
be matched with her most preferred school within Ck

ava(≻).
Also, (s, ω(s)) ∈ C k′

(≻′) means that s is matched with a

school within Ck′
ava(≻′). Therefore, it is sufficient to show

that Ck′
ava(≻′) ⊆ Ck

ava(≻) holds. Since k ≤ k′, it follows
from Lemma 4 that Ck

ava(≻′) = Ck
ava(≻) holds. Also, from

Lemma 1, it follows that Ck′
ava(≻′) ⊆ Ck

ava(≻′). Combining

these results, we have Ck′
ava(≻′) ⊆ Ck

ava(≻).
Next, assume k > k′. Since (s, ω(s)) ∈ C k′

(≻′), there

exists a directed path from (s′, c′) to (s, ω(s)) in Gk′
(≻′

), where ((s, ω(s)), (s′, c′)) ∈ Ek′
(≻′). From Lemma 4,

Ck′
ava(≻′) = Ck′

ava(≻) holds. Thus, there exists the same di-

rected path from (s′, c′) to (s, ω(s)) in Gk′
(≻). The fact that

(s, ω(s)) ∈ C k(≻) implies (s, ω(s)) ∈ V k(≻), and thus from
Lemma 3 there exists the same directed path from (s′, c′) to
(s, ω(s)) in Gk(≻). Then s’s assignment under ≻ is at least
as good as c′, which is the assignment under ≻′. Thus, s
cannot be better off by reporting ≻′

s.

Theorem 3. TTCR-SS is Pareto efficient.

Proof. Let X ′ denote the matching produced by TTCR-
SS and suppose for contradiction that X ′ can be Pareto
improved, i.e., there exists another matchingX ′′ that Pareto
dominates X ′. Let S′ denote the set of students such that
s ∈ S′ if and only if X ′′

s ≻s X ′
s holds, i.e., students whose

assignments are strictly improved in X ′′.
Among the students in S′, let ŝ1 be a student who is

lastly allocated under the mechanism when generating X ′,
i.e., (ŝ1, ω(ŝ1)) ∈ C k1 for some k1 and there exists no s′ ∈ S′

such that (s′, ω(s′)) ∈ C k′
with k′ > k1. Since ŝ1 ∈ S′, it

follows that k1 > 1. If k1 = 1 holds, X ′
ŝ1

is the contract

between ŝ1 and her most preferred school in C, and therefore
no contract can improve ŝ1 from X ′

ŝ1
, which contradicts that

ŝ1 ∈ S′.
Let ĉ1 be the school to which ŝ1 is assigned under X ′,

i.e., {(ŝ1, ĉ1)} = X ′
ŝ1
. Since ĉ1 ∈ Ck1

ava, Lemma 2 implies
that for all s ∈ S′, it holds that X ′

s ⪰s {(s, ĉ1)}. Therefore,
X ′′

s ̸= {(s, ĉ1)} for all s ∈ S′, and together with the fact that
X ′

ŝ1
= {(ŝ1, ĉ1)} ⊈ X ′′, it holds that X ′′

ĉ1
⊊ X ′

ĉ1
. Since X ′′

is feasible and thus pĉ1 ≤ |X
′′
ĉ1
|, it holds that pĉ1 < |X ′

ĉ1
|.

Let ĉ2 be the school to which ŝ1 is assigned under X ′′, i.e.,
{(ŝ1, ĉ2)} = X ′′

ŝ1
. By the definition of X ′′, it must hold that

ĉ2 ≻ŝ1 ĉ1. Since {(ŝ1, ĉ1)} = X ′
ŝ1

and (ŝ1, ω(ŝ1)) ∈ C k1 ,

there exists a directed edge ((ŝ1, ω(ŝ1)), (s, ĉ1)) ∈ Ek1 . The
fact that ŝ1 points to ĉ1 even though she prefers ĉ2 over ĉ1
implies either (i) ĉ2 is maximum at Round k1 holds or (ii)
ĉ2 is incrementable and there exists no decrementable school
at Round k1 holds. However, in this case, (ii) cannot hold;
if it holds, all the contracts in V k1 are related to minimum
schools, but ĉ1 is not minimum. Thus, ĉ2 must be maximum
at Round k1. Then |X ′

ĉ2
| = qĉ2 holds. Since X ′′ is feasible

and (ŝ1, ĉ2) /∈ X ′ but (ŝ1, ĉ2) ∈ X ′′, there must exist stu-
dent ŝ2 who is matched with ĉ2 in X ′ and her assignment is
changed in X ′′, i.e., ŝ2 ∈ S′ and (ŝ2, ĉ2) ∈ X ′, and suppose
(ŝ2, ω(ŝ2)) ∈ C k2 for some k2, i.e., ŝ2 belongs to a cycle and
is matched to ĉ2 at Round k2. Then ĉ2 ∈ Ck2

ava must hold
and Lemma 1 implies that k1 > k2.

Let ĉ3 be the school to which ŝ2 is assigned under X ′′,
i.e., {(ŝ2, ĉ3)} = X ′′

ŝ2
. Then by the definition of X ′′, it holds

that ĉ3 ≻ŝ2 ĉ2. Since {(ŝ2, ĉ2)} = X ′
ŝ2
, A directed edge

exists ((ŝ2, ω(ŝ2)), (s, ĉ2)) ∈ Ek2 . The fact that ŝ2 points to
ĉ2 even though she prefers ĉ3 over ĉ2 implies that either ĉ3
is maximum or no decrementable schools exist. Using the
similar argument as ŝ1, we can derive that ĉ3 is maximum
and |X ′

ĉ3
| = qĉ3 holds. Since X ′′ is feasible and (ŝ2, ĉ3) /∈ X ′

but (ŝ2, ĉ3) ∈ X ′′, there must exist a student who is matched
with ĉ3 inX ′ and her assignment is changed inX ′′. Let ŝ3 be
such a student, i.e., (ŝ3, ĉ3) ∈ X ′ and ŝ3 ∈ S′, and suppose
(ŝ3, ω(ŝ3)) ∈ C k3 for some k3, i.e., ŝ3 belongs to a cycle and
is matched to ĉ3 at Round k3. Then, by the same argument
showing k1 > k2, it holds that k2 > k3.

We can continue this argument until we find a student
ŝ∗ ∈ S′ with (ŝ∗, ω(ŝ∗)) ∈ C 1, i.e., a student who belongs
to a cycle at Round 1 and whose assignment is strictly im-
proved under X ′′. However, ŝ∗ is matched with her most
preferred school in C under X ′ and there is no contract for
ŝ∗ that is strictly better than X ′

ŝ∗ , which contradicts that
ŝ∗ ∈ S′ and thus no such X ′′ exists.

The fact that TTCR-SS is Pareto efficient, while TTCR
is not, does not imply that all students weakly prefer the
matching of TTCR-SS over that of TTCR. This is because
there can be multiple Pareto efficient matchings. Let us
show a simple example. Assume there are two students,
s1 and s2, and three schools, c1, c2, and c3. The minimum
quota of c1 is 1, and the minimum quotas of c2 and c3 are
0. The maximum quotas of all the schools are 1. The ini-
tial endowment schools of s1 and s2 are c1 and c2, respec-
tively. The preference of s1 is c2 ≻s1 c1, and the preference
of s2 is c3 ≻s2 c1 ≻s2 c2. In TTCR-SS, the dummy stu-
dent of c3 and s2 swap their seats, and s1 cannot move to
c2. Thus, the obtained matching is {(s1, c1), (s2, c3)}. On
the other hand, in TTCR, no dummy student is introduced
and s1 and s2 swap their seats. The obtained matching is
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Figure 4: Difference of number
of assigned students (α = 0)
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Figure 5: Difference of number
of assigned students (α = 0.6)
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Figure 6: Difference of number
of assigned students (α = 1)

{(s1, c2), (s2, c1)}. Here, s1 prefers the matching of TTCR.
In the next section, we experimentally show that the over-
whelming majority of students prefer the matching obtained
by TTCR-SS.
Finally, we show that TTCR-SS can be done in polynomial

time in |S| and |C|.

Theorem 4. The time complexity of TTCR-SS is O(|S| ·
|C|).

Proof. At each round, there exists at least one cycle. A
cycle must contain at least one student s ∈ S, and the as-
signment of s is fixed. Thus, the number of rounds required
for TTCR-SS is at most |S|. Also, for each round, there
are at most |C| contracts, and finding cycles can be done
in O(|C|). Therefore, the time complexity of TTCR-SS is
O(|S| · |C|).

6. EVALUATION
This section evaluates TTCR-SS. We consider a market

with n = 720 students and m = 36 schools. Each school has
20 initial endowment students. The minimum and maximum
quotas of each school are 5 and 60, respectively. We gener-
ate students’ preferences as follows. We draw one common
vector v of the cardinal utilities from set [0, 1]m uniformly
at random. We then randomly draw private vector us of
the cardinal utilities from the same set, again uniformly at
random. Next, we construct cardinal utilities over all m
schools for student s as αv + (1 − α)us for some α ∈ [0, 1].
We convert these cardinal utilities into an ordinal preference
relation for each student. The higher the value of α is, the
more correlated the student preferences are.

6.1 Comparison with TTCR
We compare the welfare of the students for TTCR and

TTCR-SS. We generate 100 problem instances. ML is set
to s1, . . . , sn. Figure 2 shows the Cumulative Distribution
Functions (CDFs) of the average number of students matched
with their k-th or higher ranked school under each mecha-
nism when α is 0.6. Hence, a steep upper trend line is de-
sirable. 50% of the students obtain their first choices, and
65% obtain their first or second choices in TTCR-SS, while
in TTCR, only 16% of students obtain their most preferred
contracts, and 23% obtain their most or second preferred
contracts. Thus, the average student welfare of TTCR-SS
clearly outperforms that of TTCR.
Next, we show the average ratio of students who strictly

prefer the matching of one mechanism over that of the other
mechanism (Fig. 3). Here, the gray area shows the ratio
of students who prefer the matching of TTCR-SS, while the

black area shows the ratio of students who prefer the match-
ing of TTCR (note that the area is very narrow and it looks
like a line). The white area shows the ratio of students whose
assignments are the same. For example, when α = 0.6, only
1% of the students prefer the matching of TTCR, while 70%
prefer the matching of TTCR-SS; the overwhelming major-
ity of students prefer the matching obtained by TTCR-SS.

6.2 Effect of choice of master list
ML must be chosen exogenously by the mechanism. If

the obtained matching can vary significantly according to
the choice of the ML, say, the number of students assigned
to each school changes significantly, how to determine ML
can be controversial. Here, we fix one problem instance and
compare the results of TTCR-SS for 100 randomly gener-
ated different MLs. Figures 4, 5, and 6 show differences of
the number of assigned students under the cases of α = 0,
0.6, and 1, respectively. We show the average, minimum,
and maximum of the number of allocated students for each
school. The x-axis represents schools that are sorted in de-
creasing order of their average. When α = 0, the prefer-
ence of students are independent and there is virtually no
competition among them. Then the choice of ML does not
affect the outcome very much; the average, minimum, and
maximum are almost the same (Fig. 4). When α = 1, the
preferences of the students are the same and they all com-
pete for the seats of the same popular schools. Thus, the
choice of ML affects who will be assigned to the popular
schools, but it does not affect the number of students as-
signed to them. Thus, the average, minimum, and maxi-
mum are identical (Fig. 6). When α = 0.6, the number of
allocated students can vary according to the choice of ML.
However, Figure 5 shows that the numbers of students al-
located to popular/unpopular schools are almost the same,
and it varies in the schools that are in the middle of popu-
lar/unpopular schools. Thus, we conjecture that the choice
of ML is not too controversial; the choice does not affect the
popularity of schools very much.

7. CONCLUSIONS
In this paper, we developed TTCR-SS for a school choice

program, where the obtained matching must respect mini-
mum quotas and initial endowments. We proved that TTCR-
SS is strategy-proof and Pareto efficient. Our simulation
results showed that it is significantly better than TTCR,
which cannot allocate supplementary seats.

Our immediate future work is to extend our mechanism
to handle different types of distributional constraints besides
minimum quotas [17].
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