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ABSTRACT
The rapid development of Electric Vehicles (EVs) seen in
recent years has been drawing increasing attentions from the
public, markets, decision-makers, and academia. Notwith-
standing the progress, issues still remain. Because of the
widely complained disadvantages of limited battery capacity
and long charging time, charging convenience has become
a top concern that greatly hinders the adoption of EVs.
Specialized EV charging station, which provides more than
10 times faster charging speed than domestic charging, is
therefore a critical element for successful EV promotion.

While most existing researches focus on optimizing spatial
placement of charging stations, they are inflexible and inef-
ficient against rapidly changing urban structure and traffic
pattern. Therefore, this paper approaches the management
of EV charging stations from the pricing perspective as a
more flexible and adaptive complement to established charg-
ing station placement. In this paper, we build a realis-
tic pricing model in consideration of residential travel pat-
tern and EV drivers’ self-interested charging behavior, traffic
congestion, and operating expense of charging stations. We
formulate the pricing problem as a mixed integer non-convex
optimization problem, and propose a scalable algorithm to
solve it. Experiments on both mock and real data are also
conducted, which show scalability of our algorithm as well
as our solution’s significant improvement over existing ap-
proaches.
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1. INTRODUCTION
Electric Vehicles (EVs) are welcoming a rapid develop-

ment along with progresses of relevant technologies in recent
years. As an eco-friendly substitute for traditional fuel-
engined vehicle, EV is seen as a promising solution to the
ever devastating energy crisis and environmental pollution
around the globe, thus has drawn increasing attentions from
the public, markets, decision-makers, and academia. Many
countries and cities have proposed plans to promote EV us-
age or have been preparing to do so, providing a foreseeable
vision that EV will become the major vehicle of private
transportation sector in the near future [1]. Notwithstand-
ing the progresses, challenges still remain. Limited battery
capacity and long charging time, probably the most widely
complained disadvantages, raise mileage anxiety and largely
impair EV users’ driving experience. As a result, charging
convenience has become a top concern affecting potential
users’ choice between EV and traditional fuel-engined vehi-
cle. Specialized EV charging stations, which provide more
than 10 times faster charging speed than domestic charging,
are therefore critical to the successful promotion of EV.

While there have been some existing work concerning the
management of EV charging stations, they mostly focused
on the spatial placement of charging stations. For example,
Frad et al. studied the placement and capacity allocation of
EV charging stations for an area of Lisbon with the emphasis
of maximizing coverage of charging demands [2]. Wong et al.
proposed a muti-objective planning model for the placement
of EV charging stations in Chengdu, China, with a solution
based on demand and usage of existing gas stations [3]. Chen
et al. particularly considered EV users’ costs for accessing
charging stations, and minimizing the costs and penalizing
unmet demand [4]. Moreover, He et al. and Xiong et al.
took a more broad view and emphasized the impact on over-
all efficiency of transportation system when optimizing the
placement [5, 6]. However, a major drawback of the existing
work is that such once-for-all solutions can hardly adapt to
rapidly changing urban structures. Development of local in-
frastructure, such as opening-up of a new hospital, shopping
mall, school, or housing estate, can all fundamentally modify
the residential traffic pattern, making it unbalanced against
the existing charging network. Thus follow-up adjustments
are expected but might be costly and inefficient if we only
rely on optimizing the placement.

To adapt to the urban structure change as well as varying
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charging demand, a practical solution as we propose in this
paper is to leverage charging price to readjust EV users’
charging behavior and improve efficiency of the charging
network. Compared with placement, pricing is easily and
immediately implementable without additional cost or waste
of resources. Dynamic pricing schemes adapt to either long-
term changes of travel demand caused by residential move-
ments or short-term variances between peak and non-peak
time, and serve as a flexible complement to existing charg-
ing station placement. Our goal is to optimize the pricing
scheme to optimize the efficiency of charging stations, i.e., to
minimize the additional cost caused by EV users’ charging
behavior, which is referred as social cost. There have been
some works leveraging dynamic pricing to improve efficien-
cy of public transportation systems, such as taxi systems
[7, 8]. Some works have particularly focused on real-time
pricing and charge-discharge policy for EV management [9,
10]. However, their aim is merely to balance electricity
load in power grids, while traffic condition is not in their
consideration. Moreover, their method cannot be incorpo-
rated with trivial modifications because the traffic condition
deeply relates to EV users’ self-interested charing behavior
associated with a graph-based road network, which are all
absent from existing work.

In this paper, we take a game-theoretic perspective and
build the problem on a non-atomic congestion game played
by EV users. The model incorporates the following key
features: 1) EV users’ self-interested charging behavior that
they strategically choose the best charging plan (i.e., where
to charge and how to reach the charge station) to minimize
their costs including charging fees, traveling time, and queu-
ing time; 2) EV users’ traffic pattern with complex spatial
variances; 3) Traffic congestion in the road network that
is affected by both the EVs and other external vehicles;
and 4) A budget constraint that ensures sufficient income
to support sustainable operation of the charging network.
Using this model, we formulate the EV charging station
pricing problem as a mixed integer non-convex optimiza-
tion problem, and propose a scalable algorithm to solve the
problem, in particular to deal with the large strategy space
of the EVs. Experiments on both mock and real data are
also conducted, which show scalability of our algorithm as
well as our solution’s significant improvement in social cost
over existing approaches. A concrete instance is also used to
visualize the difference between our approach and existing
approaches.

2. MOTIVATION
Singapore is a city country with a vehicle ownership of

around 970, 000 on its small territory of 720 km2. As a
highly developed metropolis with open attitudes toward cut-
ting edge technologies, yet a country with limited natural
resource and energy supply, Singapore is actively seeking the
possibility of mass adoption of EVs to support its sustainable
development. Ever since 2011, its authorities have started
an EV test-bed to study the feasibility of EVs on its road.
More recently, in the Government’s sustainable blueprint
to guide the country’s development over the next 15 years
launched in 2014, Singapore has even planned to lead an
EV-sharing project to make the new technology even more

Figure 1: Population growth rate of major residential zones
of Singapore from 2010 to 2015

convenient and environmentally-friendly.
Indeed, the relatively short driving distances on the small

territory and the advanced power grid of Singapore make
EVs a good option for this city. However, there are also
many difficulties that require every step taken to be carefully
planned. Because of the land scarcity and the fact that roads
have already taken up 12 percent of Singapore’s total land
area, there is limited room for further expansion of Singa-
pore’s road network. This leaves Singapore a very high road
density of 4.8km/km2, and a transportation system that is
highly sensitive to any changes to the current transportation
mode. Besides, Singapore is undergoing a rapid change in
residential pattern along with its continuing development.
As shown in Figure 1, population growth varies significant-
ly among major residential zones of Singapore, indicating
similar significant changes in residential traffic pattern. A
sustainable plan therefore needs to be compatible to the
current system while adaptable to future changes, to ensure
a smooth transition toward the new EV-led transportation
mode. This motivates our work and offers us a concrete
study case.

3. PRELIMINARY
In this section, we introduce some notations and defini-

tions that will be helpful to scenario visualization and be
used in formulating the problem.

3.1 Notations
Considering the residential distribution of the studied c-

ity (e.g., Singapore), we divide the region to be analyzed
(whole or part of the city) into a set Z of zones. There
are roads linking the zones. Without loss of generality, we
assume that there is at most one link between a pair of
zones representing the average connectivity between them,
and denote the set of links as E and the road network as a
graph G = (Z, E). In each zone i ∈ Z, there are γi EVs
owned by the residents who have some chance to charge in
the charging stations. The γi EVs are furthermore classified
into Ki groups according to their travel patterns, i.e., their
daily travel routine as a set of most frequently visited zones.
Each travel pattern is a set of connected zones that they
visit daily. We denote by γij the number of EVs in each
group, and by Pij their pattern for j ∈ Ki = {1, . . . ,Ki}.
The union of all patterns is denoted by P =

⋃
i∈Z,j∈Ki

Pij .
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Given the number τi (≥ 0) of chargers in each zone i, our
goal is to calculate the charging rate (i.e., per unit electricity
price) xi to be set at each zone, such that the social cost (to
be defined later) is minimized. Accordingly, we denote the
set of feasible price as X .

3.2 Factors Affecting EVs’ Decision
EVs make decisions about where to charge and how to

reach the charging zone according to the estimated charging
cost, which consists of three parts: charging fee, travel cost
and queuing cost. The charging fee is the variable to be
optimized in this work. In the following, we introduce the
definition of travel cost and queuing cost.

Travel Cost. There are furthermore two kinds of travel
cost: 1) cost on link, i.e., cost for travelling between zones,
and 2) cost on node, i.e., cost for traveling within the zone
where the EV charges. The cost on a link depends on the
length and the traffic congestion level of this link. Generally,
more vehicles on the road results in higher congestion level,
and larger road capacity leads to lower congestion. We adopt
a widely used linear model of traffic congestion taken as
the ratio of the traffic flow to the road capacity (both in
the number of vehicles). Thus, for a link (i, i′) ∈ E , given
the length dii′ , the capacity Cii′ and traffic flow f0

ii′ + fii′

(we distinguish flow of EVs heading for charging, i.e., fii′ ,
with flow of other vehicle, i.e., f0

ii′ , which is assumed to be
constant), the traffic congestion αii′ of link (i, i′) is presented
in Eq. (1) [11]. Travel cost on (i, i′) is defined as a function
of its length and traffic congestion as Eq. (2).

αii′ =
f0
ii′ + fii′

Cii′
(1)

tii′ = dii′αii′ (2)

Meanwhile, when an EV chooses to charge in a zone i, there
is extra travel cost, i.e., cost on node, as she drives off
the main road to access the charging station within zone i.
Considering that a zone includes more internal roads (than
in between two zones) and that the EVs coming for charging
does not have to traverse all of them, we add a discount
factor ζ to denote the EVs’ influence on congestion in the
zone. In this case, a similar function as Eq. (2) is used for
the extra travel cost in the charging zone:

ti = di
f0
i + ζfi
Ci

, i ∈ Z, (3)

where di denotes the radius of the zone, f0
i is the normal

traffic amount, fi is the total number of EVs that choose to
charge in zone i and Ci is the capacity of the zone regarding
all its travel network.

Queuing Cost. The queuing cost depends on the number
of chargers in the charging station and the number of EVs
that come to the charging station. We use a linear model to
denote the relationship among them as Eq. (4). Recalling
that τi denotes the number of chargers in zone i, let qi be the
queuing cost and fi be the number of EVs charging there,
then we have

qi =
fi
τi
, i ∈ Z. (4)

4. EVS’ CHARGING BEHAVIOR
From a game-theoretic perspective [12], when we optimize

charging station management, we need to take into account
the strategic behavior of EV owners. Namely, they are self-
interested and profit-driven, such that they will respond to
our pricing with the best charging strategy to minimize their
charging cost. Next, we explicitly explain the charging game
- the model of EVs’ charging behavior. To distinguish a zone
that EVs reside in from one EVs charge in, we use i and z
respectively to denote a zone in the follows.

4.1 Charging Strategy
Each EV chooses a pure charging strategy and the s-

trategies of the EVs in the same zone of the same travel
pattern form a distribution over their strategy space. A pure
charging strategy is to choose a zone with charging stations
installed, and an additional travel path from a zone on her
daily routine to the charging zone and back if the chosen
zone is not in the EV’s travel pattern. Thus a pure charging
strategy can be denoted as a tuple s with

s =

{
{z}, z ∈ Pij{
z′, (z, z′), (z′, z)

∣∣ z ∈ Pij , z
′ ∈ Z \ Pij ,

} , (5)

where both (z, z′) and (z′, z) are in set E . Note that by
Eq. (5), we only consider EVs’ charging zones inside or
adjacent to zones in their travel pattern and assume that
they do not charge in farther places. This is because the
distance to those places is usually much farther than a single
hop, thus causing higher travel cost and is unlikely to happen
in reality. Experimental results in Section 6.3 verify that
this assumption is reasonable. We then use Sij to denote
the strategy space for the EVs in zone i of travel pattern
j. Furthermore, S =

⋃
i∈Z,j∈Ki

Sij is used to denote the
strategy space union for all the EVs in the studied region.
For example, there are 6 zones illustrated in Figure 2, and

Figure 2: Zone division illustration

we suppose there are chargers in all zones. If a group of EVs’
daily travel routine includes zones 1, 4 and 6, their strategy
space includes these 8 pure strategies:

s1 = {1}, s2 = {4}, s3 = {6}, s4 = {2, (1, 2), (2, 1)},

s5 = {3, (1, 3), (3, 1)}, s6 = {5, (4, 5), (5, 4)},

s7 = {5, (6, 5), (5, 6)}, s8 = {3, (6, 3), (3, 6)}.

When the charging zone is in their routine, there is no links
in the strategy (e.g., s1, s2 and s3). Otherwise (e.g., s4 to
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s8), there are two additional links specifying a round trip to
the charging zone.

EVs choose charging strategy according to charging cost,
including charging fee, travel cost and queuing cost. In
reverse, their strategies also influence congestion level and
queueing time, i.e., travel cost and queueing cost. We denote
the strategy distribution of EVs of group j in the zone i as
pij , with each pij(s) denoting the proportion of γij EVs
using pure strategy s in the group of EVs’ strategy space
Sij .

Given a strategy profile P = {pij}, the number of EVs in
each charging station z ∈ Z and the number of EVs on each
link e ∈ E can then be seen as functions of the P as:

fz(P) =
∑

s∈S:z∈s

∑
i∈Z

∑
j∈Ki:s∈Sij

γijpij(s) (6)

fe(P) =
∑

s∈S:e∈s

∑
i∈Z

∑
j∈Ki:s∈Sij

γijpij(s) (7)

Similarly, travel cost t for link e and zone z, and queuing
cost q for zone z are respectively defined as:

te(P) =
de
Ce

(
f0
e +

∑
s∈S:e∈s

∑
i∈Z

∑
j∈Ki:s∈Sij

γijpij(s)

)
, (8)

tz(P) =
dz
Cz

(
f0
z + ζ

∑
s∈S:z∈s

∑
i∈Z

∑
j∈Ki:s∈Sij

γijpij(s)

)
, (9)

qz(P) =
1

τz

∑
s∈S:z∈s

∑
i∈Z

∑
j∈Ki:s∈Sij

γijpij(s). (10)

Apart from the above costs, EVs also consider their charg-
ing fees, denoted by xz, which vary at different zones. The
weights ω1, ω2, and ω3 are assigned to the three types of
costs respectively. Thus, given the electricity price xz in
zone z, the charging cost of an EV using charging strategy
s under strategy profile P is:

Cij(P, s) =
∑
z∈s

(
ω1qz(P) + ω2tz(P) + ω3xz

)
+
∑
e∈s

ω2te(P)

(11)
for all zone i ∈ Z, group j ∈ Ki and pure strategy s ∈ Sij .

4.2 Equilibrium
We adopt Nash equilibrium pin non-atomic congestion

game as our solution concept. A non-atomic congestion
game is one that is played by an uncountably large number
of players (which is exactly the case in our problem, with
around 30, 000 EVs in the system), so that each agent’s effect
on the congestion level is negligibly small. It is widely used
to model congestion scenario with a large number of agents,
which is exactly our case. In an equilibrium state, no EV
can decrease her charging cost by unilaterally changing her
charging strategy. Specifically, for each EV group j in zone
i, the charging cost of all pure strategies that are used with
non-zero probability are the same and the minimal, i.e.,

Cij(P, s) ≤ Cij(P, s
′) ∀s ∈ Sij , pij(s) > 0 (12)

In this case, no EV has incentive to unilaterally change her
charging strategy.

4.3 Pricing Problem for EV Charging Station
Management

As we have mentioned before, our goal is to minimize
the social cost, denoted as SC. Specifically, we consider
the extra social cost incurred by EVs’ charging behavior,
which is measured with the congestion experienced by all
EVs in charging stations and extra congestion caused by
EVs’ charging behavior for all vehicles in the road network,
i.e.,

SC = ν1
∑
z∈Z

fz(P)qz(P) + (13)

ν2
∑
z∈Z

(
(f0

z + fz(P))tz(P)− f0
z tz(0)

)
+ (14)

ν2
∑
e∈E

(
(f0

e + fe(P))te(P)− f0
e te(0)

)
, (15)

where the first component represents queuing cost for EVs
in all zones, weighted with ν1; and the second and the third
components respectively represent additional travel cost in
each zone and on each link for all vehicles, weighted with
ν2. It suffices for us to formulate the pricing problem for
EV charging station management, which turns out to be a
non-convex optimization problem PCS as follows.

PCS: min
x,P

SC (16)

s.t. pij(s)Cij(P, s) ≤ pij(s)Cij(P, s
′),

∀i ∈ Z, ∀j ∈ Ki, ∀s, s′ ∈ Sij (17)∑
z∈Z

fz(P)xz ≥ B (18)

xz ∈ X , ∀z ∈ Z (19)

pij(s) ≥ 0, ∀i ∈ Z, ∀j ∈ Ki, ∀s ∈ Sij (20)∑
s∈Sij

pij(s) = 1, ∀i ∈ Z, ∀j ∈ Ki (21)

Note that Eq. (17) functions as the equilibrium criteria in
Eq. (12), i.e., when pij(s) = 0, it holds unconditionally, and
when pij(s) > 0, it is equivalent to Cij(P, s) ≤ Cij(P, s

′);
Eq. (18) is a budget constraint requiring that the income
of all charging station can at least cover their management
and operation expenses; we suppose the charging rate in
each zone is selected from a price set X ; and the last two
constraints are to bound the p variables.

5. COMPUTING OPTIMAL PRICE
In this section, we present our algorithm for problem PCS.

Problem PCS is a non-convex quadratic optimization prob-
lem, with its objective function SC being quadratic, and
the first constraint (i.e., Eq. (17)) being non-convex. Be-
sides, the scale of problem PCS is very large because EVs
have many travel patterns and, moreover, each pattern may
contain many zones, which amounts to a large strategy space
and a similarly large set of variables for problem PCS.
Therefore, problem PCS is hard to solve (particularly hard
to scale up). To resolve the problem, we first rewrite con-
straint (17), and reformulate PCS to the following binary
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programming PCS-binary with an additional set of binary
variables y = 〈yij(s)〉.

PCS-binary:

min
x,P,y

SC (22)

s.t. yij(s)Cij(P, s) ≤ yij(s)Cij(P, s
′),

∀i ∈ Z, ∀j ∈ Ki,∀s, s′ ∈ Sij (23)

pij(s) ≤ yij(s), ∀i ∈ Z, j ∈ Ki, s ∈ Sij (24)

yij(s) ∈ {0, 1}, ∀i ∈ Z, j ∈ Ki, s ∈ Sij (25)

Eqs. (18)− (21)

Eqs. (23)–(24) are modified from Eq. (17) with the auxil-
iary variable y. As we can see, yij(s) is an indicator for
whether s can be used with non-zero probability in the
solution, i.e., when yij(s) = 0, we have (by Eq. (24)) 0 ≤
pij(s) ≤ 0 ⇒ pij(s) = 0, and when yij(s) = 1, we have
0 ≤ pij(s) ≤ 1. Therefore, Eqs. (23)–(24) are equivalent
to (17), and PCS-binary is equivalent to PCS. To solve
PCS-binary, a brute-force way is to exhaustively try all the
0/1 combinations in the feasible space {0, 1}|y| for y. When
y is fixed, PCS-binary becomes a quadratic programming
with linear constraints, which is relatively easy to solve.
We then propose a Strategy Space Generation Algorithm
(SSGA) to speed up the brute-force search, which is sketched
with Algorithm 1.

SSGA starts with an initialized vector y∗ (Line 1) and,
repeatedly, solves PCS-binary with y∗, and updates y∗

with two key procedures Rule A (Lines 6–8) and Rule B
(Lines 11–15), until no update is made on y∗ in some itera-
tion (Line 16). Specifically,

• Rule A disables strategies s that are chosen with very
small probability (i.e., pij(s)<δ with 0<δ�1) by set-
ting yij(s) = 0, so that they will not be used in the
next iteration. The intuition behind Rule A is that
when pij(s) is very closed to 0, setting it to 0 will not
cause much change to the cost of the EVs, but can
significantly expand the feasible space as the associate
constraint in Eq. (23) is relaxed.

• Rule B checks if there are any unused strategies that
could potentially lower EVs’ cost, and enables them
by setting yij(s) = 1 when they are found. Intuitively,
these newly enabled strategies are EVs’ better respons-
es for the current strategy profile.

Finally, Proposition 1 shows that SSGA always converges
to a Nash equilibrium. The price x∗ it returns is thus the
optimal price under the equilibrium.

Proposition 1. The algorithm SSGA always converges
to an equilibrium charging strategy profile.

Proof. Recalling that we use Rule B to validate whether
or not we need to keep on the iteration of upgrading the set
of used pure strategies and Rule B is exactly using the equi-
librium criteria as stated in Eq.(12), we can always ensure
the strategy distribution P in the solution is an equilibri-
um.

Algorithm 1: SSGA

1 y∗ ← Initialize as a binary vector;

2 x∗ ← Null ;

3 repeat

4 〈x∗,P∗〉 ← Fix y to y∗ and solve PCS-binary;

5 y′ ← y∗;

/* --------------- Rule A -------------- */

6 for each i ∈ Z, j ∈ Ki, s ∈ Sij do

7 if p∗ij(s) < δ then

8 y∗ij(s)← 0;

9 if y∗ 6= y′ then

10 goto Line 4;

/* --------------- Rule B -------------- */

11 for each i ∈ Z, j ∈ Ki do

12 Cmin
ij ← arg mins: s∈Sij∧p′ij(s)>0 Cij(P

∗, s);

13 for each s ∈ Sij do

14 if y′ij(s) = 0 and Cij(P
∗, s) ≤ Cmin

ij then

15 y∗ij(s)← 1;

16 until y∗ = y′;

17 return x∗;

6. EXPERIMENTAL RESULTS
In this section, experimental results are provided to ver-

ify the optimality and scalability of the proposed approach
SSGA, and to present the improvement of traffic system
performance provided by our approach. All computations
are performed on a 64-bit machine with 16 GB RAM and
a quad-core Intel i7-4770 3.4 GHz processor. All standard
optimization problems, such as Line 4 of Algorithm 1, are
solved with KNITRO 9.0.0.

Data of Singapore. We divide Singapore into 23 zones
as Figure 3 according to the official planning-area informa-
tion [13] and other geographic information. According to
statistic data from the Department of Statistics, Ministry
of Trade and Industry, Singapore [14], 23% of the residents
usually drive to work. Besides, there are more than 972, 000
vehicles in year 2014, among which more than 600, 000 are
cars or station-wagons. We suppose 5% of the 600, 000
vehicles are EVs that charge in the charging game, then
the total number of 30, 000 EVs are assigned to different
zones according to the residential population distribution.
The traffic flow and road capacity for each zone and link
are estimated according to Google real-time traffic map.
The price set is set as X = {1, 1.5, 2, 2.5, 3}, according to
the charging fee of charging stations in the U.S. [15]. The
discount factor in computing the traffic congestion inside a
zone is set as ζ = 0.5. The weights for different parts in
social cost and EVs’ charging cost are set as: ν1 = 0.8,
ν2 = 0.2; ω1 = 0.1, ω2 = 0.3 and ω3 = 0.6. The reason
for this setting is to make sure that charging fee, travel cost
and queuing cost are comparable. Except in Section 6.1,
where we use a set of mock data of the traffic network and
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EV population to test the solution quality and scalability
of SSGA, all other experiments are based on the data of
Singapore.

Figure 3: Singapore map and zone division

Initializing the Binary Indicators for SSGA. The
initial value of the indicators in Line 1 of the algorithm
SSGA significantly influences the accuracy and speed of the
approach. We apply the following method for initializing
starting indicators for SSGA. We first compute the estimate
charging cost of each pure strategy assuming that there
is only one EV that charges in the charging zone of that
pure strategy and ignoring the charging fee. Formally, The
estimate charging cost C̃ij(s) for EVs of each pattern j in
each zone i is computed as

C̃ij(s) =
∑
z∈s

(
ω1

1

τz
+ ω2

dz
Cz

(f0
z + ζ)

)
+
∑
e∈s

ω2
de
Ce

(f0
e + 1).

(26)
Then we select the strategies whose estimated charging costs
are no more than twice of the minimum of them and set their
indicators as 1. That is to say, we set the indicator yij(s) = 1
for all the s ∈ Sij with C̃ij(s) ≤ 2 mins′∈Sij C̃ij(s

′).

Virtual Charging Station Placement for Experi-
ments on Data of Singapore. Since the charging station
network in Singapore are not settled yet, we use virtual
placements of EV charging stations for our experiments.
For the total number of 30, 000 EVs in the charging game,
we assign a total number of 2, 000 chargers to the charging
stations in the region. Three kinds of placement are used
according to the following rules, respectively.

A1 Placement according to population distribution. Name-
ly, the chargers are distributed proportionally accord-
ing to the population in each zone, i.e., τz ∝ γz, ∀z ∈
Z.

B1 Placement according to current gas station distribution.
This rule refers to the current gas station distribu-
tion in Singapore and assign chargers proportionally
according to the number of gas stations in each zone.
Formally, assume that there are τGas

z gas stations in
zone z, the number of chargers in this zone τi ∝ τGas

z .

C1 Placement considering traffic congestion. The number
of chargers in a zone is set proportional to the inverse
of the normal congestion (regardless of the charging
EVs) inside the zone, i.e., τz ∝ Cz

f0
z
, ∀z ∈ Z.

6.1 Solution Quality and Scalability of SSGA
For experiments in this part, we generate a set of mock

data, because we need problems of different scales to verify
the optimality and scalability of SSGA through comparing
with PCS.

Mock Data. We generate mock data using a Java pro-
gram. First, the number of zones n is specified and the
budget is set as 100n. The traffic network is randomly gen-
erated by building a two-way link between any pair of zones
with probability 4.5/n. After the construction of the travel
network, we randomly set the number of travel patterns in
each zone as one of the elements in the set {1, 2, 3} and
we randomize the number of EVs of each pattern between
50 and 100. The traffic capacity and external flow (i.e., f0

z

and f0
e ) in zones and links are randomized as integers in

[140, 160] and [100, 200], respectively. For the charging sta-
tions’ location and size, we use two methods to set them up.
In the following are the two charging station placement
plans on mock data.

A2 We randomly choose some of the zones and assign 10
chargers to each of them. The expectation of the
number of zones with chargers is n/2.

B2 We first calculate an index value θz for each zone z ∈ Z
as following

θz =
∑
i∈Z

∑
j∈Ki:z∈Pij

γij .

This index value reflects how many EVs visit zone z
frequently. Then we assign a number 5n of chargers to
the zones proportionally, i.e., τz ∝ θz, ∀z ∈ Z.

To test the optimality and scalability of SSGA, we gener-
ate different problems with n ranging from 5 to 12. Since
the travel network, travel patterns and charging stations are
randomly generated, the size of strategy space (i.e., |S|), as
well as the average size of strategy space for each travel
pattern of EVs (i.e., |S|/|P|), are also randomized and does
not have to increase with n (refer to “|S|/#Pattern” curve
in Figure 4(a) for the variation trend). We then solve PCS
and SSGA based on the above described mock data and the
corresponding charging station placement A2 and B2.

Experimental results are shown in Fig 4. When we in-
crease the number of zones, the size of the strategy space
also increases accordingly. In Figure 4(a) and Figure 4(c),
the running time of both approaches under different charg-
ing station placement plans is respectively described. It is
shown that the running time of PCS does not monotonously
increase with the number of zones, but corresponds to the
“|S|/#Pattern” curve. This is because the latter decides
the complexity of the problem. For better visualization, we
depict the relationship between running time and the aver-
age strategy space |S|/|P| in Figure 4(b), from which we can
see that the running time increases accordingly when |S|/|P|
increases. In Figure 4(c), as we are using the charging sta-
tion plan B2, the number of zones with chargers increases,
so does the problem scale. In this case, PCS cannot handle
the problem even for a small graph. Obviously, our approach
SSGA drastically decreases the running time. As we can see
from Figure 4(d), SSGA always results in very close optimal
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(a) Running time (A2) (b) Running time trend (A2) (c) Running time (B2) (d) Social cost (A2)

Figure 4: Optimality and scalability of SSGA comparing with PCS: (a) illustrates the running time of PCS and SSGA on
the primary y axis, while on the secondary y axis showing the total number of pure strategies divided by the total number of
EV patterns (i.e., the average size of strategy space for each pattern of EVs) corresponding to the charging station placement
A2; (b) shows the relationship between the running time and the average size of strategy space for each pattern of EVs; (c)
depicts running time results corresponding to the charging station placement B2; and (d) depicts the social cost of both PCS
and SSGA for placement A2;

(a) Social cost (b) Social cost w.r.t. # of EVs

Figure 5: Comparing SSGA with uniform pricing under
different charging station placement plans A1, B1 and C1:
(a) the number of EVs is estimated as we stated before; and
(b) we increase and decrease the number of EVs by 10%.

social cost to PCS. Note that the social cost increases with
the number of EVs divided by the number of chargers, i.e.,
the average number of EVs that a charger needs to serve.

6.2 Advantages over Uniform Pricing
We apply our approach to the data of Singapore and

compare our pricing policy with the benchmark - uniform
pricing (i.e., set charging rate in all the charging station-
s as the same), which represents no utilization of pricing
measure for improving traffic system performance. We then
conduct experiments according to different charging station
placement plans A1 to C1 for both SSGA and uniform
pricing. In Figure 5(a), the number of EVs in each zone
is set as we stated before. We can see that SSGA largely
decreases the social cost, especially when the social cost is
higher. We then increase/decrease the number of EVs in
different extents to see what is the difference between the
two methods when the EV density in the region is different.
In Figure 5(b), the legends “SSGA+” and “Uniform+” refer
to the results when the number of EVs is increased by 10%;
similarly, the legends “SSGA-” and “Uniform-” refer to the
results when the number of EVs is decreased by 10%. We
find that when the number of EVs increases, the advantage
of distinct pricing computed by SSGA also increases.

(a) Social cost (b) Social cost w.r.t. # of EVs

Figure 6: Social cost of SSGA on original data and with
two-step hop charging strategies: (a) the number of EVs is
estimated as we stated before; and (b) the number of EVs
in each travel pattern is increased/decreased by 10%.

6.3 Two-step Hop Charging Strategies
In this part, we release the assumption that EVs only

charge in her routine zones or adjacent ones of them to
see what will happen to the optimal social cost and the
equilibrium strategy profile. We choose zone 1 for the test
by adding up all the 2-step hop charging strategies s′ for the
each patterns j EVs in zone 1:

s′ = {z′′, (z, z′), (z′, z′′), (z′′, z′), (z′, z)}, (27)

where z is a zone in the travel pattern P1j , but z′ and z′′

are not. We then conduct experiments on original data and
data with varied number of EVs (increas/decreas by 10% as
we used in Section 6.2). We find that although the two-step
hop strategies are added to the EVs’ strategy space, they are
never used and the optimal social cost never changes, which
is shown in Figure 6. Furthermore, we find that the charging
cost of those two-step hop strategies is much larger than
those employed strategies. We conclude that it is reasonable
to ignore these strategies.

6.4 Adaption to Population Change
The population in cities changes in amount as well as in

distribution along with the city development. A concrete
example is what we show in Section 2 about Singapore. Once
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the charging stations are settled in the city, it is costly to
modify their layout although that the traffic system per-
formance will decrease along with city development, which
directly leads to citizens’ travel pattern change. Thus we
propose to use adaptive dynamic pricing to accommodate
changes in population density and travel patterns, thus to
mitigate the traffic congestion and decrease the social cost.

Figure 7: The optimal social cost of SSGA and uniform
pricing, as well as the system efficiency improvement along
with time.

We first arrange the charging stations according to plan
A2 for Singapore in year 2010. Based on that charging
station placement, we then conduct experiments for popu-
lation distribution in year 2012 and 2014, respectively. The
results in social cost of both SSGA and uniform pricing are
depicted in Figure 7, where the x axis denotes the year, and
the primary and secondary y axis denote social cost and the
percentage of improvement in social cost, respectively. As
we can see, SSGA is quite adaptive to the population density
change and it always decreases the social cost by a consider-
able amount. Furthermore, the “Improvement” curve shows
that the decrease in social cost (i.e., improvement in system
performance) increases with time. It turns out that when
the system degenerates, SSGA performs even better.

6.5 Sensitivity and Robustness
In the above sections, the number of EVs in each zone

of each pattern is accurately estimated. Considering that
there might be some deviation between estimation and true
values, we test the sensitivity of our approach regarding the
number of EVs and consider the case that the estimated
number of EVs is not accurate. We first compute the optimal
price x according to our estimation. Then we compute the
social cost with fixed x and EV number deviation by letting
γ′i = γi(1± ε) with ε = 5% or 10%.

As we can see in Figure 8, SSGA always achieves better
performance (i.e., results in lower social cost) than uniform
pricing even when the estimation is not precise. Thus our
pricing policy is robust regarding to the uncertainty of es-
timation of the number of EVs. Besides, according to the
social cost of uniform pricing and the “Improvement” curve,
we can see that when the social cost is higher, SSGA actually
outperforms uniform pricing more.

7. CONCLUSION & APPLICATION
In this paper, we take a game-theoretic perspective to

study the EV charging station pricing problem motivated by

(a) # of EVs decrease by 5%(b) # of EVs decrease by 10%

(c) # of EVs increase by 5% (d) # of EVs increase by 10%

Figure 8: Robustness test of SSGA comparing with uniform
pricing regarding to deviation in estimation of the number
of EVs: (a) the actual number of EVs of each pattern is
5% less than the estimation; (b) the actual number of EVs
of each pattern is 10% less than the estimation; (c) the
actual number of EVs of each pattern is 5% more than
the estimation; and (d) the actual number of EVs of each
pattern is 10% more than the estimation.

the practical need of EV promotion in Singapore. Our first
contribution in this paper is a novel pricing model that com-
prehensively incorporates EV users’ self-interested charging
behavior and their various traffic patterns, traffic congestion
contributed by EVs and other non-EV vehicles in the road
network, as well as the financial concern for a sustainable op-
eration of the charging network. The second contribution is
the algorithm, SSGA, to solve the mixed integer non-convex
optimal pricing problem, which features two key rules that
guarantee efficient converging to equilibrium solution and
drastically improves the running time perfomance. The final
contribution is our extensive experiments and results which
demonstrate our approach in several aspects, including solu-
tion quality, scalability and robustness. Moreover, we com-
pare our approach with uniform pricing and demonstrate
how and to what extent SSGA can help with improving the
traffic system efficiency and decreasing social cost caused
by EV owners’ charging behavior. Our approach can be
applied in various modern cities like the motivated example
Singapore to manage the charging stations in the future. We
are actively approaching authorities of Singapore to look for
such potential application.
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