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ABSTRACT
Procurement auctions (where the auctioneer needs a service
and bidders offer it at their own conditions) are an appealing
method for on-line service selection. They can improve ser-
vice features and cost by exploiting the competition between
different service providers. Software agents, acting on behalf
of human users and organizations, are essential in making
such auctions practical and usable. Since conveying user
preferences to the agents in a faithful and complete way is
virtually impossible, we advocate an approximate approach,
where only partial preferences are formalized, and users pick
their choice from a short list of options selected by the agents
by means of those partial preferences. Another peculiarity
of our scenarios is that there may be no contracts with null
utility for a given bidder. These features affect the clas-
sical, desirable properties of standard auction mechanisms.
We prove some impossibility results concerning truthfulness
and (a qualitative analogue of) revenue. Then, we investi-
gate a novel auction mechanism that is almost truthful in
the sense that any strategic deviation from truthfulness has
limited impact on the auctioneer’s revenue.

Categories and Subject Descriptors
Theory of Computation [Theory and Algorithms for ap-
plication domains]: Algorithmic game theory and mech-
anism design—Computational pricing and auctions

General Terms
Economics, Human Factors, Theory

Keywords
Auctions, partial orders, preference relations

1. INTRODUCTION
In recent years, an intense cross-fertilization between Mul-

tiagent Systems and economic paradigms has determined a
fruitful area of research. Here we are particularly interested
in auction mechanisms, with particular regard to procure-
ment auctions, that can be used for selecting on-line services
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in a way that improves the corresponding contracts by ex-
ploiting the competition between different service providers.
Such scenarios differ from classical auction settings in a few
aspects that determine significant changes in the underlying
theoretical properties (especially the strategic behavior of
participating agents), as discussed in the following.

When we import an economic paradigm (e.g. Game The-
ory and Social Mechanism Design) into our field, we are
implicitly importing its model of what an agent is and how
it acts proactively. In this respect, Decision Theory and its
agent preference axiomatizations play a fundamental role.

In Decision Theory, one of the very basic properties of
a preference relation � is its totality: given two potential
outcomes a and b, either a � b or b � a. From the theory’s
very start, such an assumption raised some criticisms1.

Somewhat surprisingly, the founders themselves of Deci-
sion Theory considered this point as debatable:

“It is conceivable and may even in a way be more
realistic to allow for cases where the individual
is neither able to state which of two alternatives
he prefers nor that they are equally desirable.
How real this possibility is, both for individuals
and for organizations, seems to be an extremely
interesting question, but it is a question of fact.
It certainly deserves further study.” [12].

Several domains would advocate the foregoing considera-
tions. Preferences often result from complex trade-offs be-
tween different attributes (functionalities, cost, Quality of
Service, information disclosure risks, etc.); in this case pos-
sible lack of knowledge as well as introspective sensations
of vacillation would naturally move towards a relaxation of
the totality property, admitting that some pairs of outcomes
may be incomparable.

In this work we support and develop this perspective in
the context of procurement auctions. However, before un-
dertaking our study, a preliminarily step requires to deeply
understand why decision theorists have substantially pre-
served totality so far. We clarify this point with an example.
Assume to be in a restaurant which offers exotic foods. To
make it simple, you can only choose between two dishes, say
pipi cruschi and stigghiola, you do not have any idea of. If
someone asks do you like them the same? you would proba-
bly reply How can I know? This seems to suggest that, from
an introspective viewpoint, you do not judge them as equiv-
alent. However, if you are starving and we only look at how

1In particular, Simon’s kicked off a problem-solving perspec-
tive which was very influential in AI [11].

77



you actually behave, in this situation you would not mind
delegating to coin flipping, which is just the same behavior
you adopt in case of equivalence. Shortly, Decision Theory
does not claim to look inside your mind, it only aims at
justifying your behavior at the moment a decision is made.

However, unlike Decision Theory where decision makers
own their preferences, in MAS we have to consider another
fundamental aspect: software agents generally act on be-
half of real users. For instance, in an electronic market, a
software agent may apply an auction mechanism on behalf
of a consumer, to filter the offers of the providers. This
clearly raises the issue of how user preferences can be ef-
fectively transferred to software agents, considering that on
the web offers can be plenty and diversified. If the dele-
gated agent admits total preferences only, a user would be
forced to disambiguate up front all (possibly unexpected)
offers, and we have seen that one is introspectively reluctant
to identify indecisions – either due to lack of knowledge or
trembling desires – with indifference. Furthermore, even if
the user had no indecisions and conformed with a classical
economic man, her preference relation could be so volumi-
nous and lacking of regularities that it could not be entirely
and efficiently injected into the software agent – albeit ce-
teris paribus techniques could be adopted [4].

The foregoing arguments end up with the following con-
sideration: if Decision Theory considers sufficient three pos-
sible options (choose a, choose b, and flip a coin), we propose
a fourth one for the delegated agent, namely, deferring the
decision and asking the user again. This involves distin-
guishing between indifference and incomparability.

Preference incompleteness is not the only source of differ-
ences between classical auction settings and our scenarios.
Traditional settings enjoy the property that it is always pos-
sible to make a bid with null utility, by bidding exactly the
value v attributed to the auction item. However, not all of
our reference scenarios involve payments, and the space of
bids may consist of contracts belonging to a discrete domain.
In similar settings, it is well possible that no contract has
exactly null utility for the bidder. We will show that due
to this apparently minor difference, the tie-breaking rules
traditionally used to select a winner when multiple bidders
submit the same optimal choice make auctions not truthful.
Recovering truthfulness (at least in part) requires invasive
changes to the auction mechanism.

In the following section, we describe a detailed motivat-
ing scenario with the above features. Then, Section 3 lays
the formal basis for our investigation, by defining auctions
and their main desirable properties. In Section 4, we draw a
comparison between our framework – characterized by par-
tial preference relations and discrete contract spaces – and
the classical one, where preferences are total orders and con-
tracts are monetary and hence continuous. We show that
the obvious adaptations of classical truthful auctions to our
setting violate one or more of the desirable properties of
auctions.

Next, in Section 5, we focus on single-item auctions. After
proving that no such auction can possibly give strong guar-
antees on truthfulness and revenue at the same time, we
introduce a relatively optimal auction and discuss its prop-
erties. Roughly speaking, a relatively optimal mechanism
is one in which the outcome is guaranteed to be maximally
preferred by the auctioneer. Then, by our negative result,
this mechanism is necessarily not truthful. In particular,

we prove that bidders may have an interest to offer con-
tracts that are not actually convenient to them. However,
the mechanism still manages to filter out those over-bids
and select an outcome that is convenient to the winning bid-
der and maximally preferred by the auctioneer. Section 6
shows that multi-item auctions are much less problematic.
We define a multi-item mechanism that is both truthful and
weakly optimal. Finally, we discuss some related work in
Section 7 and draw our conclusions in Section 8.

2. MOTIVATING SCENARIO
Consider the following scenario: Alice is organizing a trip

and has to choose a portal for booking tickets and hotels.
There is a long list of portals that provide such services, and
a first polling shows that the options (across all portals)
are: (i) traveling time between 8 and 24 hours; (ii) only
ticket booking, only hotel booking, or complete bookings;
(iii) prices between e 1000 and e 2500.

The software agent accepts constraints such as maximum
cost and travel time, restrictions on transport means (e.g.
no planes), hotel category, portal usability (e.g. no ads),
privacy preferences (e.g. no contacts for marketing purposes
are allowed), etc. Then, according to the specified prefer-
ence relation, the agent filters a winning deal. If this is done
through an electronic procurement auction, then the com-
petition between the different booking services pushes them
to improve their offers.

Clearly, Alice’s desires are influenced by many of the above
features. For instance, she favors 3 star hotels, prefers fast
travels and flights, hates ads and being contacted for market-
ing purposes. Of course, ceteris paribus, she prefers cheaper
solutions. Unfortunately, such preferences do not yield a
total order over the options, as Alice cannot establish any
fixed priority between the features. For instance, she prefers
a package comprising an 8 hours long flight and 3 star hotel
to another package comprising a 12 hours long flight and a
5 star hotel, when the latter costs more than e 150/night;
otherwise she prefers the latter option. Among two packages
with the same hotel and similar prices (differing less than
e 20), Alice prefers the one with the shortest travel time.
Alice soon realizes that providing a total order to the soft-
ware agent is frustrating and requires about the same effort
as comparing all the offers by herself.

On the contrary, by using partial preferences, we allow the
software agent to use an approximate representation of Al-
ice’s desires and return a restricted list of choices from which
Alice can select the preferred one. In other words, Alice has
the ability to balance between the filtering power and the
usability of the software agent. As a further advantage, Al-
ice retains the ability to apply unforeseen, situation-specific
preferences that could not be formalized in advance.

Note that the typical portals, in this scenario, are “free”;
their revenues come from advertisement and the user’s per-
sonal information, that can be sold to third parties for mar-
keting purposes. Thus, the parameters that determine the
portals’ behavior and the quality of their suggestions (kind
of trip, cost, duration, hotel category and price, value of
advertisement and personal data, etc.) are not under the
control of the provider, and it may well be the case that
none of the possible options has null utility for the provider.
If this is the case, then being selected by the user is never
indifferent to not being selected, for any option.
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3. PRELIMINARIES
The agents involved in our framework are an auctioneer

a and a finite set N = {1, . . . , n} of bidders. We denote
by A the set of possible contracts that the auctioneer can
stipulate with a bidder. Typically, in procurement auctions
– which are our primary reference domain – the auctioneer
is a customer asking for a certain service, bidders are the
providers of that service and a contract states all relevant
properties of the service, such as functionality, quality of
service, costs, terms of rescission, etc.

Clearly, the auctioneer may judge some contracts more
profitable than others. Let ≤a be the auctioneer’s prefer-
ence relation. In standard auctions, which are founded on
classical decision theory, ≤a is defined as a weak order, i.e.
a total and transitive relation. On the contrary, we assume
that two contracts may be incomparable for the auction-
eer. Intuitively, two contracts being incomparable means
that the auctioneer is not currently able to weigh them up
against each other, but she does not want to demand the de-
cision to coin flipping. Formally, we relinquish the totality
property and assume ≤a to be a preorder, that is a reflexive
and transitive relation over A. Clearly, weak orders can be
viewed as a special class of preorders.

As usual, we write b <a b′ and b ∼a b′ in case b′ is strictly
preferred to b (i.e. b ≤a b′ and b′ 6≤a b) and b is equivalent
to b′ (b ≤a b′ and b′ ≤a b), respectively. With b ./a b′ we
mean that b and b′ are incomparable (b 6≤a b′ and b′ 6≤a

b). Similarly, for each bidder i, ≤i is her partial preference
relation. The only assumption we make on these preferences
is the following: some contracts in A can be considered by
some agent as inadmissible. A contract is inadmissible if by
stipulating that contract the agent incurs a loss; in standard
utility-based auctions inadmissible contracts are associated
with negative values. We denote with Aa ⊆ A (resp. Ai ⊆
A) the set of contracts that are admissible for the auctioneer
(resp. for the bidder i). Then, any contract which does not
incur a loss is strictly preferred to a contract that incurs
a loss. Formally, for each b ∈ A \ Aa and b′ ∈ Aa (resp.
b ∈ A \Ai and b′ ∈ Ai), b <a b′ (resp. b <i b

′).
Note that in standard auctions it is generally assumed

that the preference of the auctioneer are the inverse of the
bidders’ preferences. On the contrary, here we do not make
any assumption on how preferences are related with each
other. In particular this means that for some pairs of con-
tracts, say b1 and b2, the preference of the auctioneer could
be aligned with the preference of some bidder i, i.e. b1 ≤a b2
and b1 ≤i b2. This makes sense in several domains, for ex-
ample in the context of cloud service providing, where ceteris
paribus both the customer and providers may prefer to use
a secure transport layer instead of unsafe protocols. Given
a set B ⊆ A, we denote by maxa B (resp., maxi B) the sub-
set of B containing the elements b such that for all other
elements c ∈ B, it holds that b 6<a c (resp., b 6<i c).

At the end of the auction, the user must make a final de-
cision. So, we assume that the auctioneer also has a choice
function choicea : ℘(A) → A which refines her partial pref-
erence ≤a. Formally, for all B ⊆ A, choicea(B) ∈ maxa B.
The objective of the following sections is to provide auc-
tions that, using the partial preference ≤a, filter the set of
contracts offered by the providers, giving to the user a re-
stricted list of contracts, from which she can choose the final
outcome using function choicea.

A bid vector is a vector 〈B1, . . . , Bn〉, where Bi ⊆ A is

the bid of bidder i. Hereafter, given a bid vector B =
〈B1, . . . , Bn〉 and a bidder i, we also consider the correspond-
ing masked vectors B−i = 〈B1, . . . , Bi−1, ?, Bi+1, . . . , Bn〉,
obtained by replacing Bi with the special distinguished sym-
bol “?”. As usual, by (B,B−i) we denote the bid vector
obtained by replacing ’?’ with B, hence (Bi,B−i) = B.

Definition 3.1. A multi-item A-auction is a function A
from bid vectors to pairs (x, c), where x is a boolean alloca-
tion vector (xi = 1 iff i is a winner) and c is the vector of
contracts stipulated by each bidder: c ∈ (A ∪ {⊥})n, where
⊥ 6∈ A is the null contract.

A single-item A-auction identifies a single winner and a sin-
gle winning contract, i.e., for all B there exists at most one
i such that xi = 1, where A(B) = (x, c), and for all j 6= i,
cj = ⊥. For simplicity, in case of a single winner i we write
A(B) = (i, ci).

To reason about the expected behavior of a bidder, we
need to lift her preference ≤i over contracts to a preference
�i over all possible outcomes (x, c) of the auction. We as-
sume that �i satisfies the following natural properties:

• bidders are indifferent losers (in the economic jargon,
there are no externalities): if xi = x′i = 0 then (x, c) �i

(x′, c′) and (x′, c′) �i (x, c);

• preference between outcomes is consistent with prefer-
ence between contracts: if xi = x′i = 1 then

ci ≤i c
′
i ⇔ (x, c) �i (x′, c′);

• winning the auction with an admissible contract is at
least as good as not winning: if xi > x′i and ci ∈ Ai,
then (x′, c′) �i (x, c);

• bidders strictly prefer not to win rather than winning
with an inadmissible contract: if xi > x′i and ci 6∈ Ai,
then (x, c) ≺i (x′, c′).

In general, �i may satisfy additional properties (i.e. it is
not necessarily the least relation satisfying the above prop-
erties). Moreover, in general, �i can be a partial relation as
well. This leads to the following two notions of dominance.

Definition 3.2 (Dominance). Let Bi and B′i be two
bids of provider i. We say that B′i dominates Bi iff for
all B−i: A(Bi,B−i) �i A(B′i,B−i). Moreover, B′i is a
dominant strategy iff it dominates all other bids Bi. We
say that a bid vector B′ is a dominant strategy equilibrium
(DSE) if for all i, B′i is a dominant strategy.

Definition 3.3 (Weak Dominance). Let Bi and B′i
be two bids of provider i. We say that B′i weakly dominates
Bi iff for all B−i: A(B′i,B−i) 6≺i A(Bi,B−i). Moreover,
B′i is a weakly dominant strategy iff it weakly dominates
all other bids Bi. We say that a bid vector B′ is a weakly
dominant strategy equilibrium (WDSE) if for all i, B′i is a
weakly dominant strategy.

Definition 3.3 weakens Definition 3.2 since A(B′i,B−i) 6≺i

A(Bi,B−i) means that either A(Bi,B−i) �i A(B′i,B−i) or
A(Bi,B−i) and A(B′i,B−i) are incomparable.

We can now state several desirable properties of an auc-
tion. For all bid vectors B, let A(B) = (x, c):

• no positive transfer : for all bidders i, if xi = 1 then
ci ∈ Bi;
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Figure 1: A graph representation of ≤a in Example 5.1.

• relative optimality : for all bidders i, j with i 6= j and
b ∈ Bj , if xi = 1 then ci 6<a b; relative optimality,
roughly speaking, is a sort of qualitative revenue max-
imization guarantee;

• voluntary participation: for all i, if xi = 0 then ci = ⊥;

• no failure: if there exists at least one bidder i such
that Bi ∩ Aa 6= ∅ then there exists at least one j such
that xj = 1 and for all j such that xj = 1 it holds that
cj ∈ Aa;

• truthfulness: the vector B̂ = 〈A1, . . . , An〉 is a DSE;

• weak truthfulness: B̂ is a WDSE.

We say that an auction satisfies one of the above properties
if it does so for all auctioneer preferences, bidder preferences,
and bid vectors. Clearly, a single-item auction satisfies vol-
untary participation by definition.

4. A COMPARISON WITH CLASSICAL
AUCTION SETTINGS

In this section we show that the standard properties of
auctions do not hold in our reference scenarios.

4.1 Reduction to classical Vickrey auctions
It is tempting to obtain a truthful auction mechanism for

agents with partial preferences by reducing the problem to
standard second-price auctions, e.g.:

1. Let ≤ be any linearization of ≤a (the preference rela-
tion of the auctioneer);

2. Run a second-price auction using ≤ to order the bids.

This mechanism violates one of the standard desiderata for
auctions: the property of no positive transfer. In particular,
the second best bid might not be admissible for the winner,
which may happen when another bidder makes an offer that
is incomparable with i’s bid.

Example 4.1. Let Aa be a set of 8 possible contracts and
≤a be the preference relation depicted in Figure 1, where an
edge between two contracts ci and cj means that ci <a cj.
Moreover, we have three bidders that offer B1 = {c3, c4, c6},
B2 = {c1, c2, c7}, and B3 = {c5, c8}, respectively.

Assume the following linearization of ≤a: ch ≤ ck iff h ≤
k. Then, a second-price auction assigns the contract c7 to
bidder 3. However, c7 is not included in B3 which means
that it is not an admissible option for 3.

It is not hard to see that adopting as ≤ the linearization of
the preferences of any of the bidders yields similar problems.
The details are left to the reader.

4.2 Bid-independent and truthful auctions
It is well-known that in classical price-based auctions,

where bid vectors consist of tuples 〈b1, . . . , bn〉 ∈ Rn, truth-
fulness is completely characterized by bid-independent auc-
tions.

Definition 4.1. A bid-independent auction consists of a
threshold function f from masked bid vectors to R ∪ {∞}.
For all given bid vectors B, a bidder i is a winner iff bi ≥
f(B−i). All winners get a copy of the item and pay f(B−i).

Proposition 4.1 ([5]). An auction mechanism is truth-
ful iff it is equivalent to a bid-independent auction.

Vickrey’s single-item, second-price auctions are usually men-
tioned as an example of bid-independent auction that, by
setting f(B−i) = max{bj | j ∈ N, j 6= i}, satisfies all the
desiderata mentioned in Section 3. However, this is correct
only if we assume that one bidder makes an offer that is
strictly better than all the other bids, otherwise there would
more than one winner and the auction would not be single-
item.

Should this happen, the bid independent auction can be
refined with a tie-breaking rule to select one winner among
the bidders that submit the best offer. Strictly speaking,
this is not a bid-independent auction anymore, so in general
there is no truthfulness guarantee. However, in Vickrey’s
auctions, any tie-breaking criterion preserves truthfulness,
because in case of multiple best offers the price paid by a
truthful winner i is exactly bi = vi, (the value attributed to
the item), therefore winning and not winning are indifferent
to i, as vi − bi = 0 and there is no incentive to overbid (i.e.
bid some bi > vi).

Unfortunately, in our scenarios, the space of bids is not
continuous, and it is possible (even likely) that winning and
not winning are not indifferent, for any contract (as if it were
only possible to bid bi 6= vi).

2 Then each “almost truthful”
bidder j who bids the maximal possible offer bj < vj and is
excluded by the tie breaking rule has an incentive to overbid.
Indeed, if the bid were replaced by some b′j > bj , then j
would become the only winner, and the price paid would
still be bj < vj .

Remark 4.1. This proves that if the bid space does not
contain the private value vi (for some bidder i), then Vickrey
auctions are not truthful.

Remark 4.2. Bid vectors with multiple optimal offers are
often considered unlikely in the classical settings. However,
when preferences are partial, it is not so unlikely to incur
in multiple, mutually incomparable optimal offers, therefore
fixing this problem is essential in our framework.

Non-numeric bids require a slight generalization of the
notion of bid-independent auction.

Definition 4.2. A bid-independent A-auction consists of
a generalized threshold function f from masked vectors of
contract sets to A∪{⊥}. For all given bid vectors B, a bid-
der i is a winner iff f(B−i) ∈ Bi. Each winner stipulates
the contract f(B−i) with the auctioneer.

2This happens when the provided service’s utility is always
nonzero, for all possible contracts.
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Note that classical bid-independent auctions are essentially
a special case of the above definition, in effect if i is willing
to provide the good at the price bi, it will also accept to give
it at a higher price. This means that bi is just a shorthand
for Bi = {b | b ≥ bi} and hence the condition bi ≥ f(B−i)
in Definition 4.1 reduces to f(B−i) ∈ Bi.

It would be nice to use bid-independent A-auctions to
reconstruct in the generalized framework the nice properties
of Vickrey’s auctions. Unfortunately, in so far as single-
item auctions are concerned, relative optimality cannot be
achieved at reasonable conditions.

Proposition 4.2. Assume that A has at least three con-
tracts. Then, no single-item, bid-independent A-auction sat-
isfies both relative optimality and no failure.

Proof. Let N = {1, 2}, A = {c,>1,>2}, and let ≤a =
{(>1, c), (>2, c)}. Suppose that f induces a single-item, bid-
independent A-auction satisfying no-failure and relative op-
timality; we shall derive a contradiction.

Consider B = 〈{c}, {c}〉. Assume without loss of general-
ity that 1 wins (the other case is symmetrical). Then 2 shall
not win as the auction is single-item, and hence

f(B−2) = d ∈ {>1,>2,⊥} . (1)

Case d = >1. Let B′ = 〈{c}, {>2}〉. By relative op-
timality, 1 shall lose. Moreover, B′−2 = B−2 so f(B′−2) =
f(B−2) = d = >1 (by (1)). But then f(B′−2) 6∈ b′2, therefore
2 loses and f violates the no-failure property (a contradic-
tion).

Case d = >2. Symmetrical (swap >1 and >2 in the above
proof).

Case d = ⊥. Similar to the first case (replace >1 with
⊥).

In the light of the above result, we will focus on single-item
auction mechanisms that are not bid-independent.

5. SINGLE-ITEM AUCTIONS
In classical price-based settings, Vickrey’s auctions satisfy

all the desiderata listed in Section 3. Therefore, a natural
question is: can we in principle design generalized single-
item auctions which reproduce the same good properties of
Vickrey’s auctions? Unfortunately, the following proposition
shows that this is not possible.

Proposition 5.1. For some A and ≤a, no single-item
auction satisfies the properties no positive transfer, relative
optimality, and weak truthfulness.

Proof. Suppose that A is always weakly optimal, weakly
truthful, and satisfies the no positive transfer property too;
we shall derive a contradiction.

Consider any A ⊇ {c1, c2} such that c1 <a c2. Let B =
〈{c1}, . . . , {c1}〉 and A(B) = (w, c1). Finally, suppose that
none of c1 and c2 has null value for w, so that winning with
outcome c1 or c2 is preferable to not winning.
Claim 1 : A(({c1, c2},B−w)) = A(B) = (w, c1).

First, only two different alternatives make the property
of no positive transfer satisfied: A(({c1, c2},B−w)) = (i, c1)
and A(({c1, c2},B−w)) = (w, c2).

If A(({c1, c2},B−w)) = (i, c1), with i 6= w, then w would
have an incentive to underbid when Aw = {c1, c2} (because
w is the winner in B), so A would not be weakly truthful.

Conversely, if A(({c1, c2},B−w)) = (w, c2), then w would
have an incentive to underbid whenever c2 <w c1.
Claim 2 : A(({c2},B−w)) = (w, c2).

Indeed, by weak optimality, w must be the winner (be-
cause c1 <a c2). Then, according to the no positive transfer
property, c2 is the only possible contract.

But then, by Claim 1 and Claim 2, whenever Aw = {c1, c2}
and c1 <w c2, w has an incentive to underbid, so A cannot
be weakly truthful.

Concerning the no positive transfer property, it is likely that
a bidder is not willing to accept a contract not included in
her bid. So, mechanisms not satisfying this property will
not be taken into account.

The remaining options are either preserving weak truth-
fulness or preserving relative optimality. The first option is
achieved by a simple mechanism that depends on two pa-
rameters: (i) the set Aa of contracts that are admissible for
the auctioneer, and (ii) a linear priority ordering among bid-
ders, which is used as a tie-breaking rule. The mechanism
works according to the following definition.

Definition 5.1. Each bidder i submits a bid Bi. The
winner w is the highest priority bidder i such that Aa∩Bi 6=
∅; w selects an element b in Aa ∩Bw. The output is (w, b).

Note that the previous definition is nothing but a form of
dictatorship: the tie-breaking rule chooses a priori a winner
w which can freely select any of her offers in Aa∩Bw. Thus,
w is incentivated to maximize the set of admissible choices,
which means that Aw is her best strategy, and all the other
bidders j 6= w are indifferent to any strategy – indeed, they
lose no matter what they offer. Consequently, Definition
5.1 is surely truthful. Moreover, it is equally clear that the
mechanism is not relative optimal; more precisely, from the
auctioneer’s side the substantial lack of competition merely
guarantees that the resulting contract is admissible.

So far, it is still an open question whether there exists a
(weakly) truthful auction different from a dictatorship.

5.1 A relatively optimal mechanism
In this section we specify a relatively optimal mechanism

for partial preferences. Such mechanism depends on the
following parameters: (i) the set Aa of contracts that are
admissible for the auctioneer; (ii) the preference relation ≤a;
(iii) a linear priority ordering among bidders, which is used
as a tie-breaking rule. For simplicity, here we assume that
i has higher priority than j iff i < j. Then, the mechanism
works according to the following definition.

Definition 5.2. Each bidder i submits a bid Bi, giving
rise to the bid vector B = 〈B1, . . . , Bn〉. The auction pro-
ceeds as follows:

1. For each provider i, let filter(i,B) be the set of con-
tracts offered by i that are admissible for the auction-
eer and such that no other bidder has made a strictly
preferable offer. Formally,

filter(i,B) = {b ∈ Bi ∩Aa | ∀j 6= i,∀c ∈ Bj , b 6<a c}.

2. The mechanism first selects those who submitted one
of the top offers, that is, the members of

cw(B) = {i | filter(i,B) 6= ∅} ,
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(cw stands for candidate winners). Then, by the tie-
breaking rule, the winner w is the highest priority ele-
ment in cw(B).

3. The mechanism transmits to w the set filter(w,B).

4. The winner replies with a non-empty subset B′w ⊆
filter(w,B).

5. The mechanism transmits to the auctioneer the set B′w.

6. The auctioneer replies with the contract b = choicea(B′w).

7. The output of the auction is (w, b) and the other bid-
ders are assigned the null contract ⊥.

Remark 5.1. Note that the mechanism aims at using min-
imal information to select a contract. In particular, the bid-
ders do not provide their preferences to the mechanism as the
final selection is made privately (steps 3 and 4). This is a
valuable desideratum in concrete applications where service
providers, public companies or other kinds of enterprises,
are scarcely inclined to disclose any information about their
own profit model.

Example 5.1. Consider the same preference ≤a and bid
vector described in Example 4.1. By applying Definition 5.2,
in step 1, the resulting filters are:

filter(1,B) = {c3, c6}
filter(2,B) = {c7}
filter(3,B) = {c5, c8}.

Therefore, all the bidders are candidate winners. Then, ac-
cording to the tie-breaking rule, bidder 1 is the final win-
ner. In step 3 the mechanism transmits to bidder 1 the fil-
ter {c3, c6}. Assume that she is indifferent between these
two possible contracts and replies in step 4 with the same
set {c3, c6}. Then, the mechanism returns the contracts c3
and c6 to the auctioneer that, according to her preferences,
chooses c6.

Differently, if the preferences of bidder 1 were inverted
w.r.t. Figure 1, then in step 4 she would return the single
contract c3 which would be also the final outcome.

The following proposition shows that, apart from truthful-
ness, Definition 5.2 fulfills all the desiderata mentioned in
Section 3.

Proposition 5.2. The auction in Definition 5.2 satisfies
the properties no failure, no positive transfer, relative opti-
mality, and voluntary participation.

Proof. Assume that at least one bidder submits a con-
tract which is admissible for the auctioneer, as the other
case is trivial. Let M = maxa

⋃n
i=1 Bi. Clearly, there ex-

ists a bidder j such that M ∩ Bj 6= ∅. By construction,
M ∩Bj ⊆ filter(Bj ,B−j). Hence, cw(B) 6= ∅ and hence the
auction returns an output (w, b) with b ∈ Aa (no failure) and
all other bidders receive the null contract (voluntary partic-
ipation). Note that b ∈ filter(Bw,B−w) which means that
b ∈ Bw (no positive transfer) and for all j 6= w and c ∈ Bj ,
b 6<a c (relative optimality).

Finally, note that when offers are represented by mon-
etary values, the presented mechanism collapses to stan-
dard second-price auctions. Keeping procurement auctions

as our reference scenario, the auctioneer aims at minimiz-
ing prices, that is b ≤a c iff c ≤ b. Conversely, for each
bidder i, we have that b ≤i c iff b ≤ c. The auction-
eer fixes a maximum price pa she is willing to pay, hence
the set of admissible offers is Aa = {b ∈ A | b ≤ pa}.
Each bidder i makes an offer bi, which implicitly stands
for the bid Bi = {b ∈ A | b ≥ bi}. Once the mecha-
nism has collected all the bids, it computes the correspond-
ing filters. Since prices are totally ordered, we have that
filter(i,B) = {b ∈ Bi | b ≤ pa and ∀j 6= i,∀c ∈ Bj , b ≤ c}.
Notice that if a bidder makes an offer bi that is higher than
pa, his filter will be empty. For the sake of simplicity, assume
that there exists only one candidate winner i1 (the bidder
offering the lowest price) and let i2 the bidder offering the
second lowest price. By definition, it holds that

filter(i1,B) = {b ∈ Bi1 | bi1 ≤ b ≤ bi2} .

Consequently, once the mechanism returns filter(i1,B) in
Step 4, i1 will select her best possible choice which is indeed
the second price bi2 .

5.2 Strategic Analysis
In this section we look at an auction as a game where

bidders act strategically.
First of all, in Step 3 the winning bidder w has to select a

subset of her filter. Since no other bidder can influence the
outcome and the auction satisfies no failure and no positive
transfer, it is convenient for w to select the maximal elements
of her filter, i.e.,

max
w

filter(w,B).

The following proposition shows that, differently from clas-
sical Vickrey auctions, partial preferences make Definition 5.2
not weakly truthful.

Proposition 5.3. The auction in Definition 5.2 is not
weakly truthful.

Proof. Consider the following counterexample: the set
of admissible contracts for the auctioneer is Aa = {b, c, d},
where c <a b, d <a b, and c ./a d. We also have two
bidders such that A1 = B1 = {c} and A2 = {d}. If 2
plays truthfully, i.e. B2 = {d}, since c ./a d, both 1 and 2
are candidate winners. According to the tie-breaking rule, 2
loses the auction and the output is (1, c). On the contrary,
if 2 offers B′2 = {b, d}, she is the only candidate winner
and her filter is B′2 itself. Then, in step 4 bidder 2 can
select the set {d}, which means that the output is (2, d).
Now, assuming that d is better than losing, we have that
(1, c) ≺2 (2, d). Therefore, playing truthfully is not a weakly
dominant strategy for 2.

Even if the mechanism is not (weakly) truthful, some valu-
able dominances between bids hold. In particular, each bid
of i is dominated by the one obtained by adding to it all
contracts that are admissible for i.

Proposition 5.4. For each bid Bi of bidder i, Bi ∪ Ai

dominates Bi.

Proof. The thesis is trivially true in case Ai ⊆ Bi. There-
fore, assume that there exists c ∈ Ai such that c 6∈ Bi.
Clearly, B′i = Bi ∪Ai is an overbid and contains c.

Let B−i be a bid vector of the other providers. We de-
note with B and B′ the bid vectors (Bi,B−i) and (B′i,B−i),
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respectively. If filter(i,B′) ∩ Ai = ∅, then filter(i,B) =
filter(i,B′). Moreover, for all j it also holds filter(j,B) =
filter(j,B′), and consequently A(B) = A(B′) and the con-
clusion follows.

Next suppose that filter(i,B′) ∩ Ai 6= ∅. Since Bi ⊂ B′i,
by construction it follows that filter(i,B) ⊆ filter(i,B′).
Therefore B′i can only add better optimal offers (w.r.t. ≤a),
or leave them unchanged in the worst case. Consequently,
B′i may cause i to enter the set of candidate winners and
other bidders to exit from it. We distinguish two cases: if i
is the winner in B, according to step 2 of the auction he is
also the winner in B′. Since filter(i,B) ⊆ filter(i,B′), for all
b ∈ maxi filter(i,B) there exists b′ ∈ maxi filter(i,B′) such
that b ≤i b

′. Let A(B) = (i, b) and A(B′) = (i, b′). Assume
by contradiction that b′ <i b and let c′ ∈ maxi filter(i,B′)
be such that b ≤i c

′. By transitivity, b′ <i c
′, which implies

b′ 6∈ maxi filter(i,B′), a contradiction.
Otherwise, i is not the winner in B. If i is not the win-

ner in B′, then clearly i is indifferent between B and B′

(indifferent loser assumption) and we are done. If instead i
is also the winner in B′, let A(B′) = (i, b). We have that
maxi filter(i,B) is contained in Ai, because filter(i,B′) ∩
Ai 6= ∅. Consequently, b ∈ Ai and the thesis follows.

Finally, since we have proved that A(B) �i A(B′) no
matter which B−i is chosen, B′i dominates Bi.

The previous theorem provides a uniform way to improve
any bid Bi with a dominant extension that can possibly be
an over-bid, namely Bi∪Ai.

3 Therefore, i can safely reduce
her space of possible moves to the bids B ⊇ Ai only.

In the rest of this section we give a closer look at the
strategic relations between the truthful bid Ai and a generic
over-bid s B ⊇ Ai from the points of view of the bidders and
the auctioneer. The next theorem shows that if a bidder wins
with the truthful bid, then over-bidding does not yield any
advantage.

Proposition 5.5. Let B = (Ai,B−i) and B′ = (B′i,B−i),
where Ai ⊂ B′i and B−i is any bid vector. If A(B) = (i, p),
then A(B′) = (i, p).

Proof. First, from Ai ⊂ B′i, it is easy to verify that (1)
filter(j,B′) ⊆ filter(j,B) for all j 6= i, and (2) filter(i,B′) =
filter(i,B)∪C where C consists of non-admissible contracts
only, i.e., for all c ∈ C and b ∈ filter(i,B) it holds that c <i b.
Since A(B) = (i, p), we have that filter(i,B) 6= ∅. From (2)
and (1), it follows that i ∈ cw(B′) and cw(B′) ⊆ cw(B). So,
the tie-breaking rule selects i as the winner in B′ too.

Moreover, (2) implies that maxi filter(i,B′) does not con-
tain any element in C and hence

max
i

filter(i,B′) = max
i

filter(i,B) , D.

Consequently, in both B and B′ the auction sends to the
auctioneer the same set D of contracts at Step 5. The auc-
tioneer then replies with the same contract p = choicea(D).

Somewhat dually, if a truthful bidder is not a candidate
winner, then over-bidding is counterproductive.

Proposition 5.6. Let B = (Ai,B−i) and B′ = (B′i,B−i),
where Ai ⊂ B′i and B−i is any bid vector. If i 6∈ cw(B), then
B dominates B′.
3In other words over-bids, taken as a whole, can be seen as
a dominant set of strategies.

Proof. Let A(B) = (h, p) and A(B′) = (k, p′). Clearly,
i 6∈ cw(B) implies that h 6= i. Now, if k 6= i, since i is
an indifferent loser, she is indifferent between B and B′,
(h, p) ∼i (k, p′). Then, assume that i wins the auction in
the context B′, i.e., k = i. Since all admissible contracts are
discarded when i plays truthfully, i.e., filter(i,B) = ∅, then
filter(i,B′) consists of non-admissible contracts only. This
implies that p′ 6∈ Ai and hence (i, p′) ≺i (h, p).

Remark 5.2. In the proof of Proposition 5.3 we have shown
a case where over-bidding “hacks” the tie-breaking rule in fa-
vor of a certain bidder. Propositions 5.5 and 5.6 show that
this is the only way a bidder can use over-bidding for her
own advantage.

Finally, we show that from the point of view of the auc-
tioneer the effects of over-bidding on the outcome are lim-
ited. In particular, at least at the level of granularity of the
partial preference ≤a provided to the mechanism, the auc-
tioneer has no reason to complain because of an over-bid, as
it cannot yield a strictly less preferable contract.

Proposition 5.7. Let B = (Ai,B−i) and B′ = (B′i,B−i),
where Ai ⊆ B′i and B−i is any bid vector. Let A(B) = (k, q)
and A(B′) = (j, p). It holds that p 6<a q.

Proof. First, assume k = i, i.e., i is the winner in B. By
Proposition 5.5, j = i and p = q, which implies the thesis. In
the following, we assume k 6= i and distinguish three cases.

Case 1. j = k, i.e., the winner in B and B′ is the
same (different from i). When moving from B to B′, some
contracts from the filter of j are lost, because they are
dominated by some “new” contract in B′i \ Ai. The re-
maining contracts cannot be worse (for the auctioneer) than
those that were removed, otherwise they would have been
removed as well. Formally, for all b ∈ filter(j,B′) and
c ∈ filter(j,B) \ filter(j,B′) we have that b 6≤a c. If q 6∈
filter(j,B′), since p ∈ filter(j,B′), by the above observation
we have that p 6≤a q and in particular p 6<a q. Otherwise,
q ∈ filter(j,B′). Since filter(j,B′) ⊆ filter(j,B) and q is a
maximal element of filter(j,B) w.r.t. ≤j , q is a maximal
element of filter(j,B′) as well. Formally, q ∈ D, where
D = maxj filter(j,B′). Now, since p = choicea(D) and
choicea refines ≤a, p ∈ maxa D which means that p 6<a q.

Case 2. j 6= k and j 6= i, that is the winners in B and
B′ are different from each other and i. First, since j 6= i, it
holds that filter(j,B′) ⊆ filter(j,B). Now, assume p <a q.
By definition, p 6∈ filter(j,B) and hence p 6∈ filter(j,B′).
This is in contradiction with the hypothesis A(B′) = (j, p);
subsequently, p 6<a q.

Case 3. j 6= k and j = i, i.e., i is the winner in B′ but
not in B. Assume again that p <a q. Now, since q belongs
to Bk and k 6= i, p is not relative optimal in B′ and hence
it is discarded. As before, p 6∈ filter(j,B′) clearly leads to a
contradiction.

6. MULTI-ITEM AUCTIONS
Sometimes the auctioneer may be looking for multiple

goods or services and then she is disposed to acknowledge
multiple contracts. The bid-independent auctions defined
in Def. 4.2 are naturally multi-item, as every agent i such
that f(B−i) ∈ Bi is a winner. Relative optimality is not
precluded a priori (Prop. 4.2 refers to single-item auctions
only). Nevertheless, Def. 4.2 presents another critical point:
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there is no way to assure that f(B−i) ∈ Bi holds for at least
one bidder. Consequently, the following proposition holds.

Proposition 6.1. Generalized bid-independent auctions
do not satisfy the no-failure property.

Proof. Assume there are two possible contracts c1 and
c2 and two bidders. Since B−1 = B2 and B−2 = B1, f is a
mapping from {c1}, {c2}, and {c1, c2} into either c1 or c2.

Consider the restriction of f to singletons. If such a re-
striction is not surjective, e.g. f({c1}) = f({c2}) = c1, then
in case B1 = B2 = {c2} no winner is selected. If f({c1}) =
c1 and f({c2}) = c2, then the mechanism fails when, for
instance, B1 = {c1} and B2 = {c2}. Finally, if f({c1}) = c2
and f({c2}) = c2, failure occurs when B1 = B2 = {c1}.

Consequently, no function f can guarantee the no-failure
property.

To avoid failures, we consider a multi-item variant of the
mechanism presented in Definition 5.2. Roughly speaking,
for a given bid vector B, the mechanism assigns a contract to
each candidate winner in cw(B). More formally, the mech-
anism is defined as follows.

Definition 6.1. Given an input bid-vector B, for each
bidder i, filter(i,B) and cw(B) are computed as in steps 1
and 2 in Definition 5.2. Steps 3 − 6 are executed for each
i ∈ cw(B), that is, the mechanism (a) sends filter(i,B) to
bidder i, (b) gets B′i ⊆ filter(i,B) back from i (c) sends B′i
to the auctioneer, (d) receives bi = choicea(B′i). Finally the
mechanism outputs (x, c), where for each i ∈ cw(B), xi = 1
and ci = bi while for each i 6∈ cw(B), xi = 0 and ci = ⊥.

This mechanism is obviously relatively optimal, by defini-
tion of filters. On the strategy side, it is easy to verify that
Propositions 5.4 and 5.6 still hold for the new mechanism.
Similarly, it is possible to rephrase Proposition 5.5 as:

Proposition 6.2. Let B = (Ai,B−i) and B′ = (B′i,B−i),
where Ai ⊂ B′i and B−i is any bid vector. Furthermore, de-
note by A(B) = (x, c) and A(B′) = (x′, c′). If xi = 1 then
x′i = 1 and c′i = ci.

On the one hand Proposition 5.6 states that if bidder i is not
a candidate winner by playing truthfully, then no over-bid
Bi may lead to win the auction with an admissible contract.
On the other hand, Proposition 6.2 states that if bidder i
is a candidate winner by playing truthfully, then no over-
bid will improve her revenue. Therefore we can prove the
following:

Proposition 6.3. Definition 6.1 satisfies truthfulness.

Proof. Assume that B = (Ai,B−i), B′ = (B′i,B−i),
and A(B′) 6�i A(B).

Now, if i 6∈ cw(B), then according to Proposition 5.6
A(B′) �i A(B). Conversely, if i ∈ cw(B), by Proposi-
tions 5.4 and 6.2 we have that

A(B′) �i A((Ai ∪B′i,B−i)) ∼i A(B) .

Hence, A(B′) �i A(B). In both the cases we have a con-
tradiction.

7. RELATED WORK
Traditionally, preferences are essentially linear orders, in-

duced by underlying utility functions (e.g. [1, 6]). Partial

preferences are dealt with in mechanisms without money,
where most results on incentive compatibility are negative,
[9, 10]. In [8] a generic model for matching with contracts
(using a doctor-hospital metaphor) is introduced. Defini-
tions and results rely on the assumption that preferences
are total orders, if not, then truthfulness does not hold.

Vickrey auctions without payments and qualitative prefer-
ence relations are dealt with in [7]. Auctioneers and bidders
have independent preferences, as in our framework. How-
ever, the preference relation of the auctioneer is restricted
to total preorders (actually, linear orders in the finite case).
The tie-breaking over multiple maximal offers is dealt with
by assuming the auctioneer’s preferences to be equipeaked
(all local maxima are also global maxima). Our framework
supports unrestricted partial preferences, instead.

Bonatti et al. [3] introduce two mechanisms for unrestricted
partial preferences and contracts with non-null utility. Among
the main differences between [3] and this paper we mention:
(i) the mechanisms of [3] are probabilistic; (ii) the theo-
retical properties of those two mechanisms need additional
assumptions about agent preferences (that must be so-called
superweak orders, or satisfy 5 axioms that extend some clas-
sical decision theory properties, respectively); the theoreti-
cal guarantees of the second mechanism of [3] concern the
bidders rather than the auctioneer. We are more interested
in the auctioneer, according to the applications to privacy
enhancement such as those illustrated in [2].

Finally, to the best of our knowledge, Prop. 4.2 is the first
negative result on the extension to partial preferences of the
traditional techniques for achieving truthfulness.

8. CONCLUSIONS AND FUTURE WORK
In our reference scenarios, preferences are partial and the

bid space is discrete, so all bids may have nonzero util-
ity. These two features affect the theoretical properties of
classical auctions: We showed that (i) a naive reduction to
Vickrey’s auctions violates the analogue of the “no positive
transfer” principle; (ii) the tie-breaking rules for selecting
a winner among multiple candidate winners affect truthful-
ness; (iii) bid-independent auctions in general violate either
robustness (there may be no winner) or relative optimality.

We proved that single-item auctions cannot be both truth-
ful and relatively optimal (the latter is a qualitative revenue
guarantee). On the one hand, there exist dictatorial truthful
mechanisms. On the other hand, relative optimality is pre-
served by a mechanism that admits over-bidding. However,
from the auctioneer’s perspective, overbidding can never
make the outcome worse than the outcome of a truthful
bid. Interestingly, from a bidder’s perspective, overbidding
can possibly be advantageous only in case of tie-breaking;
otherwise it may yield an equivalent outcome or even cause
a loss. This mechanism admits human user intervention in
the final phases, when the space of possible outcomes has
been restricted to a restricted list by user agents.

Two interesting open questions are whether dictatorship
is the only truthful single-item mechanism in our scenarios,
and whether some (possibly relaxed) form of truthfulness is
compatible with relative optimality.
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