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ABSTRACT 
An agent model is described at full-scale with the U.S. 

private sector, consisting of some 120 million agents. Using data 
on the population of U.S. firms the model is calibrated to closely 
reproduce firm sizes, ages, growth rates, job tenure and labor 
flows, along with several other empirically-important facts. It 
consists of a coalition formation model in which the Nash 
equilibria are dynamically unstable for sufficiently large 
coalitions. When agents are free to join coalitions where they are 
made better off there results a steady-state distribution of 
coalitions. The agent level is in perpetual disequilibrium but the 
aggregate level approaches a steady-state. This model represents a 
significant advance over conventional approaches to economic 
modeling, made possible by large-scale, parallel agent computing. 

CCS Concepts 
Computing methodologies: Parallel computing methodologies: 
massively parallel algorithms: self-organization; Artificial 
intelligence: distributed artificial intelligence; Modeling and 
simulation; simulation types and techniques, agent/discrete 
models, distributed simulation; Applied computing: Law, social 
and behavioral sciences: economics. 

General Terms 
Algorithms, Economics, Experimentation, Verification. 

Keywords 
Agent solutions of significant social and economic impact; 
coalition formation; behavioral game theory; organizations and 
institutions; Social simulation. 

1. INTRODUCTION 
Over the last decade the U.S. private sector workforce has 

ranged from 115 to 120 million employees, with nearly 3 million 
workers changing employers each month on average [1]. Over this 
same period there were, each year, 5.7-6.0 million firms with 
employees of which, on average, 100 thousand went out of 
business monthly while a comparable number started up [2]. Such 
high levels of turnover in the American economy—1 in 40 
workers changing employers monthly, 1 in 60 firms terminating 
its operations—portrays a kind of perpetual economic flux in the 
U.S. private sector. How should we interpret such persistent 
adjustments and reorganizations of production? If we stipulate that 
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the economy is in general equilibrium then there is no way to 
realize micro-dynamics except by the imposition of external 
shocks. Can microeconomic models endogenously produce the 
kinds of dynamics observed empirically when the incentives 
agents have to change jobs are fully represented? 

Here I describe a microeconomic model capable of 
producing, without exogenous shocks, firm and labor dynamics of 
the size and type the U.S. economy experiences. While 
conventional explanations for these large labor flows exist [e.g., 
3], here I provide a microeconomic explanation without the need 
for aggregate shocks. Also reproduced are a number of cross-
sectional properties of U.S. businesses. Over the past decade there 
have appeared increasing amounts of micro-data on U.S. firms, 
including administratively comprehensive (tax record-based) data 
on firm sizes, ages, growth rates, labor productivity, job tenure, 
and wages. Extant theories place few restrictions on these data.1 
Lucas [10] derives Pareto-distributed firm sizes from a Pareto 
distribution of managerial talent. Luttmer [11, 12] obtains Zipf-
distributed firm sizes and exponential firm ages [13] in a variety of 
general equilibrium settings, driven by exogenous shocks. Rossi-
Hansberg and Wright [14] study establishment growth and exit 
rates arising in general equilibrium due to industry-specific 
productivity shocks. Elsby and Michaels [15] and Arkolakis [16] 
simulate heterogeneous firm growth rates due to productivity 
shocks. However, there are many more data on firm dynamics and 
labor flows to be explained. Here I develop a model that 
reproduces more than two dozen features of the empirical data 
without recourse to exogenous shocks—such shocks are not 
necessary in a model with worker-level dynamics. 

The model draws together threads from various theoretical 
literatures. It is written at the level of individual agents and 
incentive problems of the type studied in the principal-agent 
literature manifest themselves. The agents work in perpetually 
novel environments, so contracts are incomplete and transaction 
costs are implicit. Each firm is a coalition of agents making the 
theory of coalition formation relevant [17]. Agent decisions 
generate firm growth and decline in the spirit of evolutionary 
economics [18]. Specifically, the model consists of a 
heterogeneous population of agents with preferences for income 
and leisure. Production takes place under increasing returns to 
scale, so agents who work together can produce more output per 
unit effort than by working alone. However, agents act non-
cooperatively2: they select effort levels that improve their own 
                                                                    
1 A generation ago Simon [4, 5] noted the inability of the neoclassical 

theory of the firm to explain empirical size distributions. Transaction 
cost [e.g., 6] and game theoretic explanations of the firm [e.g., 7, 8] 
make few empirical claims. Sutton [9] bounds the extent of intra-
industry concentration, constraining the shape of size distributions. 

2 For a cooperative game theoretic view of firms see Ichiishi [19]. 
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welfare, and may migrate between firms or start-up new firms 
when it is advantageous to do so. Analytically, Nash equilibria 
within a firm can be unstable. Large firms are ultimately unstable 
because each agent’s compensation is imperfectly related to its 
effort level, making free-riding possible. Highly productive agents 
eventually leave large firms and such firms eventually decline. All 
firms have finite lives. The dynamics of firms perpetually 
forming, growing and perishing are studied. This non-equilibrium 
regime provides greater welfare than equilibrium. 

These dynamics mean it is analytically difficult to relate 
agent level behavior to aggregate outcomes. Therefore, features 
that emerge at the firm population level are studied using agent-
based computing [20-23]. When agent models are ‘spun’ forward 
in time macro-structure “grows” from the bottom-up [e.g., 24]. No 
equations governing the aggregate level are specified, nor do 
agents have either complete information or correct models for how 
the economy will unfold. Instead, they glean data inductively from 
the environment and from their social networks, through direct 
interactions, and make imperfect forecasts of economic 
opportunities. [25]. The macroscopic properties of the model 
emerge from the agent interactions. This methodology facilitates 
modeling agent heterogeneity [26], non-equilibrium dynamics 
[27], local interactions [28], and bounded rationality [29, 30]. The 
results in this paper should be of interest both to economists and 
multi-agent systems researchers working on coalition formation. 

2. SINGLE FIRM ANALYTICS 
Consider a group of agents A, |A| = n, engaged in team 

production, each agent contributing some amount of effort, 
generating team output.3 Specifically, agent i has endowment ωi > 
0 and contributes effort level ei ∈ [0, ωi], to the group. The total 
effort of the group is then E = Σi ∈A ei. The group produces output, 
O, as a function of E, according to O(E) = aE + bEβ, β > 1, 
without capital as in Hopenhayn [34].4 For b > 0 there are 
increasing returns to effort.5 Increasing returns in production 
means that agents working together can produce more than they 
can as individuals.6 To see this, consider two agents having effort 
levels e1 and e2, with β = 2. As individuals they produce total 
output O1 + O2 = a(e1 + e2) + b(𝑒!! + 𝑒!!), while working together 
they make a(e1 + e2) + b(e1 + e2)2. Clearly this latter quantity is at 
least as large as the former since (e1 + e2)2 ≥ 𝑒!! + 𝑒!!. Agents earn 
according to a compensation rule. For now consider agents sharing 
total output equally: at the end of each period all output is sold for 
unit price and each agent receives an O/N share of the total 
output.7 Agents have Cobb-Douglas preferences for income and 

                                                                    
3 The model derives from Canning [31], Huberman and Glance [32] and 

Glance et al. [33]. 
4 While O(E) relates inputs to outputs, like a production function, E is not 

the choice of a single decision-maker, since it results from the actions of 
autonomous agents. Thus, O(E) cannot be made the subject of a math 
program, as in production theory, yet describes production possibilities. 

5 Increasing returns goes back at least to Marshall [35] and was the basis 
of theoretical controversies in economics in the 1920s [36, 37]. Recent 
work on increasing returns is reprinted in Arthur [38] and Buchanan and 
Yoon [39]. Colander and Landreth [40] give a history of the idea. 

6 There are many ways to motivate increasing returns, including ‘four 
hands problems’: two people working together are able to perform a task 
that neither could do alone, like carrying a piano up a flight of stairs. 

7 The model yields roughly constant total output, so in a competitive 
market the price of output would be nearly constant. Since there are no 
fixed costs, agent shares sum to total cost, which equals total revenue. 
The shares can be thought of as either uniform wages in pure 
competition or profit shares in a partnership. 

leisure, parameterized by θ. All time not spent working is spent in 
leisure, so agent i’s utility can be written as a function of its effort, 
ei, and the effort of other agents, E~i = E – ei as 

𝑈! 𝑒!; 𝜃! ,𝜔! ,𝐸~! ,𝑛 =
𝑂 𝑒! ,𝐸~!

𝑛

!!
𝜔! − 𝑒! !!!!  

Consider the individual efforts of agents to be unobservable. From 
team output, O, each agent i determines E and, from its 
contribution to production, ei, can figure out E~i. Agent i then 
selects effort 𝑒!∗ 𝜃! ,𝜔! ,𝐸~! ,𝑛 = arg𝑚𝑎𝑥𝑈! 𝑒! . For β = 2, this 
can be solved exactly, but as we will have occasion to use values 
not equal to 2 the solution is not written out here. It turns out that 
e* does not depend on n but does depend on E~i—the effort put in 
by the other agents. Optimal effort decreases monotonically as 
'other agent effort,' E~i, increases. For each θi there exists some 
E~i beyond which it is rational for agent i to put in no effort. For 
constant returns, 𝑒!∗ decreases linearly with E~i with slope θi – 1. 
Furthermore, it has been shown in [41] that 

Proposition 1: Nash equilibrium exists and is unique [42]. 

Proposition 2: There exists a set of efforts that Pareto dominate 
Nash equilibrium [43], a subset of which are Pareto optimal. 
These (a) involve larger effort levels than the Nash equilibrium, 
and (b) are not individually rational. 

Proposition 3: Nash equilibria are dynamically unstable for 
sufficiently large group size. 

3. MANY FIRMS: MAIN RESULTS 
With these results in hand we can now consider a large 

population of agents in which many teams form simultaneously. If 
one or more of these teams becomes unstable some of the agents 
will look for employment in other teams, or perhaps they will 
form new teams if it makes them better off. What happens overall? 
Do lots of little teams form or a few big ones? Is a static 
equilibrium of agents in teams reached if we wait long enough? 
Are patterns produced in the population of teams that are 
recognizable vis-á-vis real firms? Here I show that such patterns 
do arise and closely resemble data on U.S. firms. 

I study the formation of teams within a population using 
software agents. In the agent-based model total output of a firm 
consists of both constant and increasing returns. Preferences and 
endowments, θ and ω  respectively, are heterogeneous across 
agents. When agent i acts it searches over [0, ωi] for the effort 
maximizing its next period utility. Because many firms will arise 
in the computational model, it is necessary to specify how agents 
move between firms. Each agent has an exogenous social network, 
a random graph, consisting of νi other agents. It considers (a) 
staying in its current firm, (b) joining νi other firms—in essence 
an on-the-job search over its social network [44, 45]—and (c) 
starting up a new firm. It chooses the option that yields greatest 
utility. Since agents evaluate only a small number of firms their 
information is very limited. We utilize 120 million agents, roughly 
the size of the U.S. private sector. Specifically, about 5 million 
agents are activated each period, corresponding to one calendar 
month, in rough accord with job search frequency [46] and closely 
approximating the distribution of job tenure. The ‘base case’ 
parameterization of the model in table 1 was developed by seeking 
good fits to the many empirical data described subsequently.8 

                                                                    
8 For model attributes with random values, each agent or firm is given a 

realization when it is instantiated. 
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Table 1: 'Base case' configuration of the agent model 

Model Attribute Value 

|A| 120,000,000 

a uniform on [0, 1/2] 

b uniform on [3/4, 5/4] 

β uniform on [3/2, 2] 

θ uniform on [0, 1] 

ω 1 

compensation equal shares 

ν uniform on [2,6] 

activation uniform (all active each period) 

activation/period 4% of total agents (4,800,000) 

one period one month of calendar time 

initial condition all agents in singleton firms 

The model’s execution can be summarized in pseudo-code: 

• INSTANTIATE and INITIALIZE time, agent, firm, 
and data objects; 

• REPEAT: 
o FOR each agent, activate it with 4% 

probability: 
§ Compute e* and U(e*) in current firm; 
§ Compute e* and U(e*) for starting up a 

new firm; 
§ FOR each firm in the agent’s social 

network: 
• Compute e* and U(e*); 

§ IF current firm is not best choice THEN 
leave: 
• IF start-up firm is best THEN form 

start-up; 
• IF another firm is best THEN join 

other firm; 
o FOR each firm: 

§ Sum agent inputs and do production; 
§ Distribute output; 

o COLLECT monthly, annual statistics; 
o INCREMENT time and reset periodic 

statistics; 

Each worker is represented as an agent in this model, and both 
agents and firms are software objects. It is important to emphasize 
that this is not a numerical model: there are no (explicit) equations 
governing the aggregate level; the only equations present are for 
agent decisions. “Solving” an agent model means marching it 
forward in time to see what patterns emerge (cf. Axtell 2000). 

Initially, agents work alone. As each is activated it discovers 
it can do better working with another agent to jointly produce 
output. Over time some teams expand as certain agents find it 
welfare-improving to join them, while other teams contract as 
their agents discover better opportunities elsewhere. New firms are 
started-up by agents who lack better opportunities. Overall, once 
an initial transient passes an approximately stationary macrostate 
emerges.9 In this macro steady-state agents continue to adjust their 
efforts and change jobs, causing firms to evolve, and so there is no 
equilibrium at the agent level. 
                                                                    
9 Movies are available at css.gmu.edu/~axtell/Rob/ 
Research/Pages/Firms.html#6. 

The number of firms varies over time, due both to entry—
agents leaving extant firms for start-ups—and the demise of 
failing firms. In the U.S. about 6 million firms have employees. 
Figure 1 shows the number of firms (blue) in the steady-state over 
25 years (300 months), in good agreement with the data.  

 

Figure 1: Typical time series for the total number of firms (blue), 
new firms (green), and exiting firms (red) over 25 years (300 

months); note higher volatility in exits. 

There are ~100K startups with employees in the U.S. monthly [2], 
quite close to the number produced by the model as shown in 
figure 6 (green). Exits are shown in red. The model predicts higher 
variability in firm exit than entry. Mean firm size in the U.S. is 
about 20 workers/firm [47]. Since there are 120 million agents in 
the model and the number of firms that emerges is approximately 
6 million, mean firm size, as shown in figure 2, is very close to 20. 

 

Figure 2: Typical time series for average firm size (blue) and 
maximum firm size (magenta) 

Also shown in figure 2 is the size of largest firm (red), which 
fluctuates around a million. The largest firm in the U.S. (Wal-
Mart) employs about 1.3 million today. 

Agents who work together improve upon their singleton 
utility levels with reduced effort, as shown in figures 3 and 4. This 
is the raison d’être of firms 

 
Figure 3: Typical time series for (a) average effort level in the 

population (blue) and in the largest firm (magenta) 
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Figure 4: Typical time series for average utility (blue) and in the 

largest firm (magenta) 
While efforts in large firms fluctuate, average effort overall is 
quite stable (figure 3). Much of the dynamism in the ‘large firm’ 
time series is due to the identity of the largest firm changing. 
Figure 4 shows the average agent utility (blue) is usually less than 
that in the largest firm (red). Occasionally utility in large firms 
falls below average, signaling that the large firm is in decline. 

In the U.S. economy people change jobs with, what is to 
some, “astonishingly high” frequency [48: 1151]. Job-to-job 
switching (aka employer-to-employer flow) represents 30-40% of 
labor turnover, substantially higher than unemployment flows [46, 
49-51]. Moving between jobs is intrinsic to this model. In figure 5 
the level of monthly job changing at steady-state is shown 
(blue)—just over 3 million/month—along with measures of jobs 
created (red) and jobs destroyed (green). Job creation occurs in 
firms with net monthly hiring, while job destruction means firms 
lose workers (net). Job destruction is about 4x more volatile than 
job creation, comparable to U.S. data [52]. 

 
Figure 5: Typical monthly job-to-job changes (blue), job creation 

(yellow) and destruction (green) 
Watching firms form, grow, and die in the model movies (see 

footnote 9), one readily sees the coexistence of big firms, medium-
sized ones, and small ones. At any instant there exists a 
distribution of firm sizes in the model. At steady-state, sizes are 
skew, with a few big firms and larger numbers of progressively 
smaller ones. Typical model output is shown in figures 6 and 7 for 
firm size measured by employees and output. The modal firm size 
is 1 employee with the median between 3 and 4, in agreement with 
the data on U.S. firms. Firm sizes, S, are approximately Pareto 
distributed, the complementary CDF of which, 𝐹! 𝑠  is 

𝑃𝑟 𝑆 ≥ 𝑠 ≡ 𝐹! 𝑠;   𝛼, 𝑠! =
𝑠!
𝑠

!
, 𝑠 ≥ 𝑠!,𝛼 ≥ 0 

where 𝑠! is the minimum size, unity for size measured by 
employees. The U.S. data are well fit by 𝛼~ -1.06 [47], the line in 
figure 6. 

 
Figure 6: Stationary firm size distribution (PMF) by employees 

The Pareto is a power law, and for α = 1 is known as Zipf’s law. 
Note that the power law fits almost the entire distribution of firm 
sizes. A variety of explanations for power laws have been 
proposed.10 Common to these is the idea that such systems are far 
from (static) equilibrium at the microscopic (agent) level. Our 
model is non-equilibrium with agents regularly changing jobs. 

 
Figure 7: Stationary firm size distributions (PMF) by output 

Firm output per employee is labor productivity. Figure 8 
plots average firm output as a function of firm size. Fitting a line 
by several methods indicates that ln(O) scales linearly with ln(S) 
with slope very nearly 1. 

 
Figure 8: Constant returns at the aggregate level despite 

increasing returns at the micro-level 

This represents essentially constant returns to scale, also a feature 
of U.S. output data; see Basu and Fernald [59]. That nearly 
constant returns occur at the aggregate level despite increasing 
returns at the micro-level suggests the difficulties of making 
inferences across levels. An explanation of why this occurs is 
apparent. High productivity firms grow by adding agents who 
work less hard than incumbents, thus such firms are driven toward 
the average productivity. In essence, each agent who changes jobs 
‘arbitrages’ returns across firms.11  

                                                                    
10 Bak [53: 62-64], Marsili and Zhang [54], Gabaix, [55], Reed [56], and 

Saichev et al. [57]; for a review see [58]. 
11 As output per worker represents wages in our model, there is little 

wage-size effect [60, 61]. 
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It is well known that there is large heterogeneity in labor 
productivity across firms [e.g., 62]. Shown in figure 9 are data on 
all U.S. companies for three size classes: 1-99 employees (blue), 
100-9,999 (red) and 10,000+ (green). 

 

Figure 9: Labor productivity U.S. data (Census), in arbitrary units 

Note the log-log coordinates, so the right tail is very nearly a 
power law with large slope. Souma et al. [63] have studied the 
productivity of Japanese firms and find similar results. Figure 10 
is model output for the same size classes. 

 
Figure 10: Labor productivity, model output in arbitrary units 

Using data from the BLS Business Employment Dynamics 
program, figure 11 gives the age distribution (PMF) of U.S. firms, 
in semi-log coordinates, with each colored line representing the 
distribution reported in a recent year.  

 

Figure 11: Firm age distributions (PMFs), U.S. data 2000-2011 
(lines) and model output (points) 

Model output is overlaid on the raw data as points and agrees 
reasonably well. Average firm lifetime and standard deviation are 
14-15 years here. The curvature in the data implies that firm ages 
are better fit by the Weibull distribution than the exponential [64]. 

Data on U.S. firm ages is right censored so little systematic 
information is known about long-lived firms, except that they are 
rare [65]. Further, the role of mergers and acquisitions (M&A) 
makes the lifetime of a firm ambiguous, as when a younger firm 
buys an older one. This model can be run for a long time and 
makes strong predictions about the distribution of firm ages, along 
with the closely related idea of firm lifetimes, as shown in figures 
12 and 13. 

 

Figure 12: Firm age distribution (PMFs) in the long run (months) 

 
Figure 13: Firm lifetime distribution in the long run (months) 

If firm ages were exactly exponentially distributed then the 
survival probability would be constant, independent of age [66]. 
Curvature in figure 11 indicates that survival probability depends 
on age. Empirically, survival probability increases with age [67-
69]. This is shown in figure 15 for U.S. companies in recent years 
(lines) along with model output (points). The model slightly over-
predicts the survival probabilities of young firms. 

 
Figure 14: Firm survival probability increases with firm age and 

size, U.S. data 1994-2000 (lines) and model (points) 

The joint distribution of size and age is shown in figure 15, a 
normalized histogram in log probabilities. 

 
Figure 15: Histogram of the steady-state distribution of firms by 

log(S) and age in the model 
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Note that log probabilities decline approximately linearly as a 
function of age and log(S). Many of the largest firms in the model 
are relatively young ones that grow rapidly, much like in the U.S. 
economy [e.g., 13, figure 1] 

Call St a firm’s size at time t. Its one period growth rate is G 
≡ St+1/St ∈ R+.

12 In a population of firms consider G to be a 
stationary random variable. Gibrat’s law of proportional growth 
[70] implies that if all firms have the same G then St+1 = GSt is 
lognormally distributed at any t while the mean and variance of S 
grows with time [71: 40], i.e., S is not stationary. Adding firm 
birth and death processes can lead to stationary firm size 
distributions [72]. Historically, knowledge of G was limited by the 
relatively small samples of firm data available [e.g., 73]. 
Beginning with Stanley et al. [74], who analyzed data on publicly-
traded U.S. manufacturing firms (Compustat), there has emerged a 
consensus that g ≡ ln(G) ∈ R is well-fit by the Subbotin or 
exponential power distribution.13 This distribution embeds the 
Gaussian and Laplace distributions and has PDF 

𝜂
2𝜎!Γ 1 𝜂

𝑒𝑥𝑝 −
𝑔 − 𝑔
𝜎!

!

 

where 𝑔 is the average log growth rate, σg is proportional to the 
standard deviation, and η is a parameter; η = 2 corresponds to the 
normal distribution, η = 1 the Laplace or double exponential.14  

Data on g for all U.S. establishments has been analyzed by 
Perline et al. [82], shown as a histogram in figure 16 for 1998-99, 
decomposed into seven logarithmic size classes. Note the vertical 
axis is ln(frequency). In comparison to later years, e.g., 1999-
2000, 2000-2001, this distribution is very nearly stationary. 

 
Figure 16: Histogram of annual g for U.S. establishments, by size  

Perline et al. [82] find that η ~ 0.60 for the size 32-63 size class, 
lesser for smaller firms, larger for bigger ones. The gross 
statistical features of g are: 
A. Growth rates depend on firm size—small and large firms 

have different g. This means that Gibrat’s law is false: all 
firms do not have the same G. 

                                                                    
12 An alternative definition of G is 2(St+1 - St)/(St + St+1), making G ∈[-2, 2] 

[52]. Although advantageous because it keeps exiting and entering firms 
in datasets for one additional period, it obscures differences in growth 
rate tails by artificially truncating them. 

13 Subsequent work includes European pharmaceuticals [75] and Italian 
and French manufacturers [76, 77]. Bottazzi and Secchi [78] give 
theoretical reasons why g should have η ~ 1, having to do with the 
central limit theorem for the number of summands geometrically 
distributed [79]. Schwarzkopf [80, 81] argues that g is Levy-stable. 

14 For g Laplace-distributed, G follows the log-Laplace distribution, a kind 
of double-sided Pareto distribution [56], a combination of the power 
function distribution on (0, 1) and the Pareto on (1, ∞). 

B. Mode of g ~ 0, so mode(G) ~ 1, i.e., many firms do not grow. 
C. There is more variance for firm decline (g < 0) than for 

growth (g > 0), i.e., there is more variability in job 
destruction than job creation [52], requiring an asymmetric 
Subbotin distribution [82]. 

D. Growth rate variance falls with firm size [67, 68, 74, 83, 84]. 
There are at least five other well-known regularities concerning 
firm growth rates that are not illustrated by the previous figure: 
E. Mean growth is approximately 0; 
F. Mean grow rate declines with firm size, and is positive for 

small firms, negative for large firms [52, 68, 84-87]. 
G. Mean growth declines with age [86, 88]. 
H. Mean growth rises with size, controlling for age [69]. 
I. Growth rate variance declines with firm age [86]. 
With these empirical features of firm growth rates as background, 
figure 17 shows distributions of g produced by the model for 
seven sizes of firrms, from small (blue) to large (purple) ones. 

 
 

Figure 17: Distribution of annual g by firm size: 8-15 (blue), 16-
31 (red), 32-63 (green), 64-127 (black), 128-255 (orange), 256-

511 (yellow), and 512-1023 (purple) 

In this plot we can see at least half of the empirical properties of 
firm growth: g clearly depends on firm size (A), with mode(g) = 0 
(B) and  𝑔 ~ 0.0 (E). It is harder to see that there is more variance 
in firm decline than growth (C) but it is the case numerically. 
Clearly, variance declines with firm size (D). Figures 18 and 19 
show mean growth rates as a function of firm size and age. 

 
Figure 18: Dependence 𝑔 on firm size, model output 

 
Figure 19: Dependence 𝑔 on firm age, model output 
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It is clear from thee figures that 𝑔 declines with size (F) and 
similarly for age (G). For more than 30 years, since the work of 
Birch [85, 89], economists have debated the meaning of figures 
like 19. Specifically, given that small firms are often young and 
young firms small, it is not clear whether size or age plays the 
larger role in determining positive growth rates. Haltiwanger and 
co-workers [69, 88, 90] control for age and argue that it is not 
small firms that create jobs but rather young ones. The problem 
with such ‘controls’ for non-montonic relationships is that they 
mix effects across distinct (size, age) classes. The only actual way 
to understand the distinct effects of size and age is to show how 
they each effect 𝑔. This is done in figure 20, where each firm is 
placed into a (size, age) bin and the average g computed locally. 

 
Figure 20: Dependence of 𝑔 on firm size and age 

To see precisely whether size or age matters most, a no growth (𝑔 
= 0) plane is shown on the model’s 𝑔(size, age), revealing young 
firms grow the most with minor contribution from small firms. 

Firm growth rate variability falls with size (D) and age (I). 
Figures 21 and 22 show this unconditionally for the model. 

 

Figure 21: Dependence of the standard deviation of g on firm size 

 
Figure 22: Dependence of the standard deviation of g on firm age 

Specifically, the standard deviation of g falls with size in figure 
21. Based on central limit arguments one expects this to be 
proportional to S-κ, κ = ½ meaning the fluctuations are 
independent while κ < ½ implies they are correlated. Stanley et al. 
[74] find κ ~ 0.16 ± 0.03 for publicly-traded firms (Compustat 
data) while Perline et al. [82] estimate κ ~ 0.06 for all U.S. 
establishments. From the model output κ = 0.054 ± 0.010. A 
variety of explanations for 0 ≤ κ ≤ ½ have been proposed [91-96], 

all involving firms having more or less elaborate internal structure. 
Note that no internal structure exists in the present model, where 
firms are simply collections of agents, yet dependence of the 
standard deviation of g on size is present nonetheless. 

At all times some firms are growing and others are declining. 
However, growing firms shed workers and declining ones hire. 
Figure 23 shows that growing firms hire in excess of their 
separation rate, while declining firms keep hiring even when 
separations are the norm, much like in the empirical data [1]. The 
‘hiring’ line is quite comparable to the empirical result, but the 
‘separations’ line is different—too few separations in the model. 

 
Figure 23: Model labor transitions as a function of firm growth 

Having explored firms cross-sectionally, we next turn to the 
population of agents. Steady-state worker behavior is quantified 
here. While each agent’s situation adjusts uniquely, at the 
population level there emerge robust statistical features. 

While income and wealth are famously heavy-tailed [97, 98], 
wages are less so. A recent empirical examination of U.S. adjusted 
gross incomes argues that an exponential distribution fits the data 
below about $125K, while a power law better fits the upper tail 
[99]. Figure 24 is the model’s income distribution. 

 
Figure 24: Wage distribution (arbitrary units) 

Since incomes are nearly linear in this semi-log coordinate system, 
they are approximately exponentially-distributed. 

Job tenure in the U.S. has a median of just over 4 years and a 
mean of about 8.5 years. The complementary-cumulative 
distribution for 2010 is figure 25 (points) with the straight line 
being the model output. As with income, these data are 
approximately exponentially distributed. 

 
Figure 25: Job tenure (months) is exponentially-distributed in the 

U.S. (dots, binned) and in the model (line) 
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The base case of the model is calibrated to make these 
distributions coincide. That is, the number of agent activations per 
period is specified in order to make the line go through the points, 
thus defining the meaning of one unit of time in the model—a 
month. The many output of the model having to do with time—
e.g., firm growth rates, ages—derive from this calibration. 

In the model, as in the real world, workers regularly move 
between jobs. Here the structure of such migrations is studied, 
using a graph theoretic representation of inter-firm labor flows. 
Let each firm be a node (vertex) in such a graph, and an edge 
exists between two firms if a worker has migrated between the 
firms. Elsewhere this has been called the labor flow network 
[100]. In figure 26 a property of this network for the base case of 
the model is shown, the degree distribution, This closely 
reproduce data from Finland and Mexico [100], shown inset. 

 
Fig 26: Degree distribution of the labor flow network 

Each time an agent is activated it seeks higher utility, which is 
bounded from below by the singleton utility. Therefore, it must be 
the case that all agents prefer the non-equilibrium state to one in 
which each is working alone—the state of all firms being size one 
is Pareto-dominated by the dynamical configurations above. To 
analyze welfare of agents, consider homogeneous groups of 
maximum stable size, having utility levels shown in figure 3b, 
replotted in figure 27. 

 
Figure 27: Utility in single agent firms, optimal homogeneous firms, 

and realized firms, by θ 

Overall, this large-scale multi-agent model, calibrated to data 
using approximately a dozen parameters (table 1), has been shown 
here to closely reproduce nearly two dozen empirical facts 
concerning the U.S. economy, and represents a new approach to 
modeling industrial organization 

4. REALIZING 120 MILLION AGENTS 
Creating a model at full-scale with the U.S. economy has 

proved challenging in many dimensions. First there was the 
problem of instantiating so many agents. Hardware with large, flat 
(shared) memory spaces proved the most useful as all attempts to 

store this large agent population to disk was prohibitively slow. 
Second was the problem of fast execution. Many HPC 
architectures turns out to not be useful, such as cloud computing, 
running a single instance of the model on multiple machines, 
vector supercomputers and even GPUs. While each provided 
certain advantages, the dense interactions between agents in this 
model make inter-process communication voluminous and, 
because it is slow, prohibitive. The synchronous nature of vector 
supercomputers and GPUs led to problems by generating 
computational artifacts that had no meaningful interpretation. 
Instead of any of these technologies, a single dedicated 
workstation, with 32 cores and 256 GB of RAM, proved the most 
successful architecture. Using optimized C/C++ code and various 
threading libraries, for wide values of parameters the model 
reaches a near steady-state condition from the initial conditions of 
table 1 in approximately half a day a day of wall time. Given the 
expense of these model runs, the parameter optimization that led 
to the specification of table 1 was obtained heuristically. 

5. SUMMARY AND CONCLUSIONS 
Using the combination of a universe of micro-data on firms 

with large-scale multi-agent computing, a new kind of economic 
model has been created, its gross features being described above. 
It represents a novel contribution to both computational economics 
and multi-agent computer science. In terms of the former, most 
models in economics and finance today are solved for agent-level 
equilibria, while the model developed here involves agent-level 
disequilibria. This feature of the model permits us to generate 
endogenous economic dynamics that, as has been shown above, 
closely reproduce many economic facts. From a computer science 
point-of-view, the model shows new ways of building realistic, 
empirically-grounded coalition formation models, and 
demonstrates that these can be realized at massive scale. 

For many years multi-agent systems researchers have been 
deeply enamored of more or less conventional game theoretic 
ideas, all of which involve agent-level equilibria. At the same 
time, social scientists have been attracted to MAS precisely 
because it is a technology that permits relaxation of the highly 
unrealistic strictures that analytical solutions require (e.g., fixed 
preferences, static prices, uniform probability of interaction, etc.). 
With models such as this one I hope to demonstrate to both 
communities that there is much to be gained from trade in new 
ideas for how to build empirically-salient models of human 
systems using multi-agent systems computer science. 
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