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ABSTRACT
In industry, many problems are considered as the Decentral-
ized Resource-Constrained Multi-Project Scheduling Prob-
lem (DRCMPSP). Existing approaches encounter difficulties
in dealing with large problems while preserving information
privacy of project agents. In this paper, we propose a novel
approach to solve DRCMPSP based on the multi-unit com-
binatorial auction, which can efficiently solve the problem
without violating information privacy. It adopts a greedy re-
source allocation strategy with fixed resource cost to simplify
computation required for project (bidder) and auctioneer
agents. In addition, a bid modification step is incorporated
to allow project agents to better utilize resources. Analy-
sis and empirical results indicate that our approach outper-
forms state-of-the-art decentralized approaches in minimiz-
ing average project delay, and scales well to large problems
with thousands of activities from tens of projects.
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1. INTRODUCTION
Most business firms need to manage multiple projects si-

multaneously. Usually, these projects have temporal con-
straints on activities and capacity constraints on resources
[23]. With the rapid growth of globalization and informa-
tion technology, nowadays it is quite common for firms to
conduct intra- and inter-firm collaborations to improve effi-
ciency and reduce cost [21]. This trend brings the traditional
multi-project scheduling into a decentralized environment,
where projects are distributed and controlled by different
self-interested decision makers. In order to achieve individ-
ual objectives, these decision makers usually need to com-
pete for some shared global resources having limited capaci-
ties. Moreover, they may be reluctant to reveal private infor-
mation on the projects, especially when they are rivals in the
market. In this decentralized and information asymmetric
environment, the traditional multi-project scheduling prob-
lem has evolved into the Decentralized Resource-Constrained
Multi-Project Scheduling Problem (DRCMPSP) [4].
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Many real-world problems in manufacturing and service
operations with complex product/supply structures are con-
sidered as DRCMPSP. In [11], an intra-firm scenario is given
where different product managers in an electronics manufac-
turing company must share and compete for common pro-
duction resources (e.g. automated production lines) in a
regular basis. To satisfy their own customers’ requirements,
these managers need to deal with uniquely different sets of
activities and constraints (e.g. lead time pressure, process-
ing requirements). In terms of inter-firm scenarios, a typical
example can be found in the Aero Repair and Overhaul in-
dustry [20]. In this example, different fleet managers who are
dedicated to manage the aero engines of an airline, compete
for several overhaul bases heaving limited repair capacities
with other fleet managers. These managers need to sched-
ule the overhaul base visit time for each controlled engine,
to maximize their operating revenue at the same time. Sim-
ilar inter-firm cases can also be found in the airport ground
handling service scheduling [15] and supply chain scheduling
[12]. As stated in both [12] and [20], approaches that re-
spect the privacy of self-interested decision makers are more
preferable in decentralized scheduling, since these decision
makers may as well be competitors in the same marketplace.

Due to its decentralized nature, DRCMPSP is usually
modeled as a mediated multi-agent system where each project
is represented by a Project Agent (PA) and all PAs are co-
ordinated by a Mediator Agent (MA). The core problem in
DRCMPSP is how to allocate the shared global resources
to each decision maker in a decentralized manner. Market-
based approach, especially combinatorial auction, is an ideal
choice for decentralized scheduling since it well supports the
decentralized decision making and information privacy of
the decision makers [22]. However, as will be detailed in
Section 2, current combinatorial auction based approaches
either cannot fully satisfy the requirements of DRCMPSP
(e.g. not fully decentralized, not allow multiple activities
per project), or underperform both in solution quality and
computational efficiency, especially on large problem cases
with thousands of activities from tens of projects.

In this paper, we propose a novel decentralized approach
for solving DRCMPSP based on the multi-unit combinato-
rial auction. We simplify the computation of the agents
by adopting a greedy resource allocation strategy and fixed
resource cost, and incorporate a bid modification step to
provide possibilities for the project agents to better uti-
lize global resources. Following previous research on DR-
CMPSP, we assume that the agents are willing to provide
truthful information required by the approach, i.e. currently
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we do not handle the incentive compatibility issue1. How-
ever, by limiting the exchanged information to bids and de-
mand ratio (defined in Section 4), this approach does not
require private project information from the project agents.

Our complexity analysis shows that this approach termi-
nates within a maximum number of auctions that increases
linearly along with the number of projects, regardless of the
number of activities, and requires polynomial computation
for all agents. Empirical results on cases with multi-unit re-
sources (obtained from the public benchmark MPSPLIB2)
and single-unit resource (generated from MPSPLIB) show
that our approach outperforms state-of-the-art decentralized
approaches in minimizing average project delay, one of the
most widely adopted performance measure of DRCMPSP,
within reasonable computational time.

2. RELATED WORK
In the literature, combinatorial auction has been applied

to solve simple decentralized scheduling problems [11, 22,
4]. In [11], Kutanoglu and Wu introduce a combinatorial
auction based distributed scheduling framework, and show
that combinatorial auction with a certain payment function
is corresponding to the lagrangean decomposition of the cen-
tralized problem. Nevertheless, their approach is not fully
decentralized, since a centralized algorithm is needed to clear
the market and generate a feasible solution. In [22], Wellman
et al. give concrete theoretical results on the equilibrium
and efficiency of applying combinatorial auction to schedule
activities from different agents on a shared resource. How-
ever, their analysis is based on the model of a simple factory
scheduling problem where each agent is only in charge of
one activity. In large DRCMPSP cases, each project agent
(PA) could be in charge of hundreds of activities with com-
plex precedence relations. Confessore et al. propose an-
other combinatorial auction based approach in [4]. This ap-
proach is based on an iterative combinatorial auction named
iBundle [17], which has been applied to solve problems such
as multi-agent pathfinding [2] and train scheduling [18]. The
nice properties of iBundle, including optimality guarantee
and strategy-proofness, are based on the assumption that
all bidders can give Myopic Best-Response (MBR) in each
round of auction. However, when applied to DRCMPSP,
MBR is difficult to satisfy due to the intractability of local
bidding problems. When approximated algorithms without
optimality guarantee are used for bidding, as in [4], both
optimality and strategy-proofness on the final solution will
be compromised. In addition, when MBR cannot be satis-
fied, iBundle cannot guarantee that all the bidders will be
granted a bid upon termination. Finally, iBundle could take
a large number of iterations to terminate, which requires in-
tense computation for bidders and the auctioneer, resulting
in inefficiency on large-scale cases. Besides their own lim-
itations, all approaches in [11, 22, 4] can only be used to
schedule single-unit global resources. Moreover, test cases
are rather small with tens of activities in total from sev-
eral PAs. In contrast, our approach can efficiently handle
multi-unit resources and large problem cases.

More recently, several approaches have been proposed to
solve much larger DRCMPSP cases with hundreds to thou-

1Note that privacy and truthfulness are two separate issues.
Even though an agent is willing to tell the truth, it may still
not be willing to disclose their sensitive information [5].
2http://www.mpsplib.com/

sands of activities from tens of projects sharing several multi-
unit global resources [15, 7, 1, 24]. In [15], Mao et al.
propose a market-based approach to schedule the airport
ground handling services, but the resource capacities are as-
sumed to be infinite which is hardly found in practice. In
[7], Homberger presents an evolutionary computation based
negotiation approach, but it is outperformed by a central-
ized approach SASP [10], one of the best priority rule based
multi-project scheduling algorithms in minimizing average
project delay. In [1], Adhau et al. introduce an approach
named DMAS/ABN, which conducts an auction-based ne-
gotiation on each time slot for each activity. In [24], Zheng et
al. propose an approach named DMAS/EM which employs
an activity elimination algorithm to fix an infeasible solu-
tion. Both DMAS/ABN and DMAS/EM outperform SASP
in minimizing average project delay. One common feature
of the approaches in [15, 7, 1, 24] is that, they are based on
activity-level negotiation to generate or fix a solution, which
has two major drawbacks. Firstly, activity information (e.g.
start time, duration, resource requirements) is inevitably re-
quired by the mediator. Secondly, when the individual ob-
jective of each PA cannot be decomposed precisely to each
activity (e.g. project makespan, delay cost), the decision on
global resource allocation to each activity can only rely on
the estimated objective value, which could result in unsat-
isfactory solution quality. On the contrary, global resource
allocation in our approach is purely on project level, which
can satisfy the private information requirement and provide
more precise information for allocating global resources.

3. PROBLEM STATEMENT
In DRCMPSP, a number of projects that share global re-

sources will be scheduled in a time horizon of T consecutive
time slots. Each project Pi, i ∈ {1, ..., N}, consists of non-
preemptive activities aij , j ∈ {1, ..., Ji}. Let sij and dij be
the start time and duration of an activity aij , respectively.
The precedence constraint aij ≺ aik indicates that an activ-
ity aik cannot start before the completion of its preceding
activity aij (i.e. sik ≥ sij + dij). Each project Pi has two
time-related attributes, an earliest start date edi and an ex-
pected due date ddi. For a project Pi, a Project Agent PAi
is assigned to control Pi. Each PAi can receive a revenue
rvi upon the completion of Pi.

Each activity requires certain amounts of resources. A set
of G global resources are shared by all the projects. Each
global resource Rg, g ∈ {1, ..., G} has a limited capacity Cgt
in time t, t ∈ {1, ..., T}, and has a fixed utilization cost cg
per unit at each time slot. The global resources are managed
by a Mediator Agent (MA). Also, each PAi may own a set
of Li local resources3 that are dedicated to Pi. Each local
resource Rli , li ∈ {1, ..., Li}, has a limited capacity Clit in
time t. Each activity aij requires rgij units of global resource

Rg and rliij units of local resource Rli during each time slot
of its processing period.

Let S be a solution of a DRCMPSP and Si be a schedule
of a project Pi. Assume that Si is a vector of individual
activity’s start times, namely Si = (si1, ..., siJi). Then, the
solution S can be defined as a vector of individual project’s

3Here we ignore the cost of local resources since they are
assumed to be already owned by the PA and do not need
to be allocated to each PA. However, our approach can also
work when local resource cost is considered.
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schedules: S = (S1, ..., SN ). A feasible solution S cannot
violate any precedence or global/local resource constraints,
but the project due dates are soft constraints that can be
violated. However, for PAi, any violation on the due date
caused by schedule Si will impose a delay cost dci(Si), which
is a function that monotonically increases with the project
completion time cti(Si) = maxj{sij + dij}. Here we use
a linear cost function which is frequently used in the lit-
erature: dci(Si) = pi · max{0, cti(Si) − ddi}, where pi is
the unit delay penalty. Nevertheless, our approach can also
adopt non-linear cost functions with the property of mono-
tonic increasing. Also following the previous research, we
set the optimality criteria on solution S as the minimization
of Average Project Delay (APD):

APD(S) =

∑N
i=1 max{0, (cti(Si)− ddi)}

N
. (1)

The information of the activities (e.g. dij , sij , r
g
ij , r

li
ij) and

local resources (e.g. Rli , Clit) are considered as private to
each project agent.

4. OUR AUCTION-BASED APPROACH
In general, our approach contains a series of multi-unit

combinatorial auctions, and incrementally allocates global
resources to PAs. We formulate the auctions following a
paradigm similar to [4], where PAs act as bidders, the MA
acts as the auctioneer, and the goods to sell are the global
resources at each time slot. However, we make the following
modifications: (i) we adopt multi-unit combinatorial auction
instead of single-unit, since multi-unit global resources need
to be handled; (ii) we define the bidder utility based on fixed
resource cost instead of changing bundle prices; (iii) we set
the objective of the auctioneer as maximizing social welfare
instead of revenue, since optimizing revenue may lead to
unsatisfactory allocation efficiency [13].

Given G global resources and the scheduling horizon T ,
there are G×T goods to sell. We denote the available units
of global resource Rg at time t as Ψgt. Initially, Ψgt = Cgt;
as the approach proceeds, it is possible that Ψgt ≤ Cgt. A
multiset [9] of goods is denoted as a matrix Λ = [λgt]G×T ,
where λgt is the units of Rg at time t. In each auction round,
each participating PA needs to place one bid on the multi-
set that can (approximately) maximize its utility. For PAi,
utility is a function ui : Λ 7→ <+, Λ =

{
Λ
∣∣0 ≤ λgt ≤ Ψgt

}
,

defined as a quasi-linear function ui(Λ) = vi(Λ) − RCi(Λ),
where vi(Λ) is its valuation for Λ and RCi(Λ) is the cost for
utilizing Λ. Under fixed unit global resource cost, RCi(Λ)
can be calculated as follows:

RCi(Λ) =

G∑
g=1

cg

T∑
t=1

λgt. (2)

The valuation function will be further detailed in Section
4.1. A bid from PAi is a pair Bi =< Λ, vi(Λ) >, where
the interested multiset and its valuation are specified. In
each round of auction, the MA needs to solve a Winner
Determination Problem (WDP) to optimize social welfare,
which is the summation of the valuation of the bidders, un-
der the current global resource capacities. Given a set of
bids B =

{
Bξ
∣∣ξ ∈ {1, ..., Nb}} submitted by Nb bidders, a

WDP of single-minded bidders (e.g. one bidder is interested

Algorithm 1: Our Auction-based Approach

Input: A DRCMPSP case
Output: A solution of the case

1 MA initializes the auction environment, by setting

SS ← ∅, IW ← ∅, US ← {PAi|i ∈ {1, ..., N}};
2 while US 6= ∅ do
3 forall the PAi ∈ US do
4 Solve a bidding problem, generate a schedule

S∗i and a bid B∗i ;

5 MA solves a WDP, updates IW and US;
6 MA calculates the demand ratio;

7 while IW 6= ∅ do
8 forall the PAi ∈ IW do
9 Solve a bid modification problem, generate

a schedule S∗
′
i and a bid B∗

′
i ;

10 MA solves a WDP, grants global resources to

the final winners, and updates SS and IW ;

11 Final winners confirm their schedules S∗
′
i ;

12 MA updates global resource capacities;

13 return S∗ ← {S∗
′

1 , ..., S
∗′
N }

in one multiset [13]) can be formulated as:

max

Nb∑
ξ=1

vξ · xξ

s.t.

Nb∑
ξ=1

λξgt · xξ ≤ Ψgt, ∀g, t

xξ ∈ {0, 1}, ∀ξ

(3)

Our approach is described in Algorithm 1. Throughout
the whole process, three sets of PAs are maintained by the
MA: Scheduled Set SS, Unscheduled Set US, and Initial
Winner Set IW . Initially, all PAs belong to US, while SS
and IW are empty. Each round of auction consists of two
successive phases: initial phase (Line 3 to 6) and final phase
(Line 7 to 12). In the initial phase, the MA initiates an
auction among the unscheduled PAs to determine the ini-
tial winners. Each PA in US generates a bid by solving a
bidding problem, then the MA solves a WDP. The initial
winners will be moved from US to IW . In the final phase,
several rounds of auctions among the initial winners are ini-
tiated by the MA to finalize the global resource allocation.
In each round of these auctions, each PA in IW modifies its
bid according to the demand ratio (see Definition 5) pub-
lished by the MA. Then the MA solves a WDP to determine
the final winners who will be granted the amounts of global
resources specified in its bid, and will be moved from IW
to SS. Intuitively, the initial phase is used to choose the
most “promising” PAs given the current global resource ca-
pacities, and the final phase tries to guide these chosen PAs
to tune their demand profile in order to provide chances for
unscheduled PAs to improve their utilities. Next, we will
explain the major components of Algorithm 1 in detail.

4.1 Bid Generation
Here we show how bidders find the multisets that can (ap-

proximately) maximize their utility by solving a correspond-
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ing single Resource-Constrained Project Scheduling Prob-
lem (RCPSP). More formally, a bidder needs to find an op-
timal or near-optimal solution Λ∗i of the bidding problem:

Λ∗i = argmax
Λ∈Λ

ui(Λ), (4)

and calculate its valuation vi(Λ
∗
i ). First we discuss how to

evaluate a multiset by introducing the following definition:

Definition 1. A multiset Λ is said to be feasible to PAi,
if there exists a feasible schedule Si that satisfies all the
precedence and local/global resource constraints of Pi, when
PAi obtains the amount of global resources specified in Λ.

Now we can define the valuation function as follows:

vi(Λ) =

{
rvi −DCi(Λ), if Λ is feasible

0, otherwise,
(5)

where DCi(Λ) is the delay cost of Λ. To show how to cal-
culate DCi(Λ), the following definition is needed:

Definition 2. Given a feasible multiset Λ of PAi, the set
SΛ

i which contains all feasible schedules of Pi given the
amounts of global resources specified in Λ, is called a solution

set. A solution ŜΛ
i ∈ SΛ

i that has the minimum completion

time cti(Ŝ
Λ
i ) is called a primal schedule of Λ to PAi.

Assume a bidder can find a primal schedule ŜΛ
i of Λ, it

can safely choose ŜΛ
i and discard other schedules in SΛ

i ,
since the delay cost cannot be reduced further by choosing
another schedule. Hence, the delay cost of a multiset can be
calculated as the delay cost of its primal schedule:

DCi(Λ) = dci(Ŝ
Λ
i ). (6)

It seems straightforward to evaluate Λ using Equation (5)
and (6). However, it is computationaly intractable to solve
these two equations, since firstly in Equation (5) it is hard
to determine if a schedule is feasible (equivalent to solving
a feasibility problem of RCPSP which is NP-hard [16]), and
secondly in Equation (6) it is hard to find the primal solution
(equivalent to solving a RCPSP which is NP-hard [3]). On
the other hand, to generate a feasible multiset from a feasible
schedule is quite easy, as stated in the following definition:

Definition 3. Given a schedule Si = (si1, ..., siJi) of Pi,

the multiset Λ̂i = Λ̂i(Si) calculated as:

λ̂igt(Si) =
∑

aij∈Ai(t)

rgij , (7)

where Ai(t) =
{
aij , j ∈ {1, ..., Ji}

∣∣sij ≤ t, (sij + dij) > t
}

,

is called a core4 of PAi.

Definition 2 and 3 build connections between schedules
and multisets. Given a feasible schedule, a feasible mul-
tiset (which is a core) can be obtained immediately using
Equation (7); given a feasible multiset, there must exist a
feasible schedule that is primal, since the solution set can-
not be empty. In Section 5.1, we will show that a candidate
multiset of the bidding problem must be a core. However,
it is still hard to give the exact valuation of a core, due to
the hardness on computing Equation (6). Here we estimate

4Note that this definition is different from the commonly
used definition of core in game theory.

a core’s delay cost using the delay cost of its corresponding

schedule. Then the approximate valuation of core Λ̂i(Si) is:

ṽi(Λ̂i(Si)) = rvi − dci(Si). (8)

The approximate utility can be calculated as:

ũi(Λ̂i(Si)) = rvi − dci(Si)−RCi(Λ̂i(Si)). (9)

Given a feasible schedule Si, the computation of Equa-
tion (8) and (9) is trival. In Section 5.1, we will show that
the above equation provides an approximation to the exact
utility of the optimal solution of the bidding problem, with
an error that monotonically increases with cti(Si). Hence,
we can approximately solve the bidding problem by finding
a sub-optimal schedule of the corresponding RCPSP (with
the global resource capacities equal to Ψgt), then generate
the corresponding core and calcualte the approximate val-
uation using Equation (7) and (8), respectively. Here we
adopt the parallel schedule generation scheme with one of
the best priority-rule Latest Finish Time [8], to generate
a near-optimal schedule. However, all the resources consid-
ered in [8] have constant capacities over the whole scheduling
horizon, which cannot be directly applied to our problem.
Thus, we modify the activity selection step of the original
algorithm by checking the global and local resource capac-
ities over all the duration of an activity, instead of simply
checking the first time slot.

4.2 Bid Modification
In a DRCMPSP case, requirements for different time slots

of global resource are not even; some time slots may be
demanded more heavily than others. Since winners will be
granted their bids in the end of each round, if they can switch
to other bids producing the same utility but deviated from
heavily demanded time slots, other unscheduled PAs may
have better chances to improve their utilities. Based on this
idea, we design a bid modification step, where the winners
try to modify their bids based on the demand ratio provided
by the MA as demand status feedback. To define the bid
modification problem, first we define the equivalent set :

Definition 4. For PAi, given a core Λ̂i = Λ̂i(Si) gener-

ated by a schedule Si, the equivalent set of Λ̂i is defined as

A (Λ̂i) =
{

Λ̂i(S
′
i)
∣∣ cti(S′i) = cti(Si)

}
.

As will be shown in Lemma 1 in Section 5.1, the equivalent
set consists of cores that produce the same approximate util-
ity to a PA. Next we give the following definitions:

Definition 5. Given a set of bids B, the demand ratio is
defined as a matrix D(B) = [δgt(B)]G× T , where

δgt(B) =

 Nb∑
ξ=1

λξgt

 /Ψgt. (10)

Definition 6. The resource index of a multiset Λ under
demand ratio D is defined as:

RI(Λ, D) =

G∑
g=1

T∑
t=1

λgtδgt. (11)

The intuition of Definitions 5 and 6 is that, a higher ag-
gregate demand on a resource time slot with lower capacity
results in a higher demand ratio, and a multiset with a lower
resource index is more likely to avoid the heavily demanded
time slots. Now we define the bid modification problem:
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Algorithm 2: Bid Modification

Input: A schedule S∗i and demand ratio D

Output: Modified schedule S∗
′
i and bid B∗

′
i

1 if Global resource capacities changed then
2 Solve the bidding problem;

3 Calculate the activity slackness, and put all the
flexible activities in FJi;

4 while FJi 6= ∅ do
5 Virtually shift all the flexible activities within their

slackness, and record the best shifting with the
most reduction in resource index;

6 Apply the best shifting, and remove the selected
activity from FJi;

7 Update the activity slackness;

8 Calculate a bid B∗
′
i ←< Λ∗

′
i , u

∗′
i > based on the

modified schedule;

9 return S∗
′
i , B

∗′
i

Definition 7. Given demand ratio D and multiset Λ∗i in
the solution of the bidding problem, the problem of finding

Λ∗
′
i = argmin

Λ∈A (Λ∗)
RI(Λ, D) (12)

is called the bid modification problem.

The above problem is NP-hard since it can be transformed
to a RCPSP with an additional hard due date constraint.
Here we design a polynomial-time algorithm to approxi-
mately solve this problem, as shown in Algorithm 2. This al-
gorithm generates an equivalent multiset by shifting flexible
activities in an existing schedule. An activity aij in a sched-
ule Si is flexible if its slackness slkij = {t|estij ≤ t < lstij}
is not empty, where:

estij = max

{
adi, max

aij′≺aij
{sij′ + dij′}

}
,

lstij = min

{
cti(Si), min

aij≺aij′
{sij′ − dij}

}
.

(13)

In Algorithm 2, PAi may need to update its bid before
activity shifting procedures by solving a bidding problem,
since the global resource capacities could change during the
finalization phase (Line 1 to 2). In activity shifting pro-
cedures, first all the flexible activities are detected and put
into a set FJi (Line 3). Then, an iterative process (Line 4 to
7) shifts aij ∈ FJi to start at a global and local resource fea-
sible time t ∈ slkij which reduces the resource index value
most, and removes aij from FJi. When FJi is empty, a
new schedule S′i is found, and a modified bid is generated
(Line 8). A simple example of the bid modification is given
in Figure 1, where two projects compete for one global re-
source with a capacity of 5. Both projects can start from
time 0. Figure 1(a) shows the schedules generated by two
successive rounds of auctions (without modification), where
PA1 wins the first round and PA2 wins the second round.
The demand profile of PA1 and demand ratio of the first
round is given in Figure 1(b). As in Figure 1(c), if PA1 can
shift its flexible activity a12 to start at time 2 according to
the demand ratio, PA2 can achieve a better schedule which
completes at time 8, instead of time 10 in Figure 1(a). The
modified demand profile of PA1 is shown in Figure 1(d).
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Figure 1: An example of bid modification

4.3 Winner Determination
The WDP is proved as NP-complete [19]. A polynomial-

time algorithm with a proved upper-bound for solving WDP
among single-minded bidders is provided in [6]. The algo-
rithm first sorts all the bids based on a given criterion, then
examines each bid in order and labels the bidder as winner
if its bid does not conflict with the previous winners. Here
we adopt this algorithm with the following sorting criterion:

γ(Bξ) =
vξ√∑G

g=1

∑T
t=1 λ

ξ
gt/Ψgt

. (14)

A bid with a higher γ value is more likely to be a winner
in the optimal solution. Hence, all bids are first sorted de-
scendingly according to their γ values, then examined one
by one to check if there is any violation on resource capacity.

5. ANALYSIS
We provide analysis about our approach in this section,

including some formal proofs to support our design, and de-
tailed analysis on its information exchange and complexity.

5.1 Theoretical Support for Our Design
In Section 4.1, we design an efficient method to approxi-

mately solve the bidding problem by generating a multiset
(i.e. core) given a schedule using Equation (7). Here, we for-
mally prove that the multiset generated in this way must be
a candidate of the optimal solution of the bidding problem,
and analyze the error of the approximate utility in Equation
(9). We first prove that under fixed resource cost, a core sat-
isfies the properties described in the following lemma:

Lemma 1 For PAi, the following statements hold: (1) all
cores have the same resource cost; (2) the resource cost of a
core is the lowest among all the feasible multisets; (3) cores
generated from schedules with the same completion time has
the same approximate utility.

Proof Introduce an auxiliary variable rgij,t for each aij :

rgij,t =

{
rgij , if sij ≤ t < (sij + dij)

0, otherwise
(15)

Then a core Λ̂i defined by Equation (7) can be rewritten as

λ̂igt =
∑

aij∈Ai(t)

rgij =

Ji∑
j=1

rgij,t. (16)
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Putting the above equation into Equation (2), we have

RCi(Λ̂i) =

G∑
g=1

cg

T∑
t=1

Ji∑
j=1

rgij,t =

G∑
g=1

Ji∑
j=1

cgr
g
ijdij . (17)

Since cg, r
g
ij and dij are all constant, RCi(Λ̂i) is also a con-

stant regardless of Λ̂i, the first statement holds. Assum-

ing there exists a multiset Λ̃ such that RCi(Λ̃) < RCi(Λ̂i),

according to Equation (17), at least one activity aij̃ , j̃ ∈
{1, .., Ji} cannot obtain enough amount of global resource

Rg during at least one time slot in dij̃ , which means Λ̃ is
not a feasible multiset. Hence the second statement holds.
The third statement can be obtained immediately according
to the first statement and Equation (9). �

Now we are ready to prove the following proposition:

Proposition 1 The optimal multiset Λ∗i of PAi defined
in Equation (4) must be the core generated by the schedule
S∗i which has the minimum completion time regarding the
current global resource capacity Ψgt.

Proof According to Equation (5), any infeasible multi-
set cannot be optimal. For any feasible multiset Λ, accord-
ing to Lemma 1 and Definition 2, it is always true that

ui(Λ̂i(Ŝ
Λ
i )) ≥ ui(Λ), hence an optimal solution must be a

core. Since all cores have the same resource cost, the core
Λ∗i generated by S∗i solves the bidding problem to optimal,
since Λ∗i results in the lowest delay cost. �

Proposition 1 shows that any multiset that is not a core
cannot be optimal, and the optimal solution of the bidding

problem is Λ∗i = Λ̂i(S
∗
i ). Noted that the estimated utility

ũi(Λ
∗
i ) calculated using Equation (9) is the same as its exact

utility ui(Λ
∗
i ), since DCi(Λ

∗
i ) = dci(S

∗
i ). Hence, for any

feasible schedule Si and the estimated utility ũi(Λ̂i(S
∗
i )), the

error from the optimal utility ui(Λ
∗
i ) is err = ũi(Λ̂i(Si)) −

ũi(Λ
∗
i ) = dci(Si)− dci(S∗i ).

5.2 Information Exchange
In our approach, only two kinds of information need to

be exchanged between PAs and the MA, namely bids and
demand ratio. Beyond them, PAs do not need to specify any
private information regarding activities and local resources.
More importantly, it is very hard to obtain these kinds of
private information only from the bids and demand ratio.
Nevertheless, they need to provide truthful valuation on the
global resource requirements that they are interested in.

Besides privacy preserving, another advantage of our de-
sign is that, the bids provide more precise information for the
decisions on global resource allocation. Though utilities are
approximated using Equation (8) and (9), the actual utility

a bidder will gain after being granted Λ̂(Si) cannot be lower
than the approximate value, assuming it will not apply a
schedule with a larger completion time than cti(Si). On the
contrary, activity-level approaches directly allocate global
resources to individual activities according to some activity-
level criteria. However, these criteria cannot exactly reflect
the individual objectives (e.g. makespan, revenue) of each
project, since these objectives can only be known exactly
when all the activities are scheduled. This is more evident
under tighter resource constraints, since it is more difficult
for a PA to predict its objective without knowing the global
resource demand status in the following decision process.

This is also confirmed by our experiments in Section 6.1, as
our approach improves the results of DMAS/EM more on
cases with tighter resource constraints.

5.3 Complexity Analysis
The complexity of our modified RCPSP algorithm in Sec-

tion 4.1 is O
(
J2
i (G+ Li)d

∗
i

)
, where d∗i = max{di1, ..., diJi}.

For Algorithm 2, the worst-case complexity of calculating ac-
tivity slackness is O(J2

i ), hence the worst-case complexity of
Algorithm 2 is O(J2

i σi), where σi = max {(G+ Li)d
∗
i T, Ji}.

For the WDP algoritm, the complexity to calculate Equa-
tion (14) is O(GT ), hence the worst-case complexity of this
algorithm is O(Nω), where ω = max{GT, logN}.

If the scheduling horizon is too small, it is possible that
some PAs cannot find a feasible solution for the bidding
problem. Whenever this happens, the scheduling horizon
can be extended. Here we assume the scheduling horizon
is enough for all PAs to generate feasible multisets until
Algorithm 1 terminates. Hence, the WDP algorithm can
guarantee that at least one winner will be found in each
round of auction. We denote the number of outer rounds
between Line 2 and 12 of Algorithm 1 as N ′, the number
of inner rounds between Line 7 and 12 in outer round n as
m′n, and the number of initial winners in outer round n as
mn. Based on the operations to SS, IW and US, we have

N ′ ≤ N , m′n ≤ mn, and
∑N′

n=1 mn = N . Hence, the total

number of WDPs the MA needs to solve is N ′+
∑N′

n=1 m
′
n ≤

N ′ +N ≤ 2N . This means that in the worst-case scenario,
Algorithm 1 terminates within O(N) rounds of auctions.
This upper bound on the number of auction rounds is usually
much less than iBundle. As shown in [17], in the worst
case, the maximum number of auction rounds for iBundle to
terminate is proportional to the number of possible multiset
for all the PAs, which grows exponentially with the number
of items in the auctions.

Based on the above analysis, MA need to solve 2N WDPs
at most, leading to a worst-case complexity of O(N2ω). As-
sume a PA becomes an initial winner at outer round i, then
in the worst case it needs to participate i+mi WDPs. Since
mi ≤ N −

∑i−1
n=1 mn ≤ N − (i− 1), we have i+mi ≤ N + 1.

Hence the worst-case complexity of a PA is O(NJ2
i σi).

6. EMPIRICAL EVALUATION
We test our approach on two problem sets. The first one

contains all the 140 cases from MPSPLIB. To the best of our
knowledge, this is the only public benchmark of DRCMPSP.
We compare our approach with state-of-the-art decentral-
ized approaches DMAS/EM [24], DMAS/ABN [1], and a
centralized approach SASP on this problem set. We also
compare our approach with the other combinatorial auction
based approach in [4] (denoted as Confessore’s). Since this
approach can only handle one single-unit global resource,
we conduct experiments on the second problem set, which is
generated from MPSPLIB by replacing the multi-unit global
resources in each case with one single-unit global resources.

6.1 Experiments on the First Problem Set
In this section, we describe the experiments on the first

problem set. The 140 cases from MPSPLIB are divided into
20 subsets named as “MP J N”, where J ∈ {30, 90, 120} is
the number of activities per project, and N ∈ {2, 5, 10, 20}
is the number of projects. Thus the largest cases contain
20 × 120 = 2400 activities. Each case contains 4 resource
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Table 1: Comparison with other approaches

Subset Our Approach DMAS/EM DMAS/ABN SASP

MP 30 2 13.6 8.9 15.9 22.4
MP 90 2 6 6.6 9.9 18.5
MP 120 2 50.6 59.4 67.2 69.1
MP 30 5 19.76 17 21.2 31.9
MP 90 5 10.72 4.6 11 23.8
MP 120 5 45.92 54.2 66.48 71.9
MP 30 10 55.78 66.4 87.5 90.2
MP 90 10 39.02 50.9 46.08 65
MP 120 10 107.14 119.6 130.96 139.6
MP 30 20 116.1 138 207.96 185.5
MP 90 20 20.95 27.4 30.22 48.6
MP 120 20 24.27 28.6 37.18 61.1
MP 90 2AC 108.15 126 144.15 158.6
MP 120 2AC 37.75 52.4 47 56.7
MP 90 5AC 249.42 284.6 384.08 404.6
MP 120 5AC 181.3 233.5 291.44 258.8
MP 90 10AC 175.23 223.3 313.33 283.9
MP 120 10AC 103.74 169.4 171.54 181
MP 90 20AC 94.05 126.7 146.37 161.8
MP 120 20AC 163.36 280.7 297.39 297.4

0

50

100

150

200

250

Overall Non-AC AC UF<1 UF>1

A
v

er
a

g
e 

A
P

D

Our approach DMAS/EM DMAS/ABN SASP

Figure 2: Comparison of average APD

per project, and the number of global resource G in each case
is chosen between 1 and 4. The cases with no local resource,
i.e. G = 4, are called “Agent Cooperation” cases, and a
postfix “AC” is added to the subset names. Each AC subset
contains 10 cases, while each non-AC subset contains 5 cases.
To measure the tightness of global resource constraints, a
Utilization Factor (UF ) [7] value is calculated for each case.
UF < 1 indicates a low to medium resource constraint, while
UF > 1 indicates a medium to high constraint [14]. Average
UF value UF of each subset can be found in [7]. In general,
AC subsets have higher UF than non-AC subsets given the
same N and J , which makes AC subsets harder to solve.

6.1.1 Performance Comparison
Our approach is implemented using Java 1.8, and runs on

a single Intel Xeon Workstation (3.5GHz, 16GB). We set
the scheduling horizon T = 1500 for all the cases. All the
140 cases are successfully solved within a total time of 170
seconds. We calculate the average APD of each subset in
Table 1, where the best results are marked as bold. Among
the 20 subsets, our approach outperforms other approaches
in 17 subsets. For MP 120 20AC, one of the most complex
subset with the tightest resource constraints, our approach
outperforms DMAS/EM by 41.8%.

To evaluate the performance of our approach in different
types of subsets, we first split the problem subsets into two
groups consist of only non-AC and AC cases, and calculate
the average APD obtained by the four approaches. Then

Table 2: Comparison with DMAS/EM

Type Overall Non-AC AC UF < 1 UF > 1

Our approach 97.71 42.49 139.13 15.88 120.03
DMAS/EM 129.89 48.47 187.08 15.52 158.26

Difference (%) -24.77 -12.34 -25.63 2.32 -24.15

Table 3: Results with and without bid modification
Subset Mod NoMod Subset Mod NoMod

MP30 2 13.6 13.7 MP90 20 20.95 21.28
MP90 2 6 5.8 MP120 20 24.27 24.39
MP120 2 50.6 50.7 MP90 2AC 108.15 108.35
MP30 5 19.76 19.6 MP120 2AC 37.75 38.3
MP90 5 10.72 11.2 MP90 5AC 249.42 249.72
MP120 5 45.92 46 MP120 5AC 181.3 181.76
MP30 10 55.78 55.38 MP90 10AC 175.23 175.75
MP90 10 39.02 39.34 MP120 10AC 103.74 104.6
MP120 10 107.14 108.24 MP90 20AC 94.05 95.29
MP30 20 116.1 117.38 MP120 20AC 163.36 163.56

we group the subsets according to if UF > 1, and calcu-
late the corresponding average APD. We plot these values
along with the overall average APD of all the 140 cases in
Figure 2. As presented, our approach produces the lowest
average APD compared with other three approaches. More-
over, our approach generates better results for three types of
subsets non-AC, AC, and UF > 1; for UF < 1, our result is
comparable with the best result obtained by DMAS/EM. In
Table 2, we compare our approach with DMAS/EM, which
produces the closest results to ours. As shown, overall our
approach outperforms DMAS/EM by 24.77%. For the two
harder groups AC and UF > 1, our approach gives 25.63%
and 24.15% improvements against DMAS/EM, respectively.
In general, our approach generates results with lower APD
compared to other three approaches, and performs better on
harder subsets with tighter global resource constraints.

To show the effectiveness of bid modification, we compare
our approach (Mod) with the modified one (NoMod) that
replaces the bid modification in Line 9 of Algorithm 1 with
bid generation. In Table 3, our approach with bid modifi-
cation shows signs of improvement on the APD in 17 out
of 20 subsets, and has better results in all AC subsets. A
possible reason for the marginal improvement is that the
bids generated by our method already could provide effec-
tive information for allocating global resources, hence the
room for bid modification to further improve the results is
limited. Since Algorithm 2 is efficient, bid modification does
not affect the scalability of this approach.

6.1.2 Scalability Evaluation
We evaluate the scalability of our approach according to

the total time for solving one case, since it is simulated on
a single computer. Since d∗i and G+ Li are constants in all
the cases of MPSPLIB and T is fixed, the worst-case com-
plexity of the MA and PA are O(N2 logN) and O(NJ3

i ).
Thus, if Algorithm 1 runs on a single thread, the worst-case
complexity to generate a solution is O(N2max{logN, J∗3}),
where J∗ = max{J1, ..., JN}. We plot the average execution
time against N and J∗ in Figure 3, by fixing one parameter
and increasing the other. The time increasing trends in Fig-
ure 3 are compatible with our complexity analysis and show
that our approach can efficiently solve large problem cases
with thousands of activities from tens of projects.
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Figure 3: Execution time on MPSPLIB cases: (left)
fix J∗, and (right) fix N

Table 4: Number of cases solved by Confessore’s
approach for each subset of the second problem set

Subset Total Solved Ratio(%) Subset Total Solved Ratio(%)

MP30 2 5 5 100 MP30 10 5 4 80
MP90 2 15 15 100 MP90 10 15 10 67
MP120 2 15 15 100 MP120 10 15 14 93
MP30 5 5 5 100 MP30 20 5 4 80
MP90 5 15 12 80 MP90 20 15 3 20
MP120 5 15 14 93 MP120 20 15 9 60

6.2 Experiments on the Second Problem Set
In this section, we describe the experiments on the second

problem set, which contains 140 cases generated from the
MPSPLIB. More specifically, for each case in MPSPLIB, we
first keep the global resource that has the minimum capacity
and remove other ones, and then replace the capacity and
requirements of each activity on that resource with 1. We
classify the newly generated cases based on the number of
activities and projects, hence 12 subsets can be obtained.

6.2.1 Performance Comparison
We implement Confessore’s approach using Java 1.8, and

run both Confessore’s and our approach on the same work-
station as in the previous section. During experimentation,
we observe that Confessore’s approach cannot converge on
some cases, hence we limit the maximum iterations of this
approach to 3000. The scheduling horizon T is set to 15000.
All the 140 cases in this problem set are successfully solved
by our approach within 730 seconds, while Confessore’s ap-
proach can solve 79% (110/140) of all cases in about 15
hours. We list the number of cases solved by Confessore’s
approach for each subset in Table 4. From this table, we can
further conclude that when the number of projects is 2, 5, 10,
20, Confessore’s approach can solve 100%, 88.6%, 80%, 46%
of the cases, respectively. This indicates that Confessore’s
approach may not be able to solve large cases where tens of
projects are involved. In the following evaluation, we only
consider those cases that are solved by both approaches.

We then evaluate the solution quality of these two ap-
proaches by calculating the average APD of each subset in
Table 5, which shows that our approach consistantly achieves
lower APD on all the subsets, and the improvement tends to
increase on harder cases with more activities and projects.

6.2.2 Scalability Comparison
To compare the scalability of our approach and Confes-

sore’s approach, we calculate the average execution time and
the number of total WDPs regarding the project number N .
As shown in Figure 4 (vertical axes are in log scale), both the
execution time and number of WDPs of our approach are
much smaller than those of Confessore’s approach. When N
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Figure 4: Scalability comparison on the second prob-
lem set with Confessore’s approach

Table 5: Comparison with respect to problem subset
of the second problem set

Subset Our Approach Confessore’s Approach Diff(%)

MP30 2 106.4 122.8 -13.36
MP90 2 354.27 393.7 -10.02
MP120 2 362.2 439.6 -17.61
MP30 5 167.28 279.8 -40.21
MP90 5 641.02 869.67 -26.29
MP120 5 993.36 1281.24 -22.47
MP30 10 393.3 667.08 -41.04
MP90 10 1504.75 2111.3 -28.73
MP120 10 1564.11 2360.66 -33.74
MP30 20 937.39 1540.06 -39.13
MP90 20 1591.27 2800.17 -43.17
MP120 20 3037.74 5075.11 -40.14

is larger than 10, our approach can be two orders of magni-
tude faster. These results clearly show that our approach is
computationally frugal, and can efficiently solve large cases
where tens of projects are involved.

7. CONCLUSION AND FUTURE WORK
In conclusion, this paper presents a novel decentralized

approach for solving DRCMPSP based on multi-unit com-
binatorial auction. It does not require private information of
projects, and can efficiently find solutions with much lower
average project delay than state-of-the-art decentralized ap-
proaches. As our approach runs in polynomial time for all
agents, it can easily scale to large problems with thousands
of activities from tens of projects.

Though the model of DRCMPSP is general enough to
describe a large class of decentralized scheduling problems,
some real-world problems could be more complex (e.g. with
hierarchical activity structure and additional constraints be-
tween global resources). For future work, we will extend
our approach to handle these new problems. Experimen-
tal results show that our approach has good allocation ef-
ficiency. However, incentive compatibility remains an un-
solved issue. It is of great importance to provide incentives
for self-interested agents to provide truthful information, es-
pecially in a decentralized environment. Thus, another fu-
ture research direction for us is to address this issue.
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