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ABSTRACT
Information exchange is a basic primitive for maintaining
the smooth running of a network or a system with multi-
ple communicating agents. Given k packets initially stored
at k nodes respectively, the problem is to disseminate the
k packets to the whole network with the objective of mini-
mizing the time used. We study this problem in single-hop
multi-channel networks of n nodes, and target on devising
uniform distributed protocols that do not rely on any prior
knowledge of network parameters, such as the network size
n or the number of packet holders k. Uniform protocols have
better scalability and are more suitable for implementation
in reality. Specifically, we propose a uniform distributed pro-
tocol that with high probability accomplishes the dissemi-
nation in O(k/F + F · logn) rounds, assuming F available
channels. This protocol is asymptotically optimal when k is
large (k ≥ F2 · logn), and provides the best possible linear
speedup with multiple channels comparing with the results
using a single channel. To the best of our knowledge, this is
the first uniform protocol for information exchange in multi-
channel networks.

Keywords
Information exchange, multi-channel networks, distributed
algorithm, uniform protocol

1. INTRODUCTION
In this paper, we study the information exchange problem

in a single-hop, multi-channel radio network. There are k
nodes, called the source nodes, in the network. At the be-
ginning, each of them holds a packet, and the target is to
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disseminate these packets to the whole network as quickly as
possible. Information exchange is one of the most fundamen-
tal operations that are frequently called for in the smooth
running of networks or scenarios involving many communi-
cating entities, which include many multi-agent systems.

Using multiple channels obviously can greatly increase the
throughput of the network. A lot of works have been de-
voted to studying the utilization of multiple channels in the
derivation of faster communication protocols (e.g. [5, 8, 6,
9, 10, 12, 11, 14, 15, 19, 20]). All existing works however
require that the network size n be known in a prior. In ad
hoc networks, knowing n is usually a tough task, as it would
consume a large amount of time and energy for nodes to
compute this global parameter, and hence greatly increase
the load of the network. Additionally, in ad hoc networks,
the network size could change frequently due to nodes leav-
ing and joining. This consideration necessitates the design
of uniform protocols which do not require any prior informa-
tion about network parameters including the network size n
and the number of source nodes k. Uniform protocols have
better scalability and are therefore more suitable for im-
plementation in reality. But on the other hand, unknowing
network parameters makes nodes unable to estimate the con-
tention level on channels, which may cause a large amount
of collisions. Hence, it has been a challenging task to design
uniform distributed protocols. In this paper, we propose the
first known uniform protocol for information exchange.

1.1 Network Model and Problem Definition
A multi-channel single-hop network is defined as follows.

There are n nodes in the network, any pair of which can com-
municate with each other directly. But n is not known to
the nodes. Time is divided into synchronous rounds. There
are F channels available in the network. We use 1, . . . ,F
to denote these channels. Even though these F channels
are available to all the nodes, at any time a node can select
at most one channel to listen to or transmit on. In other
words, each node is equiped with a commonly seen half-
duplex transceiver. A node operating on a channel in a given
round learns nothing about events on the other channels.
When a node v listens to a channel, it can receive a mes-
sage if and only if there is only one node transmitting on the
channel. If two or more nodes transmit on the same chan-
nel, a collision occurs and none of these transmissions would
be successful. We assume that nodes can detect collisions,
i.e., nodes can distinguish collision from silence. Further-
more, we consider the case of non-constant F (larger than
any constant), since otherwise, using a constant number of
channels will not break the Ω(k) lower bound for information
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exchange that always holds in single-channel networks. The
algorithm proposed in this paper is randomized, and hence
the analysis involves many random events. We say that an
event happens with high probability (with respect to n), if it
happens with probability 1− 1/nc for some constant c > 0.

The goal of of information exchange is to disseminate some
source nodes’ packets to the whole network, which is more
precisely defined as follows.

Definition 1. (Information Exchange.) In the infor-
mation exchange problem, initially k source nodes are hold-
ing packets {P1, P2, . . . , Pk} respectively. It is required to
disseminate all these k packets to the whole network as quickly
as possible.

Denote by K the set of source nodes. Then |K| = k. We
study the harsh case of the information exchange problem
where nodes have no idea about the number of packets k and
the set of source nodes K. We asume that multiple packets
can be packed in a single message. It is easy to see that if
k is small relative to the number of channels F , the bene-
fit of multiple channels will be weakened, since in this case
there could be a single node selecting a channel such that its
transmission cannot be received by anyone. Thus, through-
out this work, we assume that k ≥ F logn, which ensures
that when nodes uniformly select the channels, there are
multiple nodes operating on each channel with high proba-
bility. However, we must point out that our algorithm can
also solve the case where k is small.

1.2 Our Results
Uniform Protocol. We give the first known uniform

protocol for information exchange in multi-channel networks.
Our algorithm can disseminate all k packets to the whole
network in O(k/F + F · logn) rounds with high proba-
bility when given F available channels. When k is large
(k ≥ F2 logn), our algorithm shows a linear speedup (con-
sider the Ω(k) lower bound for single-channel networks).
Note that Ω(k/F) is a trivial lower bound for information
exchange with F available channels. Hence, our protocol is
asymptotically optimal when k is large.
Fast Adaptation to Network Change. Our protocol

can handle dynamic joining and leaving of nodes efficiently.
We have proved that after some nodes joining or leaving, the
existing nodes will adapt quickly to a state of “safe range”,
in which the F channels will be almost fully made use of. A
formal description of this property is given in Theorem 3.

1.3 Related Work
As more and more wireless networks and devices now op-

erate on multiple channels, there has been much attention
given to studying the effect of multiple channels on facili-
tating communication recently [5, 8, 6, 9, 10, 12, 11, 14,
15, 19, 20]. With respect to information exchange in multi-
channel single-hop networks, most studies are done under
the assumption that each message can carry only one packet.
In particular, Holzer et al. [15, 14] proposed deterministic
and randomized algorithms with optimal O(k) time to solve
the information exchange problem. With the assumption
that nodes can listen to and receive messages from mul-
tiple channels at the same time, Shi et al. [19] proposed
an O(log k log log k) time randomized information exchange
protocol using Θ(n) channels. But with the assumption of
unit-size messages, the benefit of utilizing multiple channels

is very limited, since in each round, a node can receive at
most one packet. Hence, it needs Ω(k) rounds to complete
the information exchange. On the other hand, the packet
stored at nodes could be small (e.g., in sensor networks,
the data at each node is only a value). It is realistic to
consider the case that multiple packets can be packed in a
single message. Under this assumption, in [6], Daum et al.
proposed a randomized algorithm that accomplishes infor-
mation exchange in O(k+ log2 n/F + logn log log n) rounds
with high probability. Their algorithm does not rely on col-
lision detection. Then with collision detection, Wang et al.
[20] proposed a protocol that disseminates all the packets in
O(k/F+F · log2 n) rounds with high probability. When k is
large (k ≥ F2 log2 n), this result is asymptotically optimal
considering the trivial lower bound Ω(k/F). In [22], Yan et
al. studied the impact of message size on information ex-
change in multi-channel networks. Additionally, Gilbert et
al. [12] considered the scenario when an adversary can dis-
rupt a number of channels and proposed a randomized algo-
rithm to achieve the almost-complete information exchange.
However, all the above results need the prior knowledge of
n. To our knowledge, there is not yet any uniform protocol
proposed for solving the information exchange problem in
single-hop multiple-channel networks.

Information exchange has also been extensively studied
since 1970s [4, 13, 18] in single-channel networks. In single-
channel networks, information exchange is also known as
contention resolution [2] or k-selection [16]. Assuming colli-
sion detection as in this work, a randomized adaptive pro-
tocol with expected running time of O(k + logn) was pre-
sented by Martel in [17]. Kowalski [16] improved the proto-
col in [17] to O(k+ log log n) by making use of the expected
O(log logn) selection protocol in [21]. When requiring high
probability results, the best known randomized algorithm
was introduced in [1], which solves the k-selection problem
in O(k + log2 n) rounds without assuming collision detec-
tion. Note that in the single-channel networks, the trivial
lower bound for k-selection is Ω(k). Hence the result in [1]
is asymptotically optimal for k ∈ Ω(log2 n). By assuming
that the channel can provide feedback on whether a message
is successfully transmitted, an uniform randomized protocol
with running time O(k) is introduced in [2] for single-channel
networks. However, the error probability of the protocol in
[2] is 1/kc, rather than 1/nc. For deterministic solutions,
adaptive protocols for k-selection were presented with run-
ning time O(k log(n/k)) in [4, 13, 18], assuming collision
detection.

1.4 Outline
Section 2 introduces some preliminary results that help

the analysis. Section 3 introduces our protocol. Section 4
analyzes the performance of our protocol; particularly, we
give an upper bound on the time needed to accomplish (with
high probability) information exchange. Furthermore, we
show the “self-stabilization” property of our protocol in Sec-
tion 5. Section 6 summarizes our work, followed by a dis-
cussion.

2. PRELIMINARIES
In this section, we review some useful results concerning

randomness.
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Lemma 1 (Chernoff Bound.). Consider a set of ran-
dom variables 0 ≤ X1, X2, . . . , Xn ≤ c for some parameter
c > 0. Let X :=

∑n
i=1Xi and µ := E[X]. If Xi’s are inde-

pendent or negatively associated, then for any δ > 0 it holds
that

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
c

.

In details, for δ ≤ 1, the bound can be upper bounded by

Pr[X ≥ (1 + δ)µ] ≤ exp{−δ
2µ

3c
};

for δ > 1, it holds that

Pr[X ≥ (1 + δ)µ] ≤ exp{−δ ln(1 + δ)µ

2c
}.

On the other hand, for any 0 < δ < 1 it holds that

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
c

≤ exp{−δ
2µ

c
}.

Next, we present some useful conclusions about a classic
procedure, “throw balls into bins”. These conclusions have
essentially been proved in existing works such as [7].

Lemma 2. Consider H bins and l balls with weights
0 ≤ w1, w2, . . . , wl ≤ ζ. Assume that

∑l
i=1 wi = α · H

where α ≥ 0.01 is a constant. Balls are thrown into bins
uniformly at random. Then, if ζ is small enough, with prob-
ability 1− exp{−Ω(H)} there are at least H · 31/32 bins in
which the total weight of balls is between α · 15/16 and α · 2.

Lemma 3. Consider H bins and l > H ·∆ balls, where
∆ > 2. Balls are thrown to bins uniformly at random. If ∆
is big enough, then with probability 1 − exp{−Ω(H)} there
are at least H · 31/32 bins that contain at least 2 balls.

Corollary 1. Consider H bins and l > H · ∆ balls
with weights 0 ≤ w1, w2, . . . , wl ≤ ζ. Assume that

∑l
i=1 wi =

α ·H where α ≥ 0.01 is a constant. Balls are thrown to bins
uniformly at random. Then, if ∆ is big enough and ζ is
small enough, then with probability 1 − exp{−Ω(H)} there
are at least H · 15/16 bins in which there are at least 2 balls,
and the total weight is between α · 15/16 and α · 2.

At the end of this section, we introduce a result given in [3].

Lemma 4. Consider a set of l nodes, v1, v2, . . . , vl, trans-
mitting on a channel. For node vi, it transmits with proba-
bility 0 < p(vi) < 1/2. Let w0 denote the probability that the
channel is idle; and w1 the probability that there is exactly
one transmission on the channel. Then, w0 ·

∑l
i=1 p(vi) ≤

w1 ≤ 2 · w0 ·
∑l
i=1 p(vi).

3. UNIFORM INFORMATION EXCHANGE
In this section, we introduce our Uniform Information Ex-

change (UIE) protocol. The pseudo-code of the protocol is
given in Algorithm 1 and Algorithm 2.

UIE Protocol. There are two states for the nodes: ac-
tive and inactive. Intuitively, the active nodes are trying
to transmit messages over the network, while the inactive
nodes just listen for incoming messages. Initially, all the
source nodes are active, and the others are inactive.

In the protocol, an active node will become inactive when
it successfully transmits its message to other active nodes.
In this way, on one hand, the number of active nodes is con-
stantly decreasing, and on the other hand, it ensures that
at any time the active nodes possess all k packets. Hence,
when there is only one active node left, it can send all the
k packets to all the other nodes. The utilization of multiple
channels can speed up the reduction of active nodes. By the
transmissions on multiple channels, the active nodes can be
reduced on all channels in parallel. However, when the num-
ber of active nodes becomes small, it cannot guarantee that
for a particular channel, there are multiple active nodes op-
erating on it. As a result, even if an active node successfully
transmits on a channel, its message may not be received by
other active nodes. In other words, the multiple channels
are not efficient any more. Additionally, the protocol needs
to ensure that when the surviving active node transmits, all
other nodes listen on the same channel. Hence, we set a
primary channel, which serves two purposes: first, it is used
for reducing active nodes when the number of active nodes
is small; second, it is used by the surviving active node to
disseminate the packets.

Specifically, there are two processes in the protocol: the
multiple-channel transmission process and the primary-channel
transmission process. In the multiple-channel transmission
process, active nodes operate on multiple channels to reduce
the number of active nodes, while in the primary-channel
transmission process, nodes operate on the primary chan-
nel. Note that because nodes have no idea about any net-
work parameters, it is hard for nodes to determine when the
multiple-channel transmission process should finish. Hence,
in the protocol, these two processes are in parallel, rather
than consecutive. Specifically, there are four slots in each
round: in the first two slots, active nodes operate on mul-
tiple channels, and in the other slots, nodes operate on the
primary channel. We set the first channel as the special
primary channel. We next introduce the protocol in more
detail.

Each active node v maintains two parameters p(v) and
q(v). Denote the values of p(v) and q(v) in a round t by pt(v)
and qt(v), respectively. In particular, pt(v) and qt(v) are the
transmission probabilities of node v for the multi-channel
transmission process and the primary-channel transmission
process in round t, respectively. Initially, p0(v) := q0(v) :=
ζ, where 0 < ζ < 1 is a constant (determined in Lemma 2).
Let mt(v) denote the set of packets received by node v by
round t. Initially, for a source node v initiated with packet
P , m0(v) := {P}. And for other nodes, m0(v) := ∅.

The operations in the four slots of each round t are as
follows:

• Slot 1. In this slot, the inactive nodes do nothing.
Each active node v selects a channel from the F can-
didates uniformly at random, and then transmits with
probability pt(v) on the selected channel. If it does
not transmit, it listens on the selected channel. If v
receives a message containing a set of packets m′, it
updates mt+1(v) := m′ ∪mt(v).

At the end of Slot 1, v updates the transmission prob-
ability p according to the following rule: if v listens
and detects no transmission on the selected channel,
pt+1(v) := min{ζ, 2 · pt(v)}; otherwise, pt+1(v) :=
pt(v)/2.
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• Slot 2. In this slot, the inactive nodes still do nothing.
For an active node v, if it has received a message in Slot
1, it transmits an acknowledgement on the selected
channel. Otherwise, v listens on the selected channel.

If an active node v transmitted in slot 1 and detects
transmissions on the selected channel in Slot 2, the
state of v switches to inactive.

• Slot 3. In this slot, all nodes operate on the primary
channel (Channel 1). Specifically, all inactive nodes
listen, and an active node v transmits with probability
qt(v). At the end of Slot 3, active nodes update the
transmission probability qt(·) using the same rule as in
Slot 1.

• Slot 4. For each (active or inactive) node v, if v re-
ceived a message in Slot 3, it transmits an acknowl-
edgement.

For an active node v, if v transmitted in Slot 3 and
detects transmissions in this slot, it changes its state
to inactive

Algorithm 1: UIE

Initialization: for node v at time 0
1 p(v) := q(v) := ζ;
2 if initially have a packet P then
3 m(v) := {P};
4 state(v) := Active;

5 else
6 m(v) := {};
7 state(v) := Inactive;

Active State: for node v at time t ≥ 0
8 Slot 1-2: pick a Channel r uniformly at random and

call channel − use(r,m(v), p(v));
9 Slot 3-4: call channel − use(1,m(v), q(v));

Inactive State: for node v at time t ≥ 0
10 Slot 1-2: do nothing;
11 Slot 3:
12 listen on Channel 1;
13 if receive a message containing a set of packets m′

then m(v) := m(v) ∪m′;;
14 Slot 4: if received a message in Slot 3 then transmit

on Channel 1;;

We state the correctness of the UIE protocol in the fol-
lowing Theorem 1.

Theorem 1. Consider an execution of the UIE Proto-
col. When there is exactly one active node left, say node v
in round T , then mT (v) =

⋃
v∈K m0(v). Recall that K is

the set of all source nodes.

Proof. Denote the set of active nodes in round t by At.
Then At ⊆ At−1 ⊆ . . . ⊆ A1 ⊆ A0 = K holds for any
t > 0, according to the protocol. Then the conclusion follows
from the fact that

⋃
v∈At mt(v) =

⋃
v∈At−1

mt−1(v) holds

for any t > 0, which is true because when an active node v
becomes inactive in some round t, it means mt(v) is known
to some other active node u which is still active in round
t+ 1. In detail, if an active node received acknowledgement

Algorithm 2: channel − use(i, s, w)

Slot 1:
1 on Channel i, transmit a message containing packets in

s with probability w and listen with probability 1− w;
2 if listened then
3 if Channel i is idle then
4 w := min{2w, ζ};
5 else if received a message containing a set of

packets m′ then
6 s := s ∪m′;
7 w := w/2;

8 else
9 // Channel i is busy

10 w := w/2;

11 else
12 // transmitted
13 w := w/2;

Slot 2:
14 if received a messge in Slot 1 then transmit on

Channel i;;
15 if transmited in Slot 1 then
16 listen on Channel i;
17 if receive a message OR Channel i is busy then

state(v) := Inactive;;

or detected collisions in Slot 2, then it means its message
has been received by some other active nodes; if an active
node received an acknowledgement or detected collisions in
Slot 4, then it means its message has been received by all
the other nodes in the network, including the active ones if
any exists.

Remark 1 (Termination of Listening). One may
note that in the proposed protocol, the nodes will eventually
all reach an inactive state and perform “listen” afterwards.
In case a total termination of the protocol in execution is re-
quired, there is a simple way to do it: We can add a special
slot in each round, in which all nodes that are still active
(having messages to disseminate) will transmit; when there
is only one active node left, i.e. all messages have been suc-
cessfully disseminated, there will be a successful transmission
in this special slot. Then the last active node can inform
the whole network to terminate once its message has been
successfully transmitted. With the consideration of dynamic
network changes (see details in Section 5), we did not in-
clude such a termination condition in the proposed protocol.

4. ANALYSIS OF THE PROTOCOL
In this section, we prove that with k source nodes, our

protocol can disseminate all k packets to the whole network
in O(k/F + F · logn) rounds with high probability. Recall
that F is the number of available channels and n is the
number of nodes in the network. Formally, this conclusion
is summarized in Theorem 2.

Theorem 2. Consider information exchange on a net-
work of size n with F available channels. For the case where
there are initially k ≤ n source nodes, the following conclu-
sions hold:
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1. There exists a constant ν > 0 such that with high
probability, there is only one active node left at time
T ∗ := ν(k/F + F · logn).

2. For time T ∗ when there is only one active node v left,
at time T ∗∗ := 2 · T ∗ + logn = O(T ∗) it holds with
high probability that every node in the network knows
the k packets initially maintained by the source nodes
and node v becomes inactive.

Proof. The first conclusion follows directly from the Lem-
mas 5 and 12 which will be given later in Section 4.1 and
4.2, respectively. Here we first prove the second conclusion.

Since at time T ∗ there is only one active node v left, we
know that q2T∗(v) will get back to ζ if node v is still active
at time 2T ∗. Note that if node v transmits with probability
ζ on the primary channel (Slot 3) for the subsequent log n
rounds, then with high probability there exists one round in
which node v transmits and consequently all the nodes in the
network will receive the message. As shown in Theorem 1,
the message transmitted by v contains all k packets. Hence,
all nodes will get these packets in the received message. Fi-
nally, since the inactive nodes that received a message in
Slot 3 transmit on the primary channel, then node v detects
transmissions in Slot 4 and becomes inactive.

We next briefly introduce the analysis process for the first
conclusion in Theorem 2. Recall that there are two par-
allel processes in our algorithm: the multi-channel trans-
mission process (the first two slots in each round) and the
primary-channel transmission process (the last two slots in
each round). As discussed before, when there are many ac-
tive nodes (more than F · logn), multiple channels should be
efficient in reducing the number of active nodes. When the
number of active nodes is reduced to something small (less
than F · logn), the utilization of multiple channels might
not be efficient any more, since for a particular channel,
there might not be multiple nodes selecting it. In this case,
we have to rely on the primary-channel transmission pro-
cess to reduce the number of active nodes. Therefore, we
divide the analysis into two parts. The first part analyzes
how long it takes to decrease the number of active nodes to
F · logn and the second part deals with how long it takes
to further reduce the number of active nodes to one. More
precisely, let At denote the set of active nodes in a round
t. Let T be the first round in which the number of active
nodes drops below F · logn. That is, for any time t < T ,
it holds that |At| ≥ F · logn, and for any time t ≥ T , it
holds that |At| < F · logn. Then the whole analysis is di-
vided into two parts by T : The first part concerns the time
period from 0 to T − 1, and the second part considers the
algorithm execution since T . In the first part of the anal-
ysis, we mainly analyze the efficiency of the multi-channel
transmission process in reducing the number of active nodes,
and in the second part, we are mainly concerned about the
efficiency of the primary-channel transmission process.

In the rest of this section, we assume that k ≥ F · logn.
Otherwise, we can jump directly to the second part of the
analysis.

4.1 Efficiency of Multiple Channels
In this section, we analyze the first part, i.e., the period

from time 0 to the first round when the number of active
nodes drops below F · logn. The conclusion is summarized
in the following Lemma 5.

Lemma 5. There exists T = O(k/F) such that in round
T it holds with high probability that |AT | < F · logn.

The main idea in proving Lemma 5 is to find a proper
γ′ > 0 such that after the protocol has been running for
T ′ = O(logn) rounds, within any period of γ′ rounds sub-
sequently with |At| ≥ F · logn, there are (with constant
probability) Ω(F) active nodes that switch from the active
state to the inactive state. Then, with high probability,
there are k − F · logn < k active nodes switching to inac-
tive, in a period of O(logn + k/F) (which is O(k/F) for
k > F · logn) rounds. To prove Lemma 5, we need to intro-
duce and prove a series of “small” lemmas at first, and leave
the proof of Lemma 5 to the end of this section. We next
do some preparation for proving Lemma 5.

By using more channels, it is natural to expect that the
number of successful transmissions is increased accordingly.
Specifically, it is expected that in a round, there should be
Ω(F) successful transmissions with F channels. In the fol-
lowing Lemma 6, we show that if a “safe range” on the total
transmission probability of all active nodes is satisfied, the
above expectation is true.

Lemma 6 (Safe range). Consider the Uniform In-
formation Exchange Protocol. For a round t > 0 with |At| ≥
F ·logn, if there exist constants α1, α2 ≥ 1 such that α1 ·F ≤∑
v∈At pt(v) ≤ α2 · F , then with constant probability there

are Ω(F) active nodes switching to the inactive state in the
second slot.

Proof. For the convenience of the argument, we intro-
duce a series of random variables Xi(v) with i = 1, · · · ,F
and v ∈ At. The variable Xi(v) takes value pt(v) if node
v selects Channel i in the 1st slot of round t; otherwise,
Xi(v) := 0. Furthermore, denote Xi :=

∑
vX

i(v). By
Corollary 1, with probability 1− exp{−Ω(F)}, there are at
least F ·15/16 channels, such that for each of them there are
at least two active nodes selecting it and the total transmis-
sion probability of these active nodes is between α1 · 15/16
and 2 ·α2. Next, we show that in such cases there are Ω(F)
active nodes switching to the inactive state with constant
probability.

With bi ∈ [0, 1/2] for i = 0, 1, . . ., it holds [6] that

4−
∑
i bi ≤

∏
i

(1− bi) ≤ e−
∑
i bi . (1)

Hence, for Channel i with Xi between α1 · 15/16 and 2 ·
α2, it is idle with probability at least 4−4α2 , and there is
exactly one transmission on the channel with probability at
least α1 · 4−4α2 · 15/16 (by Lemma 4). If there are at least
two active nodes selecting a channel and there is only one
node transmitting on the channel, then the transmission will
succeed and the one transmitting in the first slot will sense
transmissions in the second slot. According to the algorithm,
the node that transmitted will switch to the inactive state.
Therefore there are at least F · 15/16 channels such that
for each of them there is an active node switching to the
inactive state with probability at least α1 · 4−4α2 · 15/16. In
expectation, there are C · F new inactive nodes where C :=
(1−exp{−Ω(F)})α1·4−2α2 ·15/16 which is at least α1·4−2α2 ·
15/32 when F is large enough. Using the Chernoff bound
over the F channels, it holds that with constant probability
(given α1, α2, and large enough F), there are Ω(F) active
nodes switching to the inactive state in the second slot of
round t. This completes the proof.
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With the above Lemma 6, now the proof idea becomes
clear, we only need to show that once initiated, the net-
work will fall into the safe range very soon, and then stays
in this range as long as there are enough active nodes, i.e
|At| ≥ F · logn. At the very beginning of the protocol,
nodes are initiated with constant transmission probabilities,
i.e. p0(·) = ζ. Therefore, the summation of the initial trans-
mission probabilities might be as large as n · ζ. We need to
consider how long it takes for the summation

∑
v∈At pt(v)

to drop below F · α2, where α2 > 0 is the constant defined
by the safe range.

Lemma 7. For a round t with
∑
v∈At pt(v) = α · F , it

holds that Pr[
∑
v∈At pt+1(v) ≤ α · F · 3/4] ≥ 7/8 for large

enough α.

Proof. To show the conclusion, we need to look at some
execution details of the UIE Protocol. Note that there are
two parts concerning randomness. One part is in the channel
selection, and the other part is in the transmission selection.
Consider the channel selection part first, in which a random
instance σ is a mapping from the |At| active nodes to the F
channels. Recall that the probability of successful transmis-
sion on a channel is closely related to the total transmission
probability of nodes selecting this channel. We call an in-
stance fair if under it there are at least least F ·15/16 chan-
nels such that on each of them the total transmission prob-
ability (of nodes selecting this channel) is at least α · 15/16.
By Lemma 2, a fraction of 1− exp{−Ω(F)} of instances are
fair. We next consider such a fair instance σ.

Let Xσ be the random variable that indicates the value of∑
v∈At+1

pt+1(v), conditioned on channel selection instance

σ. Clearly, Xσ ≤ 2
∑
v∈At pt(v), and for different instances

σ, Xσs are mutually independent. For a channel c, if with-
out confusion, we also use c to denote the set of active nodes
selecting channel c in the instance σ. Denote by Xc

σ the ran-
dom variable that indicates the value of

∑
v∈c∩At+1

pt+1(v).

Hence, Xσ =
∑
cX

c
σ.

Focus on a channel c with
∑
v∈c∩At pt(v) ≥ 15α/16. The

probability that there is at least one transmission on channel
c is at least 1− exp{−15α/16}, by Equation (1). According
to the UIE Protocol, the nodes that selected channel c all
halve their transmission probabilities if channel c is not idle
in round t. Hence,

Pr[Xc
σ =

∑
v∈c∩At

pt(v)

2
|
∑

v∈c∩At

pt(v) ≥ α · 15

16
]

≥ 1− exp{−α · 15

16
},

which is at least 31/32 when α is large enough. Hence in
expectation, there are at least (31/32) · (F · 15/16) channels
c with Xc

σ =
∑
v∈c∩At pt(v)/2.

Note that once the instance σ is given, the total transmis-
sion probability

∑
v∈c∩At pt(v) for each channel c is speci-

fied. Then for different channels, the random variables Xc
σs

are mutually independent. Hence, by the Chernoff bound in
Lemma 1, there are at least (15/16)·(F·15/16) channels with
Xc
σ =

∑
v∈c∩At pt(v)/2 with probability 1 − exp{−Ω(F)}.

Hence, with probability 1− exp{−Ω(F)},

Xσ ≤ F ·
(

15

16

)2

· 15α

16
· 1

2
+ (α · F − α · F ·

(
15

16

)3

) · 2

< α · F · 3/4.

Finally it holds that Pr[
∑
v∈At+1

pt+1(v) ≤ α · F · 3/4] ≥
(1− exp{−Ω(F)}) · (1− exp{−Ω(F)}) which is at least 7/8
for large F . The last thing to note is in the above analysis we
did not consider the effect when an active node becomes in-
active, which only makes the summation decrease and hence
is not harmful.

Lemma 8 (Going down). There exists a constant α′2 >
1, such that among γ logn rounds (not necessarily consecu-
tive) with

∑
v∈At pt(v) ≥ α′2 · F and sufficiently large γ > 0,

there are at least 3
4
γ logn rounds with

∑
v∈At+1

pt+1(v) <
3
4

∑
v∈At pt(v), with probability 1−O(n−1).

Proof. Let T := γ logn, and Xt be the random variable
that indicates the value of

∑
v∈At+1

pt+1(v)/
∑
v∈At pt(v).

Then by Lemma 7, it holds that Pr[Xt ≤ 3/4] ≥ 7/8. Let
Yt be the binary random variable that takes value 1 if Xt ≤
3/4. Note that given

∑
v∈At pt(v) > α′2 · F , E[Yt] ≥ 7/8

always hold. Hence, E[
∑T
t=1 Yt] ≥ T · 7/8, and it holds that

Pr[
∑T
t=1 Yt ≤ T · 3/4] = O(n−1) by the Chernoff bound.

That is, with probability 1−O(n−1), there are at least T ·3/4
rounds t with

∑
v∈At+1

pt+1(v)/
∑
v∈At pt(v) ≤ 3/4, which

completes the proof.

Lemma 9 (Fast adaptation). There exists a con-
stant α′2 > 1, such that during any period of γ logn rounds
with sufficiently large γ > 0, the probability that within the
considered period there is a round t with

∑
v∈At pt(v) ≤

α′2 · F is 1−O(n−1).

Proof. Denote T := γ logn. Without loss of generality,
assume that the period of T rounds starts from t = 1 and
ends at t = T , with

∑
v∈At pt(v) > α′2 ·F always holds. Note

that ∑
v∈AT

pT (v) =
∑
v∈A0

p0(v) ·ΠT−1
t=0

∑
v∈At+1

pt+1(v)∑
v∈At pt(v)

.

Then by Lemma 8, with probability at least 1−O(n−1), it
holds that∑

v∈AT

pT (v) ≥
∑
v∈A0

p0(v) ·
(

3

4
· 3

4
· 3

4
· 2
)T

4

=
∑
v∈A0

p0(v) ·
(

27

32

)T
4

,

(2)

where the first inequality holds by by coupling the “evolu-
tion” factors

∑
v∈At+1

pt+1(v)/
∑
v∈At pt(v). Since it holds

that
∑
v∈A0

p0(v) < n and T = γ logn, we know that∑
v∈AT

pT (v) is at most α′2 · F for large enough γ.

In the above, we have shown that the adaptation process
of the total transmission probability (from the initial state to
Θ(F)) takes O(logn) rounds with high probability. Mean-
while, we also showed that when the total transmission prob-
ability increases beyond the upper bound of the safe range,
the total transmission probability of active nodes shows a
trend of going down. To finally show that in most of the
rounds, the safe range is satisfied, we still need to show that
if the total transmission probability of active nodes becomes
very small, the trend is that it will go up. This is illustrated
in Lemma 10, which is proved using a similar argument as
that for Lemma 8. Due to the space limit, the detailed proof
is omitted.
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Lemma 10 (Going up). There exists a constant α′1 >
0, such that among γ logn rounds (not necessarily consecu-
tive) with

∑
v∈At pt(v) ≤ α′1 · F and sufficiently large γ > 0,

there are at least 3
4
γ logn rounds with

∑
v∈At+1

pt+1(v) ≥
4
3

∑
v∈At pt(v), with probability 1−O(n−1).

Now we are ready to show that in most of the rounds after
the adaptation process, the total transmission probability of
active nodes is in the safe range.

Lemma 11 (Stable). Let t0 be the first round in which∑
v∈At pt0(v) drops below α′2 · F . In the subsequent T :=

τ · logn rounds where τ > 0 and n are large enough, the
following hold:

(i) hardly going high: there are at least T · 3/4 rounds t
with

∑
v∈At pt(v) ≤ α2 · F , where α2 > α′2 is a constant.

(ii) hardly going low: there are at least T · 3/4 rounds t
with

∑
v∈At pt(v) ≥ α1 · k, where α1 < α′1 is a constant.

Proof. We prove the two conclusions one by one.
Proof for “hardly going high”. Consider the period

from t = t0 to t = t0 + T . Define a wave to be an interval
[t1, t2] with t2 > t1 + 19, such that for rounds t ∈ [t1, t2] it
holds that

∑
v pt(v) > α′2 ·F , and for rounds t = t1−1, t2+1

it holds that
∑
v∈At pt(v) ≤ α′2 ·F . Then for any round t not

in a wave,
∑
v∈At pt(v) is at most α2 ·F where α2 := α′2 ·210.

Assume there are at least T ·1/4 rounds t with
∑
v∈At pt(v) >

α2 ·F . Otherwise, the lemma holds. Let A denote the event
that the assumption is true. Next, we show that A will never
happen when n is large enough. Let T ′ be the number of
rounds t with

∑
v∈At pt(v) > α2 · F . Clearly, these rounds

are all on waves, and by the assumption, T
′
≥ 1

4
T . Let B de-

note the event that among all these rounds, there are T ′ ·3/4
rounds t with Xt ≤ 3/4. Recall that Xt is the random vari-
able that takes value

∑
v∈At+1

pt+1(v)/
∑
v∈At pt(v). As-

sume that τ > 4γ, where γ is from Lemma 8. Then T ′ >
γ logn, and hence by Lemma 8, it holds that Pr[B|A] =
1−O(n−1), which is positive when n is large enough. How-
ever, as shown in the following argument, events B and A
do not happen together, which leads to the conclusion that
A will never happen when n is large enough.

Now we show that B and A do not happen together. Ac-
tually, it is sufficient to show that B will not happen. Recall
that event B happens meaning that a fraction of 3/4 rounds
in waves satisfy Xt ≤ 3/4. To show this is impossible, we
focus on a single wave [t1, t2], and prove that among these
t2−t1+1 rounds, there are less than (t2−t1+1) ·3/4 rounds
t with Xt ≤ 3/4. Assume the opposite, and then the value of∑
v∈At2

pt2(v) is at most
∑
v∈At1

pt1(v) · (27/32)(t2−t1+1)/4

(using the coupling technique). Recalling that in a wave
t2 − t1 + 1 > 20, we have

∑
v∈At2

pt2(v) <
∑
v∈At1

pt1(v) ·
(27/32)5 <

∑
v∈At1

pt1(v)/2. Since in round t = t1 − 1,∑
v∈At pt(v) < α′2 · F , which implies that

∑
v∈At+1

pt1(v) ≤
2α′2 · F . Hence,

∑
v∈At2

pt2(v) < α′2 · F , which contradicts

the definition of the wave. Hence the assumption does not
hold, which completes the proof.

Proof for “hardly going low”. Consider the period
from t = t0 to t = t0 + T . Define a hole to be an interval
[t1, t2] with t2 > t1+19, such that for rounds t = t1, . . . , t2 it
holds that

∑
v pt(v) < α′1 ·F , and for rounds t = t1−1, t2+1

it holds that
∑
v pt(v) ≥ α′1 · F . Then for any round t not

in a hole,
∑
v pt(v) is at least α1 · k where α1 := α′1/2

10.

Assume there are at least T ·1/4 rounds t with
∑
v∈At pt(v) <

α1 ·F . Otherwise, the lemma holds. Let A denote the event
that the assumption is true. Next, we show that A will never
happen when n is large enough. Let T ′ be the number of
rounds t with

∑
v pt(v) < α1·F . Clearly, these rounds are all

in holes, and by the assumption, T ′ ≥ 1
4
T . Let B denote the

event that among all these rounds, there are T ′ · 3/4 rounds
t with Xt ≥ 4/3. Recall that Xt is the random variable that
takes value

∑
v∈At+1

pt+1(v)/
∑
v∈At pt(v). Assume that

τ > 4γ, where γ is from Lemma 10. Then T ′ > γ logn,
and hence by Lemma 10, it holds Pr[B|A] = 1 − O(n−1),
which is positive when n is large enough. However, as shown
in the following argument, B and A do not happen together,
which leads to the conclusion that A will never happen when
n is large enough.

Now we show that B and A never happen together. Ac-
tually, it is sufficient if we show B never happen. Recall
that if event B happens, it means a fraction of 3/4 of the
considered rounds satisfy Xt ≥ 4/3. To show this is im-
possible, we focus on a single hole [t1, t2], and prove that
among these t2− t1 +1 rounds, there are less than (t2− t1 +
1) · 3/4 rounds t with Xt ≥ 4/3. Assume the opposite, and
then the value of

∑
v∈At2

pt2(v) is at least
∑
v∈At1

pt1(v) ·
(32/27)(t2−t1+1)/4 (using the coupling technique). Recalling
that in a hole t2 − t1 + 1 > 20, we have

∑
v∈At2

pt2(v) >∑
v∈At1

pt1(v) · (32/27)5 >
∑
v∈At1

2 · pt1(v). Since at t =

t1−1,
∑
v∈At pt(v) > α′1·F , which implies that

∑
v∈At1

pt1(v) ≥
α′1 · F/2. Hence,

∑
v∈At2

pt2(v) > α′1 · F , which contradicts

the definition of the hole. Hence, the hypothesis does not
hold, which completes the proof.

Now, we are ready to prove Lemma 5.
Proof of Lemma 5. At first, recall that by Lemma 6, in

any round t with |At| ≥ F ·logn and α1 ·F ≤
∑
v∈At pt(v) ≤

α2 · F , there exists constants 0 < c1, c2 < 1 such that with
probability at least c1 there are c2 ·F active nodes switching
to the inactive state.

Define T1 as the first round t such that the summation∑
v∈At pt(v) drops below α2 · k. By Lemma 9, we know

that T1 = O(logn). After T1, by applying Lemma 11 it
follows that for any period of length at least T ′ := max{2 ·
k/(F · c1 · c2), τ · logn}, with high probability, there are
T ′/2 rounds t in which

∑
v∈At pt(v) is between α1 · F and

α2 ·F . Then we know that for large enough τ > 0, with high
probability there is a round t < T1 +T ′ that satisfies |At| <
F ·logn. Otherwise, based on the above argument and using
the Chernoff bound, it is easy to show that up to round
T1 +T ′, there are more than k active nodes switching to the
inactive state with high probability, which is impossible.

Hence, there exists constant γ′ > 0 with T := γ′(logn +
k/F) ≥ T1 + T ′, such that with high probability there is a
round t ≤ T that satisfies |At| < F · logn. Recall that we
assume k ≥ F · logn (otherwise, we can ignore this section
and only consider the analysis in Section 4.2), which implies
T = O(k/F).

4.2 Efficiency of the Primary Channel
In this section, we analyze the “second part” of the al-

gorithm execution: the execution after the round when the
number of active nodes drops below F · logn. The con-
clusion is summarized in Lemma 12. Note that here in this
part of the analysis, we do not consider the decrease of active
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nodes due to successful transmissions in the multi-channel
transmission process. Since the multi-channel transmission
process makes the decrease of active nodes much faster, the
assumption will not affect the correctness of the analysis.

Lemma 12. Consider a round T with |AT | ≤ F · logn.
There is a constant µ > 0 such that at time T ∗ ≤ T +µ · F ·
logn there is only one active node left with high probability.

Proof. The proof for this lemma depends on a special
case of the proof for Lemma 5, where F = 1 and the trans-
mission probability refers to q(·). Hence, we only give a brief
sketch.

After time T with |AT | ≤ F · logn, it takes at most
O(logn) rounds for the summation

∑
v∈At qt(v) to fall down

to a range between β1 and β2. Here, β1 and β2 are constants
such that for any round t with β1 ≤

∑
v∈At qt(v) ≤ β2, there

is one active node switching to the inactive state in the 4th
slot with constant probability. Afterward, consider a round
T ′ := T+µ ·F · logn where µ > 0 is a large enough constant.
Then with high probability there is a time round t < T ′ such
that |At| = 1. Otherwise, during the period from T to T ′,
with high probability there are more than F · logn active
nodes switching to the inactive state in the 4th slot, which
is impossible.

5. STABILIZATION
As mentioned in the introduction, our protocol has the

ability to handle dynamic joining and leaving of nodes. Here
we explain this feature more precisely.

When nodes join the network, there are two possible situ-
ations. In the first situation, the joining nodes are all inac-
tive, i.e. they have no information to spread. In this case, the
only thing that changes is the network size, which decides
the number of rounds for accomplishing the information ex-
change with high probability. Recall that in our protocol
the nodes operate without having to know the network size.
Hence, the active nodes need to do nothing to adapt to these
newly joining nodes.

In the second situation, there are active nodes joining the
network. This will increase the summation of the transmis-
sion probabilities, as well as the network size. To adapt to
these newly joining active nodes, the existing active nodes
will have to adjust their transmission probabilities. This is
automatically achieved because in our protocol, any single
node makes decisions only according to the response from
the channel it selected and operated on.

When nodes leave, the situation is similar. The behaviors
of active nodes are affected only because the summation of
the transmission probabilities is changed.

In summary, after nodes’ joining and leaving, the network
adapts to the change through adjusting the sum of the trans-
mission probabilities to become “safe” again. As shown in
Theorem 3, this adaption is done very quickly.

Theorem 3. Consider the case when the number of
active nodes is always at least F · logn. For a round t∗ with
p∗ =

∑
v∈At∗

pt∗(v) outside the safe range [α1 · F , α2 · F ],

with high probability
∑
v∈At pt(v) will fall back into the safe

range in Φ = O(log(max{ p
∗

F ,
F
p∗ }) + logn) rounds.

Proof. Recall that in the proof of Lemma 9, in order to
show that the summation

∑
v∈At pt(v) goes below α2 · F ,

we considered T := 4 · T ′ rounds such that T ′ ≥ γ logn

for a large enough constant γ, during which there are 3 · T ′
rounds with a decrease of

∑
v∈At pt(v) by a factor 3/4 (by

Lemma 8) and T ′ rounds with an increase of
∑
v∈At pt(v)

by a factor at most 2. Then, after these T rounds, the
summation

∑
v∈At pt(v) will be decreased by a factor of

(27/32)T
′

with high probability. Since the network is ini-
tiated with

∑
v∈A0

p0(v) ≤ ζ · n, we know that it is enough

to set T := O(logn) for the network to become “safe”.
In a similar approach, it is easy to show that for any

round t∗ with p∗ :=
∑
v∈At∗

pt∗(v) > α2 · F , by the round

t′ := t∗ + max{4 · log(32 · p∗/(27 · α2 · F)), 4γ logn}, the
summation

∑
v∈At′

pt′(v) becomes smaller than α2 · F with

high probability.
For the case that p∗ < α1 · F , the proof idea is similar.

Note that during T := 4 · T ′ rounds with
∑
v∈At pt(v) <

α1 · F , where T ′ ≥ γ logn for a large enough constant γ,
there are 3 · T ′ rounds with an increase of

∑
v∈At pt(v) by

a factor 4/3 (Lemma 10) and T ′ rounds with a decrease of∑
v∈At pt(v) by a factor 1/2. Overall, after these T rounds,

the summation
∑
v∈At pt(v) will be increased by a factor

of (32/27)T
′

with high probability. Hence, by setting t′ :=
t∗+max{4 · log(27 ·α1 ·F/(32 ·p∗)), 4γ logn}, the summation∑
v∈At′

pt′(v) becomes larger than α1 · F by round t′ with

high probability.

Remark 2. Note that when some nodes (active or in-
active) turn faulty, the network will automatically adjust it-
self according to our protocol in just the same way as the
joining and leaving of nodes.

6. CONCLUSION
In this paper, we considered the information exchange

problem of k source nodes in single-hop multiple-channel
networks of n nodes. With F available channels, we pro-
posed a protocol that solves the information exchange prob-
lem in O(k/F+F · logn) rounds, with high probability. Our
algorithm is uniform in n and k, which is the first known uni-
form algorithm for information exchange in multi-channel
networks. And the proposed protocol is asymptotically op-
timal when k is large.

In our protocol, when detecting transmissions, a node
will decrease its transmission probability to avoid collisions.
Then if there exist jamming signals on a channel, an analysis
similar to that would show that even for the case when jam-
ming only affects a constant fraction of the available chan-
nels, the total transmission probability (i.e.

∑
v∈At pt(v))

may tend to become very small. The affects the primary
channel strategy even more significantly, since a fixed chan-
nel may be jammed all the time. This problem motivates us
to consider jamming resilience of the proposed protocol and
other similar protocols in the future.
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